MaGomoku Final Presentation

Team **C4** – Shuailin Pan, Sizhe Chen, Zipiao Wan **Presenter : Shuailin Pan**

Problem Statement & Use Case

<u>An automated Gomoku game board (game</u> <u>set) made for:</u>

- Gomoku Lovers who want to level-up their experience
- Want to enjoy the physical game with online friends
- Elderly Users who are not familiar with online Gomoku games
- Tech enthusiast who want to try out magnetic controlled devices
- Interesting game that can kill time and boredom

Design Requirements

Use Case	Requirements
Detection & Board Integrity	 Distinction between black and white piece (aim for 95%) Detection of piece presence on the board (aim for 95%) Use sensors and software to ensure board integrity
Movement	 Stable magnetic levitation pick up of piece (90% success) Stable piece transportation (90% success) Accurate piece landing (within 5mm of the center) Fast feeding and movement (within 13s)
User Experience	 Easy setup (game setup done in app only) Easy to play (only need to deal with his/her own piece) Low latency (maximum latency of 1 second)

Solution Approach

Movement

Use an xy-gantry system powered by stepper motors and a electromagnet to drag a piece from point A to point B.

Movement

Challenges & Trade-offs

Linear Guide Rails vs Belt Driven Maglev vs Electromagnet 5V vs 12V Electromagnet Grid Size -> 40mm (Locking & Detection)

Testing

Maglev Pickup Success Rate 5V EM White Piece Success Rate 12V EM White Piece Success Rate Longest Path Timing (w/ human) ~33% (w/o human) 0% 8 / 10 10 / 10 11s

Detection & Locking

A matrix of Hall Effect sensors to detect pieces

Small fixed position permanent magnets for locking

Detection & Locking

Challenges & Trade-offs

Electromagnet vs Permanent Magnet PCB physical layout 3 layer vs 2 layer piece design (Feeding)

Testing

Locking Success Rate Piece Presence Detection Accuracy White/Black Distinguish Accuracy Matrix Detection Latency 100% 50 / 50 3 layer (~80%) 2 layer (49 / 50) ??

Feeding

Challenges Spring Loaded (Horizontal) vs Gravity (Vertical)

Testing

Feeding Success Rate (w/o EM)Black Piece17 / 20White Piece20 / 20

Software

- Use Django(python) as the backend and html/css as the frontend to achieve the game state control and communication with the online gomoku platform.
- Use Flask for local communication via api endpoints between hardware program & webapp program

Project Management

Shuailin Pan

- Feeding system development
- Board assembly, Laser Cutting
- Hall-effect sensor development

Sizhe Chen

- Piece detection algorithm development
- Hall-effect PCB design
- Gantry interface development

Zipiao Wan

- Web application development
- Arduino interface Development
- Gantry system development

Next Steps

What we learned

Importance of separation of responsibilities and the interface

We set a clear bound of duties between software and hardware, and spent lots of time specifying data standards between the two, which made the coordination and integration easy.

Importance of feasibility testing of core components ASAP

 We spent lots of time assuming magnetic levitation works, but it actually not, so we have to resort to another solution.

Importance of design review of high risk items before execution

• Ordering and shipping PCB board takes a long time, need to double check the design is feasible before placing orders.

Learning new knowledge through practice and non-standardized source