
18-500 Design Review Report Template - 18 January 2022 Page 1 of 7

Grocery Store Checkout System
Authors: Brian Chhour, Shubhi Jain, Simon Xu

Affiliation: Electrical and Computer Engineering, Carnegie Mellon University

Abstract—A system capable of computing the
fastest checkout line in a small grocery store and dis-
playing the result to users in less than 5 seconds with
at least 90% prediction accuracy. Cameras are used
to capture information regarding each checkout line,
which will be sent to our software running on a laptop.
For processing the camera data, YOLO is the computer
vision algorithm of choice for motion detection and ob-
ject recognition. Our CV algorithms are designed to
run in parallel to improve scalability. Our primary goal
is to improve the checkout experience for shoppers by
expediting the process.

Index Terms—Computer Vision, Motion Detection,
Object Detection, YOLO

1 INTRODUCTION

When going grocery shopping, customers generally
want to minimize the time that they are in the store. Of-
tentimes, waiting in checkout lines and subsequently being
checked out is a major bottleneck that increases the time
spent inside of a store. Currently, the strategy for the ma-
jority of shoppers is to observe the number of people in
a line and then choose the line with the least amount of
people. However, this method of choosing a line can back-
fire: a line with less people can take longer to check out
depending on the speed of the cashier working in that line
and the total number of items shared between the people
waiting in that line. As a simple example, a line with two
people could take longer to check out than a line with three
people if the two people have more items, if the cashier in
that line is working at a slower rate, or both.

Our solution aims to be a system that will analyze the
aforementioned factors in checkout time (the number of
people, items, and cashier work rate) to recommend to a
user the checkout line that takes the least amount of time
possible. In order to achieve our goal, we plan to set up 2
cameras in each checkout line, one facing out towards the
shoppers and their carts, and another facing the cashier.
These cameras will feed footage to our computer vision al-
gorithms, which should determine information about the
number of shoppers, the fullness of their shopping carts,
and the speed the cashier is working at. From there, we
will use that information to estimate the time a checkout
line should take and compare with our estimate for all other
checkout lines to determine which is fastest. Finally, our
result will be displayed on an LCD display that the users
can see. Our system will generate significantly more ac-
curate predictions of the fastest checkout line than a user
could due to 2 main reasons:

1. Our system takes into consideration the cashier work
rate, which would be difficult for a person to discern

2. We aim to approximate the number of items in a
checkout line, and since we will have cameras in each line,
we can do all this simultaneously, whereas a person would
need to look at all the lines one at a time

2 USE-CASE REQUIREMENTS

Our system expedites the grocery shopping process,
which hopefully alleviates some of the frustrations that
might arise from having to wait in lines. A user should
be able to find the fastest checkout line in less than 5 sec-
onds, without having to analyze the lines themselves. This
requirement was determined mainly from personal expe-
rience and briefly surveying people around us, as people
generally decide which line they want to go to in order to
check out relatively quickly. They are more likely to want
to use the system as long as it decides which line to enter
faster than they are able to decide. They should approach
the checkout area, see a display that has the current fastest
checkout time, and decide to go to that line.

2.1 Business Satisfaction

Our system increases the speed at which customers are
able to check out of the store, and this could allow for stores
to become more popular due to customer satisfaction with
checkout times. With increased popularity, a given store
using our system could increase revenue and by extension
profit. Also, with faster checkout times, a store might not
need as many cashiers to man the counters, which would
also increase store profits due to cost cutting.

2.2 Ethical Implications

With regard to public health, a more pleasant shopping
experience could encourage people to shop for their own
groceries more frequently, which tends to be healthier than
eating at restaurants. This also benefits public welfare,
since our system aims to make the basic need of buying
groceries more convenient. Where safety is concerned, the
use of cameras in our system could be concerning for the
customers. However, the only data we aim to collect about
people is the number of them (and not who is) in a line
at a given time, and we will not be storing any significant
amount of camera footage. With respect to the cameras
in our systems that observe how fast cashiers work, they
only point towards the hand level, and so no faces are being
recorded and used for data processing or facial recognition
purposes. Furthermore, people are already monitored in

18-500 Design Review Report Template - 18 January 2022 Page 2 of 7

grocery stores through security cameras, so our additional
cameras will not be capturing any information that would
not already be known for security purposes.

2.3 Consumer Focus

Individuals are bound to have a better shopping ex-
perience where they are able to save time at the grocery
store. People are more likely to return back to the grocery
store and make more visits if they have a positive shopping
experience, almost fostering a sense of community at the
grocery store. Many demographics of people don’t get a lot
of social interaction, such as the elderly, and a positive gro-
cery store experience provides an opportunity to foster that
sense of community and increase social interaction between
such groups. Integrating a system that decreases the time
it takes to get to the checkout counter also decreases the
overall time a customer spends at the store, which is more
time to spend elsewhere that can be directed to bettering
society.

3 ARCHITECTURE

Figure 1: Software Architecture.

The three main components for our system are the cam-
eras at the checkout lines (see Fig. 2 for the layout), a lap-
top running all of our algorithms, and an LCD display to
inform users of our recommended checkout line. Our sys-
tem begins with receiving input data from two cameras for
each checkout line in the store. Then, it will process the
camera footage using OpenCV, and send data to three dif-
ferent software modules: data from the camera facing the
cashier will be sent to a software module that will calculate

the throughput of the cashier to determine how fast they
are working. This will be done by using YOLO to see when
an item goes from the beginning of the checkout area to the
bagging area, and keeping a running average of the time
that it takes between items leaving the checking area and
reaching the bagging area. The data from the second cam-
era in the checkout line will be sent to the second and third
modules, which will find the number of people lined up
for the corresponding checkout line, and keep track of how
full item carts are and the number of items on the conveyor
belt in the checkout line. Information from all three of these
software modules will be subsequently inputted into a local
database. This local database will store all computed data
from each thread, which runs our main software module
that calculates relevant data for each checkout line. Our
local database will then have for each checkout line: the
throughput of the cashier, the number of people lined up,
and the number of items on the conveyor belt and how full
the carts are of the people behind the conveyor belt. Using
this information, our system can then compute estimated
times for how much time it will take for a cashier to finish
checking out all the current customers that are lined up
in their checkout line, which will then be displayed on an
LCD display.

Figure 2: Physical Camera Layout

The physical layout of our system has two cameras per
checkout line: one will view the cashier, and the other will
view everything else: the items on the conveyor belt, the
people waiting in line behind that conveyer belt, and their
shopping carts and/or baskets.

18-500 Design Review Report Template - 18 January 2022 Page 3 of 7

4 DESIGN REQUIREMENTS

Latency for processing the frames from camera footage
in the backend should take less than 500 milliseconds. Our
system needs to compute a result within 5 seconds, and
processing the frames from the camera footage should not
take up much of that time budget. Furthermore, process-
ing the frames is a minimal portion of the total work in
computing a result, so it should not take too much time
to do this regardless. However, this does take 10% of the
time budget because it is nontrivial to process the multiple
frames per second being input by the camera.

The computation time for our computer vision algo-
rithms should take less than 3.75 seconds total. This is
the bulk of our system implementation and where the most
work is being done. There are multiple algorithms that will
run in parallel and this generates a significant amount of
overhead. Therefore, it should take a majority of the time
budget from our 5 second deadline in computing a fastest
checkout line recommendation.

Furthermore, the time to update the LCD display after
computing a fastest checkout line recommendation should
take less than 250 milliseconds. Updating the LCD dis-
play is the simplest part of our system implementation and
therefore should take the least amount of our time budget.

Our system, most critically, must produce a result that
is accurate at least 90% of the time. An accurate result is
defined as a user getting to the checkout counter faster than
if they were to join any other line, which also means that
a user approaching the checkout area after that user also
must not get to the checkout counter before them. The
entire purpose of our system is to find the fastest check-
out line and allow a given user to get checked out as soon
as possible, so accuracy is by consequence the most vital
design requirement of our system. Without accuracy, our
system is effectively useless.

For our algorithm that finds the average throughput of
the cashier, we must have a maximum margin of error of
10%. This margin of error is simply defined as the percent-
age difference between our estimated cashier throughput
and the real cashier throughput. Our system has cameras
that monitor each cashier as they scan items for checkout,
and these cameras will have a clear view of all the items
(with the rare case that they are stacked on each other),
and will therefore be able to figure out when an item is
being checked out with a high degree of accuracy, since a
cashier generally scans one item at a time when checking
someone out. Based on this average, we are able to deter-
mine how much time the entire line will take to get checked
out, which is extremely important to our use case. This in-
creases the importance of having an accurate computation
of the camera stream.

For our algorithm that determines the fullness of the
carts, we must have a maximum margin of error of 20%.
For this metric, percentage is relative to shopping cart ca-
pacity, so an estimate of 20% fullness when true fullness
is 10% would be within our margin of error, despite our
estimate being double the true fullness. Our system has

cameras that view the carts in a line, but cameras might
not be able to capture a very detailed view of each cart.
Additionally, current edge detection algorithms may not
be able to perfectly measure and report the amount of area
the items take up in the cart, so a high accuracy can not be
guaranteed. Therefore, our error requirement is more lax
in this case because there are many ways that the camera
view can lead to errors in detecting how full a cart is. For
example, someone could have a cart where the side closest
to the camera has many items, but the other side of the cart
isn’t filled at all. With edge detection, it is entirely pos-
sible that our system would predict that the cart is filled
more than it is in this case. While we have a large margin
of error, this won’t impact our system’s overall accuracy
too much because we only need our system to observe a
general trend of how long the line will take. As such, one
cart’s estimate being off by 20% will be averaged out by
other carts in a line, likely leading to less overall error than
20%. We don’t plan on displaying any quantifiable data
that we collect to the users, so small inaccuracies here will
likely go unnoticed by them.

Lastly, the algorithm that counts the number of shop-
ping carts lined up must have an accuracy of at least 95%
(where accuracy is simply detecting the right number of
carts). This requirement is the most stringent for two rea-
sons. Firstly, incorrect detection of the number of carts is
going to heavily impact our estimated time. Secondly, we
need to be able to detect a cart first before detecting the
fullness of a cart, so successfully detecting cart fullness is
predicated on accurately detecting carts.

5 DESIGN TRADE STUDIES

5.1 Item Counting Methods

One approach we had was to detect the number of items
in every user’s cart using a sensor, such as an ultrasonic sen-
sor. The idea was that every time a user dropped an item
into a cart, it would update the count in a database that
would then be used to determine the number of items in a
checkout line once the carts were checking out and stand-
ing in line. The benefit to using sensors over computer
vision was mainly in accuracy. Sensors would be more ac-
curate than computer vision because issues like items being
stacked on top of each other or being behind other items
would not be relevant with sensors being used. However, we
found this solution to not be scalable as it would require
multiple sensors and bluetooth connectivity to communi-
cate the number of items to the overall system and process
the overall time the line would take. We would need multi-
ple sensors to be attached to every cart, and this would be
prone to damage as users could easily and accidentally hit
the sensors. Building an apparatus to attach to each cart
and mounting it properly, making sure it doesn’t obstruct
a customer in any way, as well as making sure it isn’t frag-
ile quickly becomes too expensive as the number of carts
and baskets in a store increase, making this approach cost

18-500 Design Review Report Template - 18 January 2022 Page 4 of 7

inefficient and inconvenient.

5.2 Computer Vision Algorithms

We have evaluated several different computer vision al-
gorithms to use in our system, and we finally decided on
YOLO due to its ease of adaptability with OpenCV as well
as its speed at identifying different items in a single layer.
Another algorithm we were considering is faster R-CNN. A
benefit of R-CNN over YOLO would be its ability to handle
larger amounts of object classes. However, there is a large
time delay in the proposition of different objects, which is
one of our key design use cases to count the number of dif-
ferent objects. Furthermore, R-CNN is much more resource
intensive, due to the need of a larger dataset to train the al-
gorithm. Another algorithm that exists is called Histogram
of Oriented Gradients. This algorithm is much more accu-
rate than edge detection, since it uses magnitude and angle
in its computations. Unfortunately, this algorithm is too
time consuming for our use case, as part of our use case is
that our system updates in less than 5 seconds. YOLO is
a faster algorithm since it detects objects in a single pass
through an image, making it a more suitable algorithm for
our needs.

5.3 Processor

One of our original plans was to offload the computer vi-
sion computation onto an FPGA to speed up the process.
We planned to implement this hardware acceleration us-
ing OpenCL, a framework that allows for converting C++
code into a synthesizable RTL design. The main advan-
tage to using an FPGA is that computer vision algorithms
are highly parallelizable, so we would be able to achieve
significant speedup by parallelizing the algorithms on an
FPGA. Our planned approach was to take each of the soft-
ware modules, convert each of the portions that required
speedup to OpenCL friendly code, and then subsequently
convert and synthesize the resulting RTL implementation.
The reason why we didn’t further pursue using an FPGA
for hardware acceleration lies within our use case: there is
no need to use an FPGA to meet our timing requirements,
as our timing requirements are quite lenient and a laptop’s
CPU would suffice. As such, there is no need to incorporate
an FPGA into our design, as the benefit it provides would
be minor relative to the time it takes to develop. To focus
on our user use cases, we will be computing our software
on a laptop.

5.4 User Analysis

Another previous design feature we were considering
was inspired by TSA lines. The idea was to section off an
area for the user to enter before they receive the decision
for which checkout line to enter. This design The purpose
of this sectioned off area was to have a camera that would
analyze the user’s cart before the user entered any line, and
that data would then be stored in the database to use in

evaluating the lines once the user enters a line. We found
that this design was not very beneficial for our use case as
users would not be motivated to enter a designated area
and wait for the system to capture their data before they
go check out. If anything, this might increase the time and
create a greater inconvenience for the user when trying to
the checkout from the grocery store, driving them away
from visiting the grocery store again.

5.5 Cart Item Counting

Before our current planned approach of determining the
relative fullness of a cart, we were planning on differenti-
ating between items in a cart based on gaps and borders
between them. We could then calculate the time to scan
the entire cart by multiplying the estimated item count
by the throughput of the cashier. However, a huge flaw
with this method was that because of our limitations with
the number of cameras per checkout line, the camera that
faces the lined up individuals for checkout cannot detect
the number of items in a cart with high enough accuracy.
Many things can throw off the estimation: for example,
items can be behind other items, and there could be items
stacked on top of each other, making the implementation
for estimating the item count extremely difficult and unre-
liable. A camera facing a cart on one side that has many
items blocking the other items from the line of sight of the
camera will not be able to detect at all the other items,
which would lead to a very noticeable hit to our system’s
accuracy. Therefore, we decided to change this approach
and look for relative fullness of carts instead.

6 SYSTEM IMPLEMENTATION

The stack will have multiple modules in communication
with each other as well as the system database.

6.1 Camera 1

We will have one camera dedicated to capturing the
cashier’s throughput, which will observe the time it takes
for a user to finish checking out. To determine how long
a single user takes to check out, we will use a timer and
computer vision. Once a previous user is done checking
out, which will be identified by when the user is a certain
distance away from the checkout counter using YOLO, the
next user’s timer will start. Once that user is done and also
identified as finished checking out, the time it took for the
user will be recorded. Based on the data we already have
on the relative fullness (see the section under Camera 2 for
a definition of relative fullness) of the cart, we can deter-
mine the average time it takes for a unit of relative fullness
to be checked out (Which is simply relative fullness divided
by the time taken). The calculated cashier’s speed for that
user will be used to update the rolling average of the cashier
throughput at that checkout counter.

18-500 Design Review Report Template - 18 January 2022 Page 5 of 7

6.2 Camera 2

Another camera will be used to determine the length of
the checkout line, as well as used to determine how “full”
each cart is. Each cart will be saved as an object as part of
a queue in the database for the relative checkout counter.
Each cart object will store the relative fullness of the cart,
and based on how long it takes on average for each unit of
fullness to be checked out, the software will compute the
estimated time that cart will take in the line. Based on the
queue in the database for that specific checkout counter,
we can observe when a cart hits the top of the queue, and
based on when the cart is done checking out and what rel-
ative fullness the camera and system had observed for that
cart, we can update our estimate for how much time it
would take for each unit of fullness to get checked out, and
therefore update our system’s accuracy for projected time.

Relative Fullness - Our system will measure this met-
ric using edge detection to determine the general area that
the items in the basket cover, and look at the edges of the
basket itself to determine what the max area of the bas-
ket can have. From those two measurements, we can then
proportion and estimate how much volume the items in
the basket are taking, and have a measurement of “relative
fullness” to use for our basket. We will know which lines to
observe based on the detection of where the cart exists via
YOLO, and from there be able to filter out the edges that
are observed. Figure 4 below shows how edge detection can
help create a bounding box (blue box) around the items in
the cart, from which it could be compared to the top edges
of the shopping cart to determine the relative fullness of
the cart.

Figure 3: Shopping Cart with Bounding Box

Line Detection: A large part of our system also relies
on our camera being able to determine where the checkout
line is and whether a cart is in that line or not. If we are
able to identify the checkout counter and the line of carts
closest to the counter, we can start to form the concept of
a line there, and based on the direction of said line, we can
start to observe a line following out of the counter.

6.3 Output

Once the data from the cameras is processed, another
module will look at the data and compute the total esti-
mated time the checkout line will take. For each checkout

line, we will have the cashier throughput, the number of
people in line, and the relative fullness of the carts/bas-
kets. Based on the relative fullness of a cart, we can cre-
ate a metric to determine approximately how much time it
would take for a cashier to finish scanning someone’s cart,
which then allows for the calculation of the total amount
of time to finish checking out all of the people currently
waiting in line.

TotalT ime =

CashierAvg ×∑
(RelativeFullnessOfEachCart

(1)

Total Time = cashier avg time * sum(relative fullness of
each cart) Once this number is computed for each check-
out line, the line with the lowest projected time will be
determined as the result. This result will then be displayed
on a separate window on the laptop, which will be con-
nected to an LCD display via an HDMI cord, that will also
display the output.

7 TEST & VALIDATION

7.1 Cashier Throughput

The most basic method for validating the cashier
throughput calculating module is to have a camera point-
ing at a table, and lifting items from one end to another
and seeing if the throughput is calculated correctly. We
plan to manually time when the tester lifts and puts down
the items, and then calculating the error of the throughput
calculation module will indicate the accuracy of this mod-
ule. We will repeat this process on different items and plan
on testing 5-10 times for each item in order to get a more
complete understanding of this module’s accuracy.

7.2 Item and Line Identification

We plan to test our item counting module and line iden-
tification module using manual tests where we will set var-
ious scenarios of different numbers of people entering lines
with varying carts. We will start with a small number of
lines and total number of items in carts/baskets, and scale
our tests, starting with two lines. We also plan on hav-
ing tests where a person/people are standing in the field of
view of the camera, but aren’t actually lined up to check-
out. This will allow us to check for correctness in our line
detection module that counts the number of carts lined up.
It is critical to accurately tell how many carts/baskets are
lined up to check out because an inaccurate calculation on
the number of carts/baskets in a line can drastically af-
fect the correctness of the entire system when integrated.
We will aggregate results from multiple different line con-
figurations where there are extra people standing but not
lined up in frame, and configurations where there are only
people lined up in frame. After aggregating these results,
we will calculate the error of the line detection module.

18-500 Design Review Report Template - 18 January 2022 Page 6 of 7

We aim to achieve less than 15% average error for the cal-
culated results in this module. Furthermore, for item de-
tection, we want to test how accurate our edge detection
algorithm is with estimating the fullness of a cart/item.
With a camera pointed at a line of people, we will look at
the computed results for the fullness of the carts/baskets
and then calculate the difference between our estimation
and the actual volume of the carts/baskets, since the bas-
ket and cart total volume is standardized in stores, as a
grocery store generally does not carry two different types
of carts or baskets. We aim for a maximum margin of error
of 20%, because there are many difficulties in getting ac-
curate measurements of cart fullness due to stacked items
or unevenness in item spread in a cart (a cart with many
items on one side that the camera can see, but the other
side of the cart is empty). Repeating these tests multiple
times will help us get a more complete understanding of
the accuracy of the relative fullness module.

7.3 Computation Speed of Integrated Sys-
tem

When looking at our integrated system, we want to
make sure that it meets our design requirement of com-
puting a result after processing camera footage in less than
5 seconds. We can do this programmatically by starting
a timer when initially taking in camera footage, and then
stopping the timer right before displaying the results on
the LCD display. We want to aim for the timer result to
be less than 5 seconds, and we will repeat this process 15
times in order to make sure that our system can compute
results in less than 5 seconds consistently.

7.4 Accuracy of Integrated System

After our system is completely integrated, we plan on
testing the system by having real-time testing in Scotty’s
Market, a grocery store located on campus in Forbes and
Beeler apartments. We will mount our cameras in our de-
scribed physical layout in Figure 2, and have our system
compute consistently which line should be taken to a given
user. The most vital component of our system is the accu-
racy of the computed result - we want a given user to be
able to check out of the store faster than the person behind
them. Therefore, we can observe people that use our sys-
tem, and see how many times the users are able to check
out before people behind them. The individuals behind
the user of interest described above can use the system as
well to get a recommended checkout line, but our system
should not be recommending a checkout line that allows a
later user to get out of the store faster than a user from
the minute prior. We will repeatedly observe the usage of
our system and calculate an accuracy measure of the in-
tegrated system after 20-30 trials, and we aim for at least
90% accuracy.

8 PROJECT MANAGEMENT

8.1 Schedule

By the week of 3/11, we hope to have the individual
software modules completed or close to finished, and an in-
tegrated product by 3/26. Testing is the more vital part
of our project, and we hope to finish integration testing by
4/5. The schedule is shown in Fig. 4.

8.2 Team Member Responsibilities

We split the responsibilities for each team member
evenly, considering the difficulty of each relative subtask.
Simon and Brian will be working on the line detection soft-
ware module, and Simon will then test that module. Brian
will work on the cashier throughput calculation module,
and test that module. Shubhi will work on the cart rel-
ative fullness calculation module, and test that module.
Everyone will work on combining the software modules, in-
tegrating the system, and integration testing.

8.3 Bill of Materials and Budget

See Table 1 on the next page for our system’s budget.

8.4 Risk Mitigation Plans

Our most significant risk right now is getting permission
from Scotty’s Market to set up our system for integrated
testing. Without permission, our testing will be much more
difficult to accomplish. For risk mitigation, if we are unable
to get permission to test our system at Scotty’s Market, we
plan on using a room on campus, setting up multiple lines
using long tables, and doing grocery shopping simulations
with baskets there. We will vary the line length, number of
people in a line, and the throughput of those who are act-
ing as cashiers. In doing this, we hope to at least simulate
a relatively similar environment to a grocery store.

Another risk we foresaw when initially designing this
system was the accuracy of the system to be able to iden-
tify how full each user’s shopping cart would be. We de-
cided to mitigate this risk by changing our metric from the
number of items in the shopping cart to the relative fullness
of the shopping cart using edge detection. However, even
trying to detect relative fullness could prove to be difficult,
considering that we are only using 1 camera to collect in-
formation about shopping carts. If the angle we put this
camera at does not give us definitive enough data to make
an acceptably accurate estimate, we plan to put one cam-
era capturing a side view, and another camera capturing a
top-down view. Combining these two cameras, we hope to
be able to improve our measurements of fullness.

9 RELATED WORK

There is a project where a smart grocery store device is
built using computer vision algorithms to detect and iden-

18-500 Design Review Report Template - 18 January 2022 Page 7 of 7

Table 1: Bill of materials

Description Model # Manufacturer Quantity Cost @ Total
2K Webcam V11 NURUOM 6 $26.99 $161.94
7-port USB hub HU4133 vienon 1 $9.99 $9.99
LCD Display M700 AISHICHEN 1 $42.99 $42.99

$214.92

tify specific grocery store items and store them in an SD
card, then display the scanned items and their prices on a
user-friendly interface. [1]

This project mainly focuses on making a device that
will give normal grocery store carts more functionalities
like the Amazon Go smart shopping carts. Therefore, the
fundamental difference between our system and this project
would be the focus on streamlining checkout speed via look-
ing at how full a cart is versus the focus on recognizing
specific grocery items and showing all of the items in a
checkout cart on a display screen. Our system will not fo-
cus on scanning individual items, and takes into account
more so the fullness of a cart rather than the specific items
inside of it.

10 SUMMARY

We hope to create a system that allows users to check
out of a store faster by analyzing data that a user trying to
check out of a grocery store wouldn’t be able to see right
away using footage from cameras. Our system will take
into consideration the speed of a cashier in each checkout
line. It will also take into account the amount of people
in a line, more specifically the number of groups of people,
since multiple people could be sharing the same cart. It
will also take into account the relative fullness of each cart
belonging to people that are lined up to check out, in order
to provide a more accurate prediction on how much time
it will take for a cashier to get through the line. The pre-
dicted fastest checkout line will then be displayed for a user
to see (and follow). The upcoming challenge with imple-
menting our system’s components is mainly implementing
an algorithm that will find the relative fullness of a cart
and then subsequently assigning a metric to the cart in or-
der to estimate how fast it would take to check the cart
out. Relative fullness algorithms can be inaccurate due to
many factors, and so assigning a metric that will smooth
out these errors is the most vital and challenging part of
implementation.

Glossary of Acronyms

• FPGA - Field Programmable Gate Array

• OpenCL - Open Computing Language

• OpenCV - Open-Source Computer Vision Library

• R-CNN - Region-Based Convolutional Neural Net-
work

• RTL - Register Transfer Level

• YOLO - You Only Look Once (algorithm)

References

[1] Kutluhan Aktar. Smart Grocery Cart Using Com-
puter Vision - OpenMV Cam H7. url: https : / /

docs.edgeimpulse.com/experts/image-projects/

smart - grocery - cart - with - computer - vision -

openmv- cam- h7#description. (accessed: February
28th, 2023).

18-500 Design Review Report Template - 18 January 2022 Page 8 of 7

F
ig
u
re

4
:
G
a
n
tt

C
h
a
rt

