Grocery Store Checkout System

Team C3: Brian Chhour, Shubhi Jain, Simon Xu

Application / Use Case

- When in a grocery store, we want to check out as soon as possible
 - Just eyeing the number of people seldom works
- We want to build a system that chooses the best checkout line for a given user to go to in order to minimize their checkout time
- Main priority is how accurate the predicted fastest checkout line is

Quantitative Design Requirements

Requirement	Metric
Time between obtaining video data to computing fastest checkout line and displaying it	< 5 seconds
System determining the fastest checkout line correctly	>= 85%
Margin of error on determining relative fullness of someone's cart	< 20% error
Margin of error on average throughput of cashier	< 20% error
Margin of error on determining number of people in a line	< 10% error

Solution Approach - Algorithmic Layer (TODO)

Solution Approach

- After we download 3 separate streams of footage from S3, we have 3 separate models for detection:
 - 1. Throughput, where we detect the cashiers hands to see how fast items are being scanned
 - 2. Shopping carts, where we are detecting shopping carts passing into and leaving the line, and computing fullness when we detect a cart
 - 3. Line detection, where we are trying to find the number of people in the line
- We convert the number of people and the percent fullness into an estimated time based on cashier throughput

Complete Solution

- Have footage taken from RPis running in Salem's while we are demoing in person
- Have two lane setup for demo with some carts + items
- Show how system changes when we join the line with varying amount of items
- Display what our models are predicting

Testing - Fullness Detection

Testing Method:

- Ran module on carts with different fullness
- Expect the difference in output to reflect the difference in actual fullness
- Outcome:
 - \circ 5 different tests with 3-4 carts each
 - \circ 60% of the time carts were within our margin of error

13%

28%

36%

Testing - Cashier Throughput

Testing Method:

- How often that the cashiers hand is detected as having put an item on the other side of scanner (which indicates a completed scan)
- 3 different videos around 20-30 seconds each
- Accuracy: 58%

Testing - Line Detection

Testing Method:

• How often the number of people in line is actually the correct number

Testing - Full System Latency

	Worst Case	Average
Video Length	1 second	1 second
Upload	0.9 seconds	0.5 seconds
Download	0.7 seconds	0.6 seconds
System Computation	2 seconds	2 seconds
Total	4.6 seconds	4.1 seconds

Design Tradeoffs

3 Cameras vs. 2 Cameras

• Determine fullness of each cart as well as number of people in line - initially relying on same camera for both

Cashier Throughput Observation Method

• Initially relied on CV to track items being scanned, now tracking hand movement

USB Connected Cameras vs RPis uploading to S3

• Simplicity and easier installation versus ability to run system remotely from another location, less clutter from cables

FPS of the Cameras

• reduced FPS of cameras so that uploads/downloads are faster and model inference takes less time

No longer have FPGA

• Our latency requirement is 5 seconds, so it's easier to simply reduce camera FPS

Lessons Learned

Ethics:

- Employees and customers concerned with cameras
 - Build personal relationships with the employees and customers so less afraid
 - Work with manager and employees to figure out workarounds

Implementation

- Always be ready to adapt to new situations and changes
 - Camera angle changed a lot as we figured out how to setup the cameras at Salem's
 - \circ $\,$ Led to some of our models and implementations being very inaccurate had to adapt

Schedule

