
Grocery Store Checkout System

Team C3: Brian Chhour, Shubhi Jain, Simon Xu

Application / Use Case

● When in a grocery store, we want to check out as soon as possible
○ Just eyeing the number of people seldom works

● We want to build a system that chooses the best checkout line for a given user
to go to in order to minimize their checkout time

● Main priority is how accurate the predicted fastest checkout line is

Quantitative Design Requirements

Requirement Metric

Time between processing camera video
data to computing fastest checkout line
and displaying it

< 5 seconds

System determining the fastest checkout
line correctly

>= 90%

Margin of error on determining number
of items in someone’s cart

< 15% error

Margin of error on average throughput of
cashier

< 10% error

Solution Approach

Local DB

● YOLO works with
30 FPS real-time
capture, which
makes it
compatible with
our camera of
choice

● OpenCL will
allow us to write
C/C++ code,
convert that to
RTL, and
synthesize it

Design - Algorithmic Layer

System Design - Components

● DE10-Standard FPGA for
accelerating computations
- supports OpenCL,
110,000 logic elements,
more than enough for
what we want to achieve

● Logitech C310
cameras -
Serviceable frame
capture rate to feed
data to OpenCV,
affordable (~$18 at
Walmart)

● 7-inch LCD display -
Type of display doesn’t
matter too much, this is
only used for showing
which line to go to

Design - Physical Layout

● Two cameras
for each line:
one for
watching the
cashier (hand
level) as they
pick up and put
down items,
the other for
observing
people waiting
in line

Implementation Plan

● Capture video from camera - OpenCV
● Real-time cart detection, item detection - YOLO

○ Open-source software implementations available for real-time item detection, modify algorithm
to detect carts and individual items in carts

● Cashier throughput data collection - OpenCV
○ Custom algorithm to detect when a cashier is done scanning an item after first picking it up

● Hardware speedup
○ Custom kernel level code implementation in OpenCL
○ UART to send data between CPU and FPGA

● Local database to store results computed from threads

Testing and Verification

● Sanity checks of components before integration
○ Manual timer tests for cashier throughput testing: have camera facing a “cashier”, pick up and

place items down with varying speed, calculate error from the module’s throughput calculation
○ Manual tests with baskets and/or mini shopping carts, place items of various sizes, test

estimated item count for baskets with stacked items, items that are hidden behind other items,
etc

● Talk to Scotty’s Market on campus to allow for real-time testing using their
checkout lines

● Artificially increase the number of people in lines by bringing willing
participants

○ Capture a variety of different cases: i.e. one line has 2 people but 20+ total items, one line has 3
people but 15 total items, last line has 4 people with ~10 total items, etc

○ Small scale tests initially and increase line sizes gradually

Testing and Verification

● Manual timer tests for system when integration is complete
○ Time when the system starts computing to when the display updates

● Manual tests for determining system accuracy
○ Have two volunteers go and use the system at different times, the volunteer that uses the

system later should finish checking out before the volunteer that used the system earlier, repeat
15-20 times

● Risk-mitigation: if we can’t test our system at Scotty’s Market, pivot to
simulating checkout lines in an open space on campus

○ Set up 3 lines (with tables), have volunteers act as cashiers working at various speeds

Project Management

