MaGomoku

 \square

Project Proposal
Team C4: Sizhe Chen | Shuailin Pan | Zipiao Wan

Introduction

A **networked**, **automated Gomoku set** to level-up the gaming experience where players can play with actual Gomoku pieces on a physical game board against online players and AI opponent.

Utilizing **maglev** technology, the opponent's Gomoku pieces will automatically *levitate, move, and land* on the game board during each turn.

Gomoku, also called Five in a Row, is an abstract strategy board game. It is traditionally played with Go pieces (black and white stones) on a 15×15 Go Board. Currently, there are only either a physical Gomoku set that can only be played offline, or a purely software game that can be played online.

Credit: https://store.steampowered.com/app/1555400/_/

Use Case

- Gomoku Lovers who want to level-up their experience
- Want to enjoy the physical game with online friends
- Elderly Users who are not familiar with online Gomoku games
- Tech enthusiast who want to try out magnetic levitation devices
- Interesting game that can kill time and bored

Use Case Requirements (Detection & Board Integrity)

- Able to distinguish between black and white pieces (100%)
- Able to determine the exact location of every pieces placed on the cross (assuming that our locking mechanism will auto-correct the location if there is a bias on placement) (**100%**)
- Able to check for illegal moves and warn players (e.g. you moved pieces already placed, or you placed your piece onto another placed piece) (100%)
- Able to record and synchronize the game state with software (50ms latency)

Use Case Requirements (Movement)

- Piece feed system should be on-time and accurate (game piece is shipped to a place where the x-y gantry can pick it up, less than 3 seconds, within 5mm of target destination)
- Movement should be accurate (the game piece should be moved to the vicinity of a cross such that the auto-correct location mechanism can fix the piece) (<5mm before autocorrection)
- Movement should be on-time (less than **12 seconds** for the longest possible location on the board)
- Locking & Auto-correct mechanism (a game piece within 5mm will | be automatically centered to the cross location within a boundary)

Use Case Requirements (User Experience)

- Easy setup (easy setup: just login to app and click start game)
- Easy to play (The player only needs to place his/her/their own move onto the board)
- Online play (Able to play with other players online or with another maGomoku board)

Technical Challenge

- 1. **Detection:** how to distinct between black and white pieces given that there are externalities like moving magnetic field for moving new pieces
- 2. Locking pieces: how to 'lock' the pieces already placed on board while moving a new piece without **interfering** with the existing pieces and change their locations.
- Movement: how can we make sure that the levitated piece remains levitated while moving and can be placed onto the board with precision.
- 4. **Interference**: magnetic interference that may affect detection, locking and movement of pieces.

We assume that there is a magate inside every gomoku piece.

Solution Approach

- Existing commercial product for maglev
- Arduino as processing unit for gantry control
- Hall effect sensors for piece detection
- Electro magnet for locking
- Solenoid for feeding
- Flutter for application development

• Opponent api that Imitate player movement on https://papergames.io/en/gomoku

User

Testing, Verification, and Metrics

- Board detection correctness test (100%)
- Board state detection test (100%)
- Illegal Move Hardware detection test
- Board state software correctness test (if the software can correctly detects illegal moves based on move history) (100% Cases)
- Piece Auto-correction system test (100% autocorrect piece within 5mm)
- Feeding accuracy test (within 5mm)
- Feeding speed test (3s)
- Piece Movement system accuracy test (95% within 5mm without auto-correction)
- Piece Movement system speed test (delivery within 12s)
- Piece Movement system robustness test (See if the automatic go piece delivery system will lose the piece in movement in response to tremor and magnetic interference) (98% robust delivery)
- User Experience Pressure Testing (Get user feedback to see how fast the system need to go for the user to feel comfortable and not bored) \Box

Tasks and Division of Labour

- Magnetic Levitation device (Chen, Pan, Wan)
- Gantry control & Programming (Wan)
- Detection and Locking Mechanism (Chen)
- Go piece feeding system (Pan)
- Mobile Application development (Pan, Wan)
- Final Integration(Chen, Pan, Wan)

Schedule

THANKS

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik