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Abstract— CueTips is an eight-ball pool training system that 
caters to both beginners and professionals, aiding players in 
developing an intuition on how to play the game of pool. By 
processing real-time video feed from the pool table, our system 
provides users with visual projections of shot trajectories as they 
move their cue stick around. Unlike existing technologies that rely 
on cue stick attachment for aim assistance or force control, our 
system minimally alters the cue stick, preserving the authenticity 
of the game experience. Furthermore, our system presents users 
with a comprehensive view of all potential shot trajectories based 
on where the user aims, offering unparalleled training 
opportunities for pool enthusiasts of all skill levels. 

 
Index Terms—billiards, eight-ball, pool, trajectory prediction, 

computer vision 

I. INTRODUCTION 
UR project, CueTips, is an assistive system that helps 
beginner and advanced Eight-Ball Pool players improve 

their skills. Eight ball pool is a difficult game to learn, primarily 
due to the high degree of accuracy needed to make a successful 
shot to pocket a ball. Very slight differences in the angle of the 
player’s aim can have a profound impact on the trajectory of the 
ball they hit. Without expert guidance to correct players’ aim, 
it can take a very long time to develop an intuition for where 
the ball will go depending on the player’s aim. While it is 
possible for players to hire coaches to improve their aim, doing 
so may not be feasible for the average player who wants to play 
recreationally. 

Our product is an assistive feedback system that provides 
real-time predicted trajectories based on the player’s cue stick 
position. As the player moves their cue stick around, they will 
be able to see a projection line showing them the direction and 
angle in which the ball they are aiming at will go. This will help 
players know whether they will be able to pocket the ball and 
subsequently give them insight on the correct aim location. 

A competition of our project is a similar project that was done 
in the Spring 2023 semester for Carnegie Mellon University’s 
(CMU) Electrical and Computer Engineering (ECE) Capstone 
course. This project looked at the current stationary state of the 
pool table and suggested the most optimal shot to take. The 
advantage that our project has compared to this one is that our 
project provides real-time feedback to users, based on where the 
user positions the cue stick. This allows players to make the best 
decision on the shot to take and allows users to improve their 
intuition for aiming. If the user’s aim is off, they will be able to 
notice that from our trajectory projection, which allows for 
them to correct themselves. The goal is that over time, this is 
more beneficial for helping users learn as it provides more 

personalized feedback based on the user’s movement and 
position of the cue stick, relative to the pool table. Furthermore, 
our system gives users the flexibility to choose which ball to 
hit, which would allow them to improve their decision-making 
skills in the game of pool as they get to observe the trajectories 
of the different balls on the table through trial and error.  

Our physics model also has some differences that differ from 
the prior project. Firstly, our system allows users to practice 
bank shots since we will also display the trajectory of the cue 
ball if it is aimed towards the walls of the table. Moreover, our 
physics model also allows for kiss shots, where users can 
execute a shot with multiple ball collisions. In addition, our 
physics model can also take into account the user’s desired spin 
and show users the cue ball’s deflection angle after a collision 
with a wall or target ball. This allows users to get an idea of 
where the cue ball will land after the shot is executed with the 
spin that they selected. 

 

II. USE-CASE REQUIREMENTS 
The primary goal of our project is to serve as a tool that 

effectively helps users learn to play pool.  
One of the features required to facilitate fast learning is to 

ensure that our system’s performance is fast. We want our 
system to be able to react instantaneously to user movement as 
they play the game. Hence, we must be able to achieve a latency 
of at most 100ms. This latency is measured from the time the 
user shifts their position to the time that our system provides 
and updates a projection for the trajectory of the user’s aim. We 
chose a threshold of 100ms as research has shown that this 
duration is the threshold required to create the illusion of an 
instantaneous response [1]. This immediate feedback is not only 
important in creating a responsive user interface, but also 
crucial in helping users learn instantly from their mistakes if 
their aim is not accurate.    

The accuracy of the predicted trajectory line is another 
crucial use case requirement for our project. In order to 
effectively help users to learn how to improve their aim, we 
must be able to provide them with accurate predictions on the 
ball trajectory based on the cue stick’s position. We aim to have 
our predictions accurate to at most 2 degrees of error. 2 degrees 
of error is the measured angle between the line of our predicted 
trajectory and the line of the ball’s actual path after the shot is 
executed. We chose to select an error of two degrees because 
the pockets are of a width that would allow a ball to still enter 
even if it were 2 degrees to the left or right of its predicted 
trajectory [2]. This was measured from the full diagonal length 
of the table, assuming that the trajectory of the ball was directed 
to the center of the pocket. 

In order to facilitate the high accuracy our model aims for, 
we must also ensure that our object detection models are 
accurate. We aim to be able to detect ball position within 0.2 
inches of their actual position. If our model’s perceived location 
of a ball skews too far away from the ball’s true position, this 
would cause inaccuracies in our physics calculations that drive 
the trajectory prediction.  

O 
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CueTips addresses some crucial aspects of public health, 
safety, and welfare by promoting mental well-being, physical 
activity, and cognitive health. Our product aims to alleviate the 
stress associated with the learning process of pool, fostering a 
positive and supportive environment for individuals to learn 
pool. Furthermore, the interactive nature of the game serves as 
a form of recreational exercise, allowing individuals to move 
away from their sedentary lifestyles. In addition, it could also 
be useful for older individuals to engage in activities that 
stimulate cognitive functions and maintain mental acuity. In 
addition, when building the product, we made sure to build a 
steady shelf as a structure to ensure that users were safe when 
using the tool. As items such as a projector and camera were 
placed overhead, we made sure that the structure could support 
the weight and maintained safety of users. 

In terms of social factors, our product aims to be accessible 
and reach a wide range of users. This motivates our choice of 
outputting visual trajectory predictions, as it would inherently 
be community-building by serving as a massive social interest 
in many parts of the world. By having a simple, intuitive, and 
visual interface, CueTips makes no language assumptions and 
has an intuitive user interface that is understandable to 
everyone. In terms of environmental factors, we also made sure 
that biodegradable, reusable material was used as the shelf so 
that it can easily and quickly be dismantled and reused. Being 
accessible to everyone, CueTips creates room for vast economic 
potential. We could strategically partner with entertainment 
venues, gaming centers, and sports bars to target the 
demographic who are not only passionate about the game of 
pool, but also seeking interactive and technologically advanced 
gaming experiences. Through upfront hardware sales, 
subscription models, and potential collaborations with game 
developers for exclusive content, there is a lot of potential for 
our product to contribute significantly to the economy.  

 

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 
Our project consists of several physical components. It 

consists of a pool table mounted onto a shelf to house, a camera 
for object detection, and a projector to project recommended 
trajectories. It also includes a web application to display the 
user’s shot and provide personalized recommendations.  

A. Physical Structure 
The physical structure of our set-up consists of a RayChee 

pool table mounted onto a rack. The pool table is directly 
mounted onto one of the racks of the frame. This structure is 48 
inches wide, 24 inches long, and 72 inches tall. There will also 
be a second rack that is 48 inches above the pool table. After 
some testing and calibration, we determined that the optimal 
distance from the projector and the camera to achieve the best 
field of view is when they are both placed 44 inches above the 
pool table. We raised that by four inches in order to ensure some 
additional leeway in case we needed a greater field of view 
when performing our actual detection model. Figure 1 shows a 
picture of our final structural setup. 

 

 

Fig. 1. Pool table incorporated into a shelving unit, mounted on a rack 

B. Camera and Computer Vision 
The camera we are using to perform the computer vision 

model is the Logitech C922 Pro Stream 1080p webcam. We 
will cut out the appropriate portion of our plywood rack and 
mount the camera nicely into the cut-out, in order to achieve a 
good image capture of the table. The camera will be connected 
directly to our computer via a USB Cable.  The camera gives a 
78-degree Field of View, meaning that if we want to get a full 
capture of the pool table, we will at least have to mount it 33 
inches above the pool table. 

We will run the backend computer vision model on our 
own computers. This will include the detection of the current 
state of balls on the table, detecting which ball is the cue ball, 
balls, the cue stick, pockets, and walls. This information will 
then be used as input to our physics model, which we will use 
to predict the trajectory of the shot the user will take. Figure 2 
shows the full process of what happens from the moment the 
camera inputs are detected, to the trajectory calculations, and 
finally to the projection of the predicted trajectory.  
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Fig. 2. BLOCK DIAGRAM OF FULL SYSTEM ARCHITECTURE. 

C. Physics Model 
There are five key outputs of the computer vision model 

that we will use: An array that contains the coordinates of the 
centers and radius of all colored balls, the center and radius of 
the cue ball, the location of the cue stick encoded as two points 
- the cue tip and the back of the cue, an array of line equations 
of the four walls, and an array that contains the coordinates of 
the six pockets. Our physics subsystem contains three main 
parts, a function to calculate reflections against the walls, a 
function that calculates ball collisions, and a function that 
detects when the balls enter the pockets. In order to implement 
the trajectory predictions, we first identify the locations of the 
cue ball’s center and the two points of the cue stick. Whenever 
a user aims at the cue ball, these three points should be almost 
collinear. By calculating the Euclidean distance between the 
cue ball and the cue tip, as well as the perpendicular distance 
between the cue ball’s center and the extrapolated line of the 
cue stick, we only project the line if the cue stick is held close 
to the cue ball.  

In order to implement the wall reflections and the trajectory 
predictions, we first identify the locations of the cue ball’s 
center and two points on the cue stick. Whenever a user aims at 
a cue ball, these three points should be collinear. We will then 
extrapolate a line across these three points to estimate the 
trajectory that the cue ball will go. As we extend this line 
further, we will meet either one of the four cases: There is no 
obstacle, there is a wall that intersects the line, or there is a ball 
that intersects the line, the ball enters a pocket. After taking into 
account all of these, we will output the final predicted trajectory 
that the cue ball will take given the current aim. The predicted 
trajectory line is then sent as input into the projector subsystem.  

 

 

D. Projector 
The projector we are using for this project is the VOPLLS 

1080P Full HD Supported Video Projector. This projector takes 
in the coordinates of the predicted trajectory line and plots it as 
a white line on a black background. This system will also make 
sure that if the line coincides with any of the pockets, it will 
stop the trajectory of the line to indicate that the ball will go in. 
The projector will also be connected to the laptop via HDMI 
Cable. 

 

E. Web Application 
Our web application provides a nice user interface to 

livestream the video output and displays the ball trajectories 
onto the table. The application also allows for a method for 
users to select their desired spin, which they intend to execute. 
A distinctive feature of this web application lies in the provision 
of actionable feedback, promptly communicating errors to users 
and offering strategic insights for improvement based on 
individual playstyles. After they execute their shot with the 
intended spin, our system will look at the location that the user 
hit the ball and provide recommendations on whether the spin 
was successfully executed or not.  We will use React to create 
our front-end web application. For the backend, we will deploy 
a Flask server to receive video input from the camera and 
stream it into the front-end. 
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IV. DESIGN REQUIREMENTS 
To ensure that object detection was as accurate as possible, 

we defined some requirements for the optimal performance of 
the computer vision system. A lot of subsystems fundamentally 
depend on the accuracy of the detection of objects in our frame. 
These objects include the walls, pockets, cue ball, balls on the 
table, and the cue stick. Thus, we needed to ensure that we 
selected a camera that was precise enough to cater for this. We 
minimally needed to choose a camera that could give us 30 
frames per second, and a resolution of 1080 pixels.  

Our design requirements for CueTips are a translation of our 
use case requirements defined in section II. 

 

A. Computer Vision Subsystem 
To ensure that object detection is as accurate as possible, we 

defined some requirements for the optimal performance of the 
computer vision system. A lot of subsystems fundamentally 
depend on the accuracy of the detection of objects in our frame. 
These objects include the walls, pockets, cue ball, balls on the 
table, and the cue stick. Thus, we needed to ensure that we 
selected a camera that was precise enough to cater for this. We 
minimally needed to choose a camera that could give us 30 
frames per second, and a resolution of 1080 pixels.  

This level of camera quality would facilitate more accurate 
image processing using computer vision, ultimately allowing us 
to achieve the main requirement for this subsystem--a 
maximum ball detection error of no more than 0.2 inches, which 
is measured from the center of the ball detection to the center 
of the ball’s actual location. High accuracy in this subsystem 
would mitigate error propagation that may lead to inaccuracies 
in other dependent subsystems. 

 

B. End to End Latency 
We aim to output feedback to the user with a latency of at 

most 100ms. End-to-end latency is defined as the time taken 
from the detection of the first frame, to the projection of the 
output frame. In order to ensure that users have a seamless 
experience (smooth experience), we must ensure that end-to-
end latency falls below 100ms as this is the threshold beyond 
which a response is no longer perceived as instantaneous. To 
achieve this requirement, we decided to implement an approach 
that uses zero machine learning. Our system purely uses highly 
optimized functions for image processing in the OpenCV, 
making it possible for us to achieve lower latencies. 

 

C. Projection & Feedback Subsystem 
The projection & feedback subsystem must be able to 

provide an intuitive user interface so that it is easy for the user 
to follow the feedback provided by our system. We will use a 
projector mounted overhead to display the ball trajectories 
predicted by our model onto the pool table. This allows the 
users to clearly see the trajectories as lines which they can then 
use to inform them of whether a ball will successfully go into 
the pocket.  

Furthermore, this subsystem must display accurate trajectory 
predictions to users to accelerate their learning. Providing 
inaccurate feedback to users would deter their learning as users 
would have misconceptions on the outcome of their aim. Hence, 
it is crucial that our trajectory outputs have no more than a 2-
degree error from the trajectory executed by the user in real life. 
In other words, the actual path followed by the target ball after 
it is hit should be no more than 2 degrees to the left or right of 
the predicted trajectory. In addition to this maximum error 
requirement, this subsystem must be able to calculate trajectory 
predictions that are 95% successful. This means that the user 
should be able to successfully pocket a ball 95% of the time 
when following the trajectory feedback provided by our system.  

V. DESIGN TRADE STUDIES 
  In our previous Design Review, we mentioned four main 
tradeoff decisions involving latency requirements, mount 
construction, foregoing machine learning, and building the 
physics engine. Since then, we made several mode design 
tradeoffs: cue stick detection improvements, handling ball spin, 
and calibration. 
 
A. Power vs efficiency for latency and usability 
    Previously discussed in our design review, one of the larger 
hardware design tradeoffs we made was choosing the hardware 
for our web application, computer vision model, and physics 
engine. At the beginning of our project, we wanted to run our 
software on an FPGA or Nvidia Jetson Nano for efficiency, but 
quickly realized that this detracts from the core use case 
requirements of the project. Whether the system is run on an 
FPGA, Nvidia Jetson Nano, or laptop does not change the core 
functionality of the project. If we opted to run this on an FPGA 
or Jetson Nano, it would have distracted us from improving the 
various computer vision subsystems or developing the web 
application - core parts of the user experience. Furthermore, 
there are two more technical roadblocks we would have run into 
had we run this on an FPGA or Jetson: latency and projector 
compatibility. For latency, the clock speed of both an FPGA 
and Nvidia Jetson Nano are orders of magnitude slower than 
that of a laptop (GHz vs MHz). In our preliminary testing, we 
found that running most computer vision algorithms 
(HoughLines, contour detection, Gaussian blurring, etc) take a 
few milliseconds at most; not only would there be technical 
challenges in writing CV code for Jetson Nano, FPGA (writing 
in C/C++ vs Python), but these algorithms would run 
significantly slower. Our final system has an end-to-end latency 
of roughly 22ms on average, with the highest peaks being 
around the 30-40 ms range. This is well within our latency 
requirements but would not be the case if we ran our system on 
an FPGA or Jetson Nano. Regarding projector compatibility, 
there is an added difficulty of getting the projector to work with 
either an FPGA or Jetson Nano. Since neither of these two have 
a graphical user interface, we would have to find a more 
complicated workaround to display the predicted trajectories 
onto the pool table. However, using a laptop lets us simply 
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mirror the screen while running the system in order to display 
the predicted trajectories. 
 
B. Mount construction for the camera and projector 
    One of the best decisions we made constructing the system 
was opting for an out-of-the-box solution for our camera and 
projector mount. We were faced with two decisions: construct 
a custom mount for the camera and projector, or buy/adapt an 
existing solution for our needs. If we custom constructed a 
mount, it would be cheaper than buying but take more time to 
build. If we bought/adapted an existing structure to our needs, 
it would cost more money but take less time to get working. We 
ultimately decided to adapt an existing solution for our needs; 
we bought a metal shelf, partly deconstructed it, and used the 
topmost shelf to hold our projector and camera. The assembly 
only took us a few days, compared to what likely would have 
been at least a week or two. Since we only have 12-13 weeks 
for the project, saving time was much more important than 
budget. Additionally, we had not cut into our budget too much, 
so it made sense to buy the shelf and adapt it for our purposes. 
 
C. Foregoing machine learning in CV subsystems 
    The largest software tradeoff we made was deciding to 
forego machine learning from the start of our project. Machine 
learning is effective for object detection and would remove 
much of the algorithmic complexity of our computer vision 
subsystems. However, it adds a significant amount of latency 
for each frame processed. From initial testing with several 
machine learning object detection models (R-CNN, YOLOV8, 
etc) and measured the time it took for each frame to be 
processed. In order to meet our latency requirements, we 
decided to opt out of machine learning for this project. This 
made the latency requirements easy to meet, but also added 
much more algorithmic complexity to the computer vision 
subsystems. Because our detection had to now be deterministic 
and done manually, we had to have several layers of masking, 
filtering, edge/contour detection, color detection to account for 
inconsistencies in our detection. 
 
 
D.  Open-source vs physics engine from scratch 
    In developing the physics engine, a big tradeoff we made 
involved deciding between leveraging open source pool physics 
libraries and game engines versus constructing ours from 
scratch. Deciding to leverage existing work - whether it be from 
research papers, game engines, etc - would give us a well-
tested, robust, and verified physics engine for our system; 
however, it would be possible that adapting it to our use case 
would be difficult. On the other hand, writing our physics 
engine from scratch would let us have full control over the 
functionality and let us keep it both lightweight and highly 
specialized for our system. However, this would mean getting 
deeply involved in the theoretical aspects of ball/wall collisions, 
spin physics, and changes in momentum. Ultimately, our team 
decided to write the physics engine from scratch. We initially 
decided to try to adapt existing game engines, research papers, 

and physics libraries for our use case. However, much of the 
existing work was too heavy for our system. They involved a 
lot of extra functionality that we did not need, and this made it 
more difficult to adapt them to our use case. The core of our 
engine focuses on trajectory prediction, and trying to account 
for other variables like mass or friction coefficient proved to be 
very time-consuming with little return on investment. Thus, we 
decided to develop our own custom physics engine from 
scratch, which we accomplished in 1-2 weeks. 
 
E.  Cue stick detection improvements 
    This tradeoff involves the technical details of the cue stick 
detection subsystem, and what we did to improve both the 
stability and sensitivity of its detection. The biggest issue with 
the cue stick is being able to both detect subtle movements from 
the user moving the cue stick while also keeping the trajectory 
displayed stable if the user does not move it. Initially, our cue 
stick subsystem relied on detecting a small portion of the front 
of the cue stick. It detected the contours and approximated the 
front as a small rectangle. We then drew a line between the 
edges of the rectangle and used it as the trajectory of the cue 
stick. This method resulted in a fairly accurate trajectory line 
for the cue stick. However, at times it was unstable, and the 
trajectory would randomly jump significantly. To improve this, 
we had to add additional layers of computer vision algorithms 
to stabilize the stick’s trajectory. The crucial difference was 
masking the pool table with a range of green in order to filter 
out noise. With just this change, the cue stick trajectory was 
much more stable than before. Then, we replaced the polygon 
approximation with contour detection, filtering for an area 
range, finding the minimum enclosing rectangle around the cue 
stick. We then took the midpoints of the short sides of the 
rectangle, and took the connecting line as the stick’s trajectory. 
With these changes, we achieved a good balance between 
stability and sensitivity for the cue stick. These improvements 
did come at a cost - the latency increased, and the sensitivity 
decreased compared to the previous method. However, this was 
an acceptable tradeoff - because of our other decisions, we had 
a good amount of room to work with regarding latency; there 
was also a decrease in sensitivity, but not by an amount that 
would significantly affect the user experience negatively. 
 
F.  Handling ball spin 
    Ball spin and its implementation was both another tradeoff 
and important design decision we made. We decided between 
two options to incorporate spin into our system. The first 
method was incorporating ball spin by mounting an inertial 
measurement unit (IMU) onto the cue stick and collecting 
gyroscope data from it. This would then be streamed real-time 
to the physics engine which would incorporate spin by detecting 
the angle at which the cue stick strikes the cue ball (z-axis). The 
second method was delegating spin input to the user. They 
would have an option on the web application to select the part 
of the cue ball they were going to strike. This input would be 
sent to the physics engine, which would then account for the 
desired spin and change the predicted trajectory accordingly. 
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The first method involves very little input from the user - they 
would just have to aim at the cue ball and strike. The second 
method, however, involves the user a little more at the cost of a 
slightly clunkier user experience. This decision primarily trades 
off technical complexity for user experience quality. 
Ultimately, our team decided to go with the second method. 
Although the user experience is slightly clunkier, it results in a 
more accurate implementation of spin. We initially tried to 
implement the first method, but we ran into an issue with the 
IMU data drifting, especially with the gyroscope. After a few 
minutes, the gyroscope drifts by several dozens of degrees. The 
data becomes extremely unreliable, thus, we decided to forgo 
the IMU altogether. Implementing the first method with spin 
would result in a completely inaccurate trajectory, so we 
decided to implement spin with the second method. The user 
experience is a bit clunkier, but it is fundamentally more 
accurate - which is more important at the end of the day. 
 
G.  Calibration 
    Calibrating our entire system was a minor part of our project, 
yet had significant impact. The crucial tradeoff with the 
calibration was increasing software complexity and setup time 
in exchange for consistent, lasting detections as well as an 
insightful optimization. Our calibration subsystem is run before 
the actual application starts. It takes a set number of frames in 
the beginning, runs our wall and pocket detection algorithms, 
then sets permanent state for the duration of the application’s 
run. Previously, we had been trying to run the wall and pocket 
detection algorithms for each frame, but we realized that this 
was both unnecessary and wasteful. The only part of the game 
that changes are the balls and cue stick; the pool table walls and 
pockets stay constant. As such, we can pre-compute the 
detected walls and pockets, and fix them in the same positions 
for the application’s entire run. This not only reduced our 
latency, but also resulted in more stable detections. Previously, 
when we ran the wall and pocket detection algorithms on each 
frame, other objects (like moving balls, cue stick) would 
interfere in the detection and produce inaccurate results. By 
fixing them from the start for the entire run, we were able to 
avoid such errors. Furthermore, since we now only compute the 
walls and pockets once, we can leave it out of processing each 
frame, making it significantly faster.  

VI. SYSTEM IMPLEMENTATION 
    Our overall system consists of six different subsystems: An 
initial calibration system, ball detection subsystem, cue stick 
detection subsystem, physics shot calculation subsystem, a web 
application, and a projector subsystem.  

 

A. Initial Calibration Subsystem 
    The initialization of our system includes a crucial 5-second 
calibration step aimed at ensuring the accuracy of subsequent 
wall and pocket detection for shot calculations later on. Our 
WallDetection module has its primary ‘getWalls()’ function 
that facilitates the extraction of valid wall data. Initially, an 

image is loaded via a specified file path, undergoing a series of 
transformations which include green colored masking 
(cv2.bitwise_and with the image and mask) followed by edge 
detection (cv2.Canny). We subsequently use heuristic 
algorithms to classify these lines into top, bottom, left, and right 
walls based on their spatial relationships within the image and 
their angular orientation. Conversion from polar to rectangular 
coordinates further refines this data for subsequent processing 
and analysis. Additionally, the PocketDetection module, 
through the implementation of the ‘getPockets()’ function 
employs cv2.HoughCircles() with custom parameters to detect 
potential pockets. These detections are then validated against 
previously identified walls to ensure adherence to size and 
distance criteria, thereby confirming their classification as 
pockets. Acknowledging the variability inherent in individual 
frame detections, our system employs a strategy of aggregating 
multiple frame detections to establish the most frequent and 
accurate values for both walls and pockets, thereby facilitating 
precise calibration of the walls and pockets. Figure 3 shows an 
example of the calibrated walls and pockets. The green lines 
represent the detected walls, and the blue circle represents the 
location of the detected pockets.

 
Fig. 3. Ball detections and outlines drawn. 

B. Cue Stick Detection Subsystem 
    The cue stick detection subsystem is an essential component 
of our pool analysis framework, serving to accurately identify 
and track the movement of the cue stick during gameplay. This 
subsystem begins by applying green colored masking to isolate 
the cue stick from the background, enhancing subsequent 
detection accuracy. Following this, Gaussian blur is applied to 
reduce noise and refine the edges of the masked image, 
facilitating more precise contour detection of the cue stick. 
Through contour detection, the subsystem identifies the outline 
of the cue stick, laying the foundation for precise bounding and 
classification. As the balls have not been filtered out of the 
picture, we cross check the contour locations with the ball 
locations, as well as use shape and radius size detections to 
differentiate the cue stick from the cue ball. Subsequently, we 
use the ‘minEnclosingRectangle()’ function to create a 
bounding rectangle around the detected contour, effectively 
encapsulating the cue stick within a defined region of interest. 
Within this rectangle, two points are drawn based on the shorter 
sides of the rectangle, serving as reference markers for 
subsequent classification. Through a distance-based 
classification process, one point is identified as the cue tip, 
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while the other is classified as the opposite end of the cue stick. 
This ensures accurate tracking and analysis of cue stick 
movements. Figure 4 shows an example of the cue stick being 
detected in the picture. 
 

 
Fig. 4. Cue stick detection shown on the image. 

C. Shot Calculation Subsystem 
    Our shot calculation system is integrated within the Physics 
class that utilizes OpenCV and NumPy libraries, serving as a 
fundamental component for predicting ball trajectories and 
collision points on the pool table. At its core, the system 
comprises a function to detect ball collisions, a wall reflection 
function to calculate reflections off table walls, and a pocket 
collision function for identifying the points of intersections with 
pockets. The ball collision function calculates the precise point 
of the collision between two balls on the table. Collision is 
determined to occur if the distance between the centers of the 
cue ball and another ball approximates twice the radius of the 
balls. Leveraging quadratic equations, this function computes 
the intersection points of the cue ball trajectory with other balls, 
selecting the closest point as the collision point. Next, the wall 
reflection function accounts for reflection physics and ball 
cushion dynamics, implementing rigorous equations that model 
reflected ball shots, including factors such as angle of incidence 
and ball cushion interaction. This allows users to execute 
strategic bank shots with precision. Lastly, the pocket collision 
function detects instances where the trajectory line intersects 
with a pocket, thereby halting the trace of the line. By 
accurately identifying these points of intersection, the system 
provides insights into shot outcomes, when the ball enters the 
pocket. The run_physics() function traces a trajectory line 
starting from the cue stick, which serves as an initial projection 
for the cue ball’s movement. Subsequently, if this trajectory 
intersects with any balls or walls on the table, the ball and wall 
collision functions are executed to calculate the ensuing 
trajectory adjustments. This iterative process continues until the 
trajectory line intersects with a pocket, or reaches its pre-coded 
maximum line length, at which point the line is halted, 
signifying the completion of the shot prediction process. It is 
also worth noting that the trajectory line only appears if the cue 
tip is brought close enough to the cue ball and doesn’t work 
when it is brought close to any other ball. Figure 5 shows the 
example of the trajectory line being projected onto the table. 

  

 
Fig. 5. Calculated trajectory presented on the table. 

D. Web Application subsystem Subsystem 

    The Web Application subsystem represents a user-friendly 
interface that enables users to see a livestream of the video 
footage, simultaneously observing the real-time detection of 
crucial game elements including walls, pockets, balls, cue stick, 
and predicted trajectories. This feature-rich functionality allows 
users to have comprehensive insights into gameplay dynamics, 
aiding strategic decision-making and enhancing gameplay 
experience. Additionally, users can select their intended spin 
directly on the website. Upon confirming the selection, updated 
spin trajectories are dynamically generated and displayed, 
providing users with immediate feedback on the potential 
outcomes of their shots. The front end of the application was 
coded using React, ensuring a responsive and intuitive user 
interface. The backend employs Flask to handle video 
streaming and perform complex computations necessary for 
real-time detection and trajectory prediction. This combination 
of technologies allowed us to deliver a seamless and immersive 
user experience. Figure 6 shows the completed web application. 
 

 
Fig. 6. Web application. 

 

E. Projector Subsystem 
    The projector subsystem consists of both a hardware and 
software component for visualizing predicted trajectories in our 
trajectory prediction system. The hardware component consists 
of a camera, shelf mount, and a projector. These components 
work together to capture the original frame of the pool table, 
process it, and project the predicted trajectories onto the table 
surface. The software component is the final stage of the 
trajectory prediction process. It receives the original frame 
processed by preceding subsystems, along with a python array 
consisting of a list of vectors representing the points of 
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collisions. The software first creates an equal-dimension black 
background using ‘np.zeros_like’, providing a canvas for 
trajectory prediction. It then iterates through the list of vectors, 
plotting them as white lines onto the black background. This 
approach ensures maximum contrast, guaranteeing clear 
visibility of the trajectory lines even in well-lit environments.  

VII. TESTING, VERIFICATION AND VALIDATION 
    We employed four testing methods to evaluate the 
performance of our product and validate the accuracy of our 
shot calculations. We ran multiple tests to ensure we satisfied 
the three metrics that are central to our use case requirements: 
1) latency, 2) trajectory prediction accuracy, and 3) object 
detection accuracy.  

 

A. Methodology for Testing Object Detection Accuracy 
Our first use case requirement specifies a target metric to 

detect pool balls within 0.2 inches from their actual locations. 
In order to verify this design requirement, we employed a test 
that involved executing our object detection model on a set of 
carefully selected test suites. Four different test suites were 
devised which covered the following scenarios: 1) normal balls 
on the table, 2) balls adjacent to each other, 3) balls close to 
walls, and 4) balls close to pockets. These different test suites 
were designed to ensure that we comprehensively tested our 
system's ability to accurately detect pool balls across various 
table configurations and positions. We manually set up five 
different randomized ball layouts for each of the four test suites 
in order to have a larger sample size of test cases, which would 
increase the reliability of our measurements. Figure 7 below 
shows the test suites that were used for ball detection.  

 

 
Fig. 7. Test suites we used to test ball detection accuracy. 

After the object detection model had been run on each table 
setting with a unique ball layout, we proceeded to take the 
measurement of the ball detection error. The process of taking 
this measurement involved manually identifying the center and 
radius of each pool ball in the table setting, then comparing it 
with the corresponding center and radius returned by our ball 
detection model. Next, the Euclidean distance between the 
detected center and the true center of each ball in the setting was 
calculated. This distance is what we utilize as the detection error 
of our ball detection model. 

 

B. Methodology for Testing Trajectory Accuracy 
To validate the accuracy of shot calculations, two distinct 

tests were performed. One measured the success rate of the 
trajectory accuracy, while the other sought to measure the 
average error of our predicted trajectories.  

 
The first test we performed sought to calculate the success 

rate of our shot calculations. To do this, we had a user execute 
20 shots using our system, then calculated the percentage of 
shots out of these attempts that were successfully pocketed. For 
each shot, the user was prompted to aim a target ball into a 
pocket while following the trajectory guidance provided by our 
system. We chose to test three different types of shots in order 
to evaluate our product’s efficacy in different gameplay 
scenarios. For each type of shot, the user begins by aiming the 
cue stick at the cue ball, and the objective is to pocket a target 
ball. These shots included normal shots, bank shots, and kiss 
shots. We define a normal shot to be a scenario in which the 
user aims the cue ball to hit another target ball directly. Bank 
shots are when the user aims the cue ball to bounce off the wall 
prior to the cue ball colliding with a target ball. Lastly, a kiss 
shot is where there are cascading collisions involving two target 
balls. The cue ball is aimed toward a target ball, which will hit 
another target ball into a pocket. The sequence of collisions for 
each of these types of shots are detailed in Table I. 

TABLE I.  COLLISION SEQUENCES FOR EACH SHOT TYPE 

Shot Type Sequence of Collisions 

Normal Shot Cue Ball - Target Ball - Pocket 

Bank Shot Cue Ball - Wall - Target Ball - Pocket 

Kiss Shot Cue Ball - Target Ball 1 - Target Ball 2 - Pocket 

The notation “A-B” signifies that a collision occurs that starts from object A and goes on to object B.  

 
The next test we performed sought to measure the average 

error of our predicted trajectories. This test was meant to 
validate our use-case requirement of having a predicted shot 
trajectory accuracy of less than 2 degrees. This angle is a 
measure between the trajectory line predicted by our system and 
the actual trajectory line followed by the target ball. In order to 
take this measurement, we aimed a cue ball to hit a target ball 
to the wall and compared the coordinate of the target ball’s 
actual collision location with the location predicted by our 
model. We first took note of the starting coordinate of the target 
ball. We then took a shot to hit the target ball towards the wall. 
Next, we obtained the predicted coordinate of collision by 
running our physics model stopping it when it predicts a wall 
collision. Finally, to get the true coordinate of collision, we 
programmed a separate test bench that was designed to detect 
when a target ball collides with a wall. When this collision 
occurs, the program would stop itself and print out the 
coordinate of the target ball upon its collision with the wall. 
After the starting point and the two collision points were taken, 
we measured the angle between the two paths. This measured 
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angle is what we utilize as the shot calculation error of our 
trajectory prediction. This method allowed us to quantitatively 
determine the accuracy of our trajectory prediction.  

 

 
Fig. 8. Different types of shots executed to test trajectory accuracy. 

 

C. Methodology for Testing Latency 
Finally, to test the end-to-end latency of our project, we 

timed the code execution for each frame programmatically. As 
soon as a frame comes in from the camera via OpenCV’s 
imread function, we include with the frame the marked input 
time as additional metadata. When the frame finishes 
processing, we again take the time when the predictions are 
generated and find the difference (in milliseconds) between the 
starting time and the ending time. Since the software system is 
entirely contained within the laptop, we do not need to account 
for transmission latency via Wi-Fi. Our use case requirement 
regarding latency was that end-to-end processing would be 
within 100ms. By ensuring that each individual frame takes less 
than 100ms to be processed through the entire software 
pipeline, we ensure that the user perceives changes to the 
projected predictions within 100ms which has the appearance 
of the trajectory outputs being instantaneous.  

 

D. Results for Object Detection Accuracy 
The data we collected from our object detection 

accuracy tests showed that we were able to exceed our target 
metric. We took an average of all the errors we had sampled in 
our tests and found that the average error in our ball detections 
was only 0.05 inches. This measure is much lower than our 
original target error of at most 0.2 inches. These accurate results 

can be attributed to the use of color masking and detection 
averaging, both of which were additional design iterations we 
implemented on top of our principal ball detection model. With 
this method, we were able to generate accurate and stable object 
detections, as portrayed by the low error we have measured.  
 

E. Results for Trajectory Accuracy 
For our trajectory accuracy test evaluating the success 

rate of our predictions, we were able to achieve satisfactory 
results for each of the different types of shots. Our use case 
requirement called for an accuracy rate of 95% for all types of 
shots. We were able to achieve this target metric for normal 
shots and come close for bank shots and kiss shots. Our 
trajectory calculation system was most accurate for normal 
shots, with a success rate of 100%. The success rate for kiss 
shots was 90%, and for bank shots it was 75%. The lower 
success rate in kiss shots and bank shots can be attributed to 
greater losses in energy as a result of a greater number of 
collisions. We addressed this issue by iterating upon our design 
to take into account the cushioning of the walls and losses due 
to friction in order to minimize the inaccuracies present in these 
types of shots.  
 

F. Results for Latency 
The results we collected from timing our code showed 

that our system has an average latency per frame processing of 
22ms. This is a statistic that far exceeds our expected target 
latency of 100ms. We were able to achieve such high 
performing results by solely using OpenCV for image 
processing. A tradeoff that was made in order to achieve this 
low latency was to forgo the use of machine learning.  

 

TABLE II.  SUMMARY OF TEST RESULTS 

Use Case 
Requirement Specification Performance 

Ball Detection 
[PASS]  

Detect pool balls 
within 0.2in from 
actual ball location 

Overall Average 
Error: 0.05in 
 

Shot 
Calculation 
[PARTIAL] 

Predicted trajectory 
must be 95% accurate 

Normal shots: 
100%  
Kiss shots: 90% 
Bank shots: 75% 
 

Predicted trajectory 
must be within 2o of 
actual trajectory 

Error of 1.13o on 
average 

Latency 
[PASS] 

Achieve latency of less 
than 100ms 

22ms on average 
(far exceeded 
expectations) 
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VIII. PROJECT MANAGEMENT 

A. Schedule 
Our schedule for the project is depicted in Fig. 9 on page 14 

of this report. The blocks in blue represent the sections that are 
being done by Andrew, green represents the sections being 
done by Tjun Jet, and the red block represents the sections being 
done by Debrina. The yellow blocks indicate the blocks that 
will be done by everyone. Our schedule includes weekly 
milestones and allows us to keep track of what tasks should be 
done by a given week.  

Throughout the semester, our schedule underwent changes 
involving the expected completion date of certain tasks. Tasks 
related to trajectory output on the projector were delayed as we 
put our focus to first creating a robust system backend in the 
early stages of our project. Tasks involving testing, verification, 
and error checking tended to be prolonged. We decided to 
extend the timeline for these tasks as we realized that there were 
many more iterations of testing that needed to be done during 
the integration stages. Lastly, tasks related to spin 
implementation and the web application were also delayed and 
prolonged. Spin proved to require more complex 
implementations; hence we needed more time to complete this. 
Furthermore, since the spin selection step was executed through 
our web application, we also extended our timeline for the web 
application development to work on it in parallel with the spin 
implementation. Changes to our schedule have been made in 
yellow and are shown in Fig. 9 on page 14. 

B. Team Member Responsibilities 
Debrina’s primary responsibility is the Computer Vision 

subsystem. She is responsible for implementing object 
detection and segmentation algorithms. The objects that will 
have to be clearly segmented are the array of pool balls on the 
table, distinguishing between the cue ball and the target balls, 
cue pockets, and the four walls surrounding the table. She must 
ensure the detections are accurate enough to meet our use case 
requirements. Debrina’s secondary responsibility is supporting 
in the implementation of the physics model to conduct tests and 
feature improvements as further requirements emerge 
throughout the development process. 

Tjun Jet’s primary role is to work on the physics engine. The 
physics engine takes in the outputs from Debrina’s computer 
vision model and calculates the trajectory that the cue ball will 
follow if it’s being hit in a certain manner. He will focus on two 
main detection models - wall detection and ball collision 
mechanics. He must consider the reflections of the wall and the 
mechanics when the cue ball collides with the ball. Tjun Jet’s 
secondary role is to support the spin implementation by 
conducting research on the physics behind spin and assisting in 
its implementation.  

Andrew will play a primary role in the projector subsystem 
and the spin subsystem, web application development, and cue 
stick detection. He must ensure that the cue stick detection is 
accurate and stable to minimize flickering in the trajectory 
predictions. Furthermore, he is in charge of implementing the 
spin mechanics and integrating this to the web application to 

allow users to interface with our system. 

C. Bill of Materials and Budget 
Our bill of materials and budget can be found in Table I on 
page 10 of this report. At the end of the semester, we no 
longer needed the IMU since we determined that it did not 
contribute much value to our system due to frequent 
inaccuracies it faced. Since we no longer used the IMU, we 
no longer needed the ESP32 and the 9V batteries that were 
meant to be used with the IMU. 

D. Risk Management 
To handle our project risks from the standpoint of 

scheduling, we initially left plenty of buffer time in the last few 
weeks of the semester. We started off with a plan that would 
allow us to complete the project a few weeks early. This would 
give us plenty of time to spare in case we encountered 
roadblocks that would lead to delays in our schedule. 

From the standpoint of resources, since our project did not 
require many expensive components, we felt comfortable in 
allocating more of our budget to make purchases that would 
ensure the quality of  our components. We prioritized selecting 
items that had good quality (as opposed to selecting the most 
affordable option) to avoid having to repurchase a component 
due to it falling short of expectations. An example of this is our 
selection of the shelving unit to hold the pool table and 
projector. Even though the shelf was on the pricier end, it was 
the most sturdy option available and fit our use case very well. 

We handled risks related to design by developing a well-
defined API early on to ensure that the interfacing between our 
different subsystems remained consistent. This allowed for 
tolerance in design changes since we could easily adapt to them. 
Each subsystem would be able to continue to run correctly as 
long as we ensure strict invariants related to the inputs received 
by each subsystem. 

At the start of the semester, we anticipated that one risk we 
might encounter is that the latency of our detection becomes 
very high, making the user interface not as good as we want it 
to be, as the output trajectories will be too slow. We addressed 
this risk by structuring our implementation to rely only on 
OpenCV’s object detection library. Our risk reduction measure 
was to choose not to use any machine learning in our system as 
this would lead to slowdowns.   

When risks did develop into issues, we turned to some risk 
mitigation strategies. A notable instance involves our cue stick 
detection subsystem. At the start of the semester we had 
identified detection inaccuracy to be a potential risk. We 
anticipated that inaccurate object detections, primarily cue stick 
detection, would lead to incorrect trajectory calculations. While 
we initially thought to use April Tags to address this risk, we 
decided to move away from April Tags as we learned that it did 
not allow for a smooth user interface. We initially used April 
Tags to detect the cue stick by mounting it onto the cue stick. 
However, this restricted the user’s ability to orient the cue stick 
in any way they want. Hence, we decided to experiment with 
different approaches using OpenCV to effectively detect and 
isolate the cue stick.  
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IX. ETHICAL ISSUES 
There are a few ethical issues that may relate to our 

product. To name a few: structural integrity of the 
camera/projector mount, privacy concerns with camera usage, 
accessibility for sight-impaired users, and skin tones affecting 
computer vision subsystems.  

A major potential ethical issue health-wise has to do 
with the structural integrity of the mount that the camera and 
projector is fixed on. Our team opted for a heavily modified 
metal shelf frame to mount our equipment; the shelf is made of 
metal, and both the camera and projector are placed a decent 
height above where the player would be playing. If the structure 
were to collapse or be damaged, the user could be seriously 
injured by the equipment mounted on top or the metal from the 
shelf itself. Everyone who uses this product would be affected 
by this issue. To mitigate this, we could rigorously test and 
perform structural analysis to ensure that the structure does not 
collapse, and that it can withstand collisions, shaking, general 
wear-and-tear, etc.  

Another concern would be users’ concerns about our 
system’s camera usage. The camera mounted on top could lead 
our users to believe that we are collecting data about them, or 
storing the frame data we collect of them when using our 
product. We do not store any data, and once a frame is 
processed and trajectory predictions are shown, it is gone. 
However, many users could still hold suspicions, and this is a 
concern that can affect all users. To mitigate this, we can open-
source our code and put disclaimers in the web application that 
we do not store frame data. By doing this, those concerned can 
verify rigorously that we do not store camera footage.  

Accessibility is yet another potential concern for sight-
impaired users of our product. From the beginning, our product 
was designed with visual feedback in mind; however, sight-
impaired users would not be able to use our product in its 
current state since the trajectory predictions are visual - 
projected on top of the pool table. To mitigate this, we could 
extend our system to give audio feedback. We could implement 
another computer vision subsystem that guides the user to 
where the cue ball is, or how to move the stick to aim.  

Lastly, skin tones is another ethical concern that may 
affect our project. Since we utilize color detection in our 
system, users of different skin tones may see varying results. 
For instance, our cue ball detection algorithms rely on using 
HoughCircles to identify circular objects with roughly a set 
radius and comparing the percentage of white (a range of white) 
pixels to all other pixels. If someone with a very pale skin tone 
were to use the system, it is possible that our ball detection 
system would confuse their hand or fist as the cue ball. This 
difference in usability depending on the user’s skin tone is a big 
ethical consideration to be addressed. To mitigate this issue, we 
could change the functionality of the system. One such solution 
would be to show trajectory predictions for any ball the cue 
stick is pointed at - doing so would eliminate the need to 
identify the cue ball from the rest via color detection. Another 
solution would be to do some sort of contour counting or area 
filtering, making sure that “hand-like” features are disqualified 
from being cue ball candidates. 
 

X. RELATED WORK 
  The most similar project to ours is a 18-500 capstone project 
last year - S23 Team C7’s “8-ball lifeguard” [3]. The project 
was designed for beginners to learn how to play pool. It does 
this by providing the user with the most optimal shot to take 
given the current pool table state. They take in the game state 
via a camera, compute the best shot to take, then output it onto 
the pool table via a projector. This project is similar to ours in 
functionality and system/hardware. However, the use case 
requirements and software systems are very different. We 
wanted to heavily prioritize the responsiveness and interactivity 
of the system by allowing the user more control over the shot, 
helping them build intuition by experimenting with various 
shots and seeing the predicted trajectories change in real-time. 

XI. SUMMARY 
    Our system was able to meet the design specifications. We 
set out to create an assistive product that helps people learn how 
to play pool more effectively. Our design specifications 
involved three components: low latency, accurate object/game 
state detection, and accurate trajectory predictions. For latency, 
our target metric was 100ms, but we far exceeded expectations 
by reducing the end-to-end latency to 22ms on average. For 
game state detection, we wanted to distinguish all different 
objects in the game (cue stick, balls, pockets, walls) with 100% 
accuracy, which we were able to achieve. Furthermore, as a 
quantitative metric, we aimed for <0.2in error in our ball 
detection; our project met this metric with 0.05in of error. 
Lastly, for trajectory prediction accuracy, our target was 2 
degrees of error from the predicted line to the actual shot line. 
Our system also met this metric, with 1.13 degrees of error from 
testing various shots. 
    From this project, we learned much about addressing the 
technical challenges within our project. However, more 
importantly, there were several high-level lessons learned that 
are applicable to all engineering projects: 1) users first, 2) 
allocate time for the unexpected, 3) build to have it work - not 
perfect. One of the most important lessons we learned is to 
understand that engineering does not exist in a vacuum; we are 
always building for an end user. It is very easy to get wrapped 
up in the technical details and make design decisions that make 
sense technically, but produce a poorer user experience. For 
instance, when coming up with our feedback implementation, 
we initially thought of just displaying the trajectories via our 
web application. This would be the most straightforward way 
to display the feedback, as we would only need to stream the 
video via Flask to our React frontend. We realized, however, 
that it would be a very poor user experience to have to 
constantly look back and forth between web application and 
pool table to take each shot. Ultimately, we decided to have the 
projector display the predicted trajectories on top of the pool 
table. Many people who used our system far preferred this 
display to the web application’s due to its intuitive interface and 
responsiveness.  
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  The second lesson we learned was to allocate time for the 
unexpected. Throughout our project, we often ran into technical 
issues that we had not accounted for. As a result, the 
development of some components took much longer than 
expected. Some subsystems with a timeline of 1-2 weeks took 
as long as 3-4 weeks to fully complete. If we were to redo the 
project again, we would try to allocate extra time for building 
the subsystems that we did not have a full implementation plan 
for. These often were the places where we ran into unexpected 
technical issues that cost more time to resolve.  

Lastly, we learned that it is more important to have things 
work rather than to make it perfect. Our team had 12-13 weeks 
to complete this project, and oftentimes we had to move fast at 
the expense of code quality or cleanliness. Spending extra time 
over-optimizing each function or formatting/documenting 
everything could result in not being able to finish other critical 
tasks. Throughout the duration of our project, we employed 
hacky shortcuts that enabled us to move faster to complete the 
actual critical parts of our system. For instance, initially we 
tried to integrate auto-cropping into our calibration subsystem; 
it was annoying to keep having to crop our video every time the 
camera moved. However, we realized that building this 
functionality out would not contribute meaningfully to the 
actual user experience - it was just a quality-of-life 
improvement for our own sake. It would take at least a day or 
two to develop, and we decided instead to keep a file with all 
the different camera crops we used, labeled each, and just 
remembered which to use. We didn’t have to build the cropping 
system, and we also saved 10 minutes each work session not 
having to manually recalibrate the crop every time. 

Regarding future work, we do not plan to continue this 
project after this semester, that some of us either pursuing 
graduate school or entering the industry. CueTips was a great 
experience for all of us in terms of embracing the technical 
challenges in engineering, working collaboratively as a team, 
and most importantly, allowing us to also experience the 
process of learning the game of pool.  

 

XII. GLOSSARY OF ACRONYMS. 
IMU – Inertial Measurement Unit 
FPGA – Field-Programmable Gate Array 
GHz – Gigahertz 
MHz – Megahertz 
CV – computer vision 
R-CNN – Region-based Convolutional Neural Network 
YOLO – You Only Look Once 
RGB – Red, Green, Blue 
USB – Universal Serial Bus 
ms – milliseconds 
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TABLE III.  BILL OF MATERIALS 

Item Part Name Manufacturer Quantity Cost @ Total 
Pool Table RayChee 

Portable Mini 
Billiard Table 

RayChee 1 $129.99 $129.99 

Rack Muscle Rack 
5-Shelf Steel 
Freestanding 

Shelving Unit, 
Black 

Muscle Rack 1 $109.00 $109.00 

WiFi-enabled 
Microcontroller 

ESP-
WROOM-32 
ESP32 ESP-

32S 
Development 

Board 

AITRIP 1 $15.99 $15.99 

Inertial Measurement 
Unit  

Adafruit 9-
DOF Absolute 

Orientation 
IMU Fusion 
Breakout - 
BNO055 

Bosch 1 $34.95 $34.95 

Laptop Macbook Air  Apple 1 $0 $0 
Camera Logitech C922 

Pro Stream 
Logitech 1 $0 $0 

Battery 9V Batteries Amazon Basics 1 $0 $0 
Projector VOPLLS 

1080P Full 
HD Mini 
Projector 

VOPLLS 1 $49.99 $49.99 

LED Light Strips Tenmiro 
65.6ft Led 

Strip Lights 

Tenmiro 1 $9.99 $9.99 

Grand Total $349.91 
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FIG. 9.  PROJECT SCHEDULE 

 


