
1
18-500 Final Project Report: CueTips 04/04/2024

C0: CueTips

Andrew Gao, Debrina Angelica, and Tjun Jet Ong

Department of Electrical and Computer Engineering,
Carnegie Mellon University

Abstract— CueTips is an eight-ball pool training system that
caters to both beginners and professionals, aiding players in
developing an intuition on how to play the game of pool. By
processing real-time video feed from the pool table, our system
provides users with visual projections of shot trajectories as they
move their cue stick around. Unlike existing technologies that rely
on cue stick attachment for aim assistance or force control, our
system minimally alters the cue stick, preserving the authenticity
of the game experience. Furthermore, our system presents users
with a comprehensive view of all potential shot trajectories based
on where the user aims, offering unparalleled training
opportunities for pool enthusiasts of all skill levels.

Index Terms—billiards, eight-ball, pool, trajectory prediction,

computer vision

I. INTRODUCTION
UR project, CueTips, is an assistive system that helps
beginner and advanced Eight-Ball Pool players improve

their skills. Eight ball pool is a difficult game to learn, primarily
due to the high degree of accuracy needed to make a successful
shot to pocket a ball. Very slight differences in the angle of the
player’s aim can have a profound impact on the trajectory of the
ball they hit. Without expert guidance to correct players’ aim,
it can take a very long time to develop an intuition for where
the ball will go depending on the player’s aim. While it is
possible for players to hire coaches to improve their aim, doing
so may not be feasible for the average player who wants to play
recreationally.

Our product is an assistive feedback system that provides
real-time predicted trajectories based on the player’s cue stick
position. As the player moves their cue stick around, they will
be able to see a projection line showing them the direction and
angle in which the ball they are aiming at will go. This will help
players know whether they will be able to pocket the ball and
subsequently give them insight on the correct aim location.

A competition of our project is a similar project that was done
in the Spring 2023 semester for Carnegie Mellon University’s
(CMU) Electrical and Computer Engineering (ECE) Capstone
course. This project looked at the current stationary state of the
pool table and suggested the most optimal shot to take. The
advantage that our project has compared to this one is that our
project provides real-time feedback to users, based on where the
user positions the cue stick. This allows players to make the best
decision on the shot to take and allows users to improve their
intuition for aiming. If the user’s aim is off, they will be able to
notice that from our trajectory projection, which allows for
them to correct themselves. The goal is that over time, this is
more beneficial for helping users learn as it provides more

personalized feedback based on the user’s movement and
position of the cue stick, relative to the pool table. Furthermore,
our system gives users the flexibility to choose which ball to
hit, which would allow them to improve their decision-making
skills in the game of pool as they get to observe the trajectories
of the different balls on the table through trial and error.

Our physics model also has some differences that differ from
the prior project. Firstly, our system allows users to practice
bank shots since we will also display the trajectory of the cue
ball if it is aimed towards the walls of the table. Moreover, our
physics model also allows for kiss shots, where users can
execute a shot with multiple ball collisions. In addition, our
physics model can also take into account the user’s desired spin
and show users the cue ball’s deflection angle after a collision
with a wall or target ball. This allows users to get an idea of
where the cue ball will land after the shot is executed with the
spin that they selected.

II. USE-CASE REQUIREMENTS
The primary goal of our project is to serve as a tool that

effectively helps users learn to play pool.
One of the features required to facilitate fast learning is to

ensure that our system’s performance is fast. We want our
system to be able to react instantaneously to user movement as
they play the game. Hence, we must be able to achieve a latency
of at most 100ms. This latency is measured from the time the
user shifts their position to the time that our system provides
and updates a projection for the trajectory of the user’s aim. We
chose a threshold of 100ms as research has shown that this
duration is the threshold required to create the illusion of an
instantaneous response [1]. This immediate feedback is not only
important in creating a responsive user interface, but also
crucial in helping users learn instantly from their mistakes if
their aim is not accurate.

The accuracy of the predicted trajectory line is another
crucial use case requirement for our project. In order to
effectively help users to learn how to improve their aim, we
must be able to provide them with accurate predictions on the
ball trajectory based on the cue stick’s position. We aim to have
our predictions accurate to at most 2 degrees of error. 2 degrees
of error is the measured angle between the line of our predicted
trajectory and the line of the ball’s actual path after the shot is
executed. We chose to select an error of two degrees because
the pockets are of a width that would allow a ball to still enter
even if it were 2 degrees to the left or right of its predicted
trajectory [2]. This was measured from the full diagonal length
of the table, assuming that the trajectory of the ball was directed
to the center of the pocket.

In order to facilitate the high accuracy our model aims for,
we must also ensure that our object detection models are
accurate. We aim to be able to detect ball position within 0.2
inches of their actual position. If our model’s perceived location
of a ball skews too far away from the ball’s true position, this
would cause inaccuracies in our physics calculations that drive
the trajectory prediction.

O

2
18-500 Final Project Report: CueTips 04/04/2024

CueTips addresses some crucial aspects of public health,
safety, and welfare by promoting mental well-being, physical
activity, and cognitive health. Our product aims to alleviate the
stress associated with the learning process of pool, fostering a
positive and supportive environment for individuals to learn
pool. Furthermore, the interactive nature of the game serves as
a form of recreational exercise, allowing individuals to move
away from their sedentary lifestyles. In addition, it could also
be useful for older individuals to engage in activities that
stimulate cognitive functions and maintain mental acuity. In
addition, when building the product, we made sure to build a
steady shelf as a structure to ensure that users were safe when
using the tool. As items such as a projector and camera were
placed overhead, we made sure that the structure could support
the weight and maintained safety of users.

In terms of social factors, our product aims to be accessible
and reach a wide range of users. This motivates our choice of
outputting visual trajectory predictions, as it would inherently
be community-building by serving as a massive social interest
in many parts of the world. By having a simple, intuitive, and
visual interface, CueTips makes no language assumptions and
has an intuitive user interface that is understandable to
everyone. In terms of environmental factors, we also made sure
that biodegradable, reusable material was used as the shelf so
that it can easily and quickly be dismantled and reused. Being
accessible to everyone, CueTips creates room for vast economic
potential. We could strategically partner with entertainment
venues, gaming centers, and sports bars to target the
demographic who are not only passionate about the game of
pool, but also seeking interactive and technologically advanced
gaming experiences. Through upfront hardware sales,
subscription models, and potential collaborations with game
developers for exclusive content, there is a lot of potential for
our product to contribute significantly to the economy.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION
Our project consists of several physical components. It

consists of a pool table mounted onto a shelf to house, a camera
for object detection, and a projector to project recommended
trajectories. It also includes a web application to display the
user’s shot and provide personalized recommendations.

A. Physical Structure
The physical structure of our set-up consists of a RayChee

pool table mounted onto a rack. The pool table is directly
mounted onto one of the racks of the frame. This structure is 48
inches wide, 24 inches long, and 72 inches tall. There will also
be a second rack that is 48 inches above the pool table. After
some testing and calibration, we determined that the optimal
distance from the projector and the camera to achieve the best
field of view is when they are both placed 44 inches above the
pool table. We raised that by four inches in order to ensure some
additional leeway in case we needed a greater field of view
when performing our actual detection model. Figure 1 shows a
picture of our final structural setup.

Fig. 1. Pool table incorporated into a shelving unit, mounted on a rack

B. Camera and Computer Vision
The camera we are using to perform the computer vision

model is the Logitech C922 Pro Stream 1080p webcam. We
will cut out the appropriate portion of our plywood rack and
mount the camera nicely into the cut-out, in order to achieve a
good image capture of the table. The camera will be connected
directly to our computer via a USB Cable. The camera gives a
78-degree Field of View, meaning that if we want to get a full
capture of the pool table, we will at least have to mount it 33
inches above the pool table.

We will run the backend computer vision model on our
own computers. This will include the detection of the current
state of balls on the table, detecting which ball is the cue ball,
balls, the cue stick, pockets, and walls. This information will
then be used as input to our physics model, which we will use
to predict the trajectory of the shot the user will take. Figure 2
shows the full process of what happens from the moment the
camera inputs are detected, to the trajectory calculations, and
finally to the projection of the predicted trajectory.

3
18-500 Final Project Report: CueTips 04/04/2024

Fig. 2. BLOCK DIAGRAM OF FULL SYSTEM ARCHITECTURE.

C. Physics Model
There are five key outputs of the computer vision model

that we will use: An array that contains the coordinates of the
centers and radius of all colored balls, the center and radius of
the cue ball, the location of the cue stick encoded as two points
- the cue tip and the back of the cue, an array of line equations
of the four walls, and an array that contains the coordinates of
the six pockets. Our physics subsystem contains three main
parts, a function to calculate reflections against the walls, a
function that calculates ball collisions, and a function that
detects when the balls enter the pockets. In order to implement
the trajectory predictions, we first identify the locations of the
cue ball’s center and the two points of the cue stick. Whenever
a user aims at the cue ball, these three points should be almost
collinear. By calculating the Euclidean distance between the
cue ball and the cue tip, as well as the perpendicular distance
between the cue ball’s center and the extrapolated line of the
cue stick, we only project the line if the cue stick is held close
to the cue ball.

In order to implement the wall reflections and the trajectory
predictions, we first identify the locations of the cue ball’s
center and two points on the cue stick. Whenever a user aims at
a cue ball, these three points should be collinear. We will then
extrapolate a line across these three points to estimate the
trajectory that the cue ball will go. As we extend this line
further, we will meet either one of the four cases: There is no
obstacle, there is a wall that intersects the line, or there is a ball
that intersects the line, the ball enters a pocket. After taking into
account all of these, we will output the final predicted trajectory
that the cue ball will take given the current aim. The predicted
trajectory line is then sent as input into the projector subsystem.

D. Projector
The projector we are using for this project is the VOPLLS

1080P Full HD Supported Video Projector. This projector takes
in the coordinates of the predicted trajectory line and plots it as
a white line on a black background. This system will also make
sure that if the line coincides with any of the pockets, it will
stop the trajectory of the line to indicate that the ball will go in.
The projector will also be connected to the laptop via HDMI
Cable.

E. Web Application
Our web application provides a nice user interface to

livestream the video output and displays the ball trajectories
onto the table. The application also allows for a method for
users to select their desired spin, which they intend to execute.
A distinctive feature of this web application lies in the provision
of actionable feedback, promptly communicating errors to users
and offering strategic insights for improvement based on
individual playstyles. After they execute their shot with the
intended spin, our system will look at the location that the user
hit the ball and provide recommendations on whether the spin
was successfully executed or not. We will use React to create
our front-end web application. For the backend, we will deploy
a Flask server to receive video input from the camera and
stream it into the front-end.

4
18-500 Final Project Report: CueTips 04/04/2024

IV. DESIGN REQUIREMENTS
To ensure that object detection was as accurate as possible,

we defined some requirements for the optimal performance of
the computer vision system. A lot of subsystems fundamentally
depend on the accuracy of the detection of objects in our frame.
These objects include the walls, pockets, cue ball, balls on the
table, and the cue stick. Thus, we needed to ensure that we
selected a camera that was precise enough to cater for this. We
minimally needed to choose a camera that could give us 30
frames per second, and a resolution of 1080 pixels.

Our design requirements for CueTips are a translation of our
use case requirements defined in section II.

A. Computer Vision Subsystem
To ensure that object detection is as accurate as possible, we

defined some requirements for the optimal performance of the
computer vision system. A lot of subsystems fundamentally
depend on the accuracy of the detection of objects in our frame.
These objects include the walls, pockets, cue ball, balls on the
table, and the cue stick. Thus, we needed to ensure that we
selected a camera that was precise enough to cater for this. We
minimally needed to choose a camera that could give us 30
frames per second, and a resolution of 1080 pixels.

This level of camera quality would facilitate more accurate
image processing using computer vision, ultimately allowing us
to achieve the main requirement for this subsystem--a
maximum ball detection error of no more than 0.2 inches, which
is measured from the center of the ball detection to the center
of the ball’s actual location. High accuracy in this subsystem
would mitigate error propagation that may lead to inaccuracies
in other dependent subsystems.

B. End to End Latency
We aim to output feedback to the user with a latency of at

most 100ms. End-to-end latency is defined as the time taken
from the detection of the first frame, to the projection of the
output frame. In order to ensure that users have a seamless
experience (smooth experience), we must ensure that end-to-
end latency falls below 100ms as this is the threshold beyond
which a response is no longer perceived as instantaneous. To
achieve this requirement, we decided to implement an approach
that uses zero machine learning. Our system purely uses highly
optimized functions for image processing in the OpenCV,
making it possible for us to achieve lower latencies.

C. Projection & Feedback Subsystem
The projection & feedback subsystem must be able to

provide an intuitive user interface so that it is easy for the user
to follow the feedback provided by our system. We will use a
projector mounted overhead to display the ball trajectories
predicted by our model onto the pool table. This allows the
users to clearly see the trajectories as lines which they can then
use to inform them of whether a ball will successfully go into
the pocket.

Furthermore, this subsystem must display accurate trajectory
predictions to users to accelerate their learning. Providing
inaccurate feedback to users would deter their learning as users
would have misconceptions on the outcome of their aim. Hence,
it is crucial that our trajectory outputs have no more than a 2-
degree error from the trajectory executed by the user in real life.
In other words, the actual path followed by the target ball after
it is hit should be no more than 2 degrees to the left or right of
the predicted trajectory. In addition to this maximum error
requirement, this subsystem must be able to calculate trajectory
predictions that are 95% successful. This means that the user
should be able to successfully pocket a ball 95% of the time
when following the trajectory feedback provided by our system.

V. DESIGN TRADE STUDIES
 In our previous Design Review, we mentioned four main
tradeoff decisions involving latency requirements, mount
construction, foregoing machine learning, and building the
physics engine. Since then, we made several mode design
tradeoffs: cue stick detection improvements, handling ball spin,
and calibration.

A. Power vs efficiency for latency and usability
 Previously discussed in our design review, one of the larger
hardware design tradeoffs we made was choosing the hardware
for our web application, computer vision model, and physics
engine. At the beginning of our project, we wanted to run our
software on an FPGA or Nvidia Jetson Nano for efficiency, but
quickly realized that this detracts from the core use case
requirements of the project. Whether the system is run on an
FPGA, Nvidia Jetson Nano, or laptop does not change the core
functionality of the project. If we opted to run this on an FPGA
or Jetson Nano, it would have distracted us from improving the
various computer vision subsystems or developing the web
application - core parts of the user experience. Furthermore,
there are two more technical roadblocks we would have run into
had we run this on an FPGA or Jetson: latency and projector
compatibility. For latency, the clock speed of both an FPGA
and Nvidia Jetson Nano are orders of magnitude slower than
that of a laptop (GHz vs MHz). In our preliminary testing, we
found that running most computer vision algorithms
(HoughLines, contour detection, Gaussian blurring, etc) take a
few milliseconds at most; not only would there be technical
challenges in writing CV code for Jetson Nano, FPGA (writing
in C/C++ vs Python), but these algorithms would run
significantly slower. Our final system has an end-to-end latency
of roughly 22ms on average, with the highest peaks being
around the 30-40 ms range. This is well within our latency
requirements but would not be the case if we ran our system on
an FPGA or Jetson Nano. Regarding projector compatibility,
there is an added difficulty of getting the projector to work with
either an FPGA or Jetson Nano. Since neither of these two have
a graphical user interface, we would have to find a more
complicated workaround to display the predicted trajectories
onto the pool table. However, using a laptop lets us simply

5
18-500 Final Project Report: CueTips 04/04/2024

mirror the screen while running the system in order to display
the predicted trajectories.

B. Mount construction for the camera and projector
 One of the best decisions we made constructing the system
was opting for an out-of-the-box solution for our camera and
projector mount. We were faced with two decisions: construct
a custom mount for the camera and projector, or buy/adapt an
existing solution for our needs. If we custom constructed a
mount, it would be cheaper than buying but take more time to
build. If we bought/adapted an existing structure to our needs,
it would cost more money but take less time to get working. We
ultimately decided to adapt an existing solution for our needs;
we bought a metal shelf, partly deconstructed it, and used the
topmost shelf to hold our projector and camera. The assembly
only took us a few days, compared to what likely would have
been at least a week or two. Since we only have 12-13 weeks
for the project, saving time was much more important than
budget. Additionally, we had not cut into our budget too much,
so it made sense to buy the shelf and adapt it for our purposes.

C. Foregoing machine learning in CV subsystems
 The largest software tradeoff we made was deciding to
forego machine learning from the start of our project. Machine
learning is effective for object detection and would remove
much of the algorithmic complexity of our computer vision
subsystems. However, it adds a significant amount of latency
for each frame processed. From initial testing with several
machine learning object detection models (R-CNN, YOLOV8,
etc) and measured the time it took for each frame to be
processed. In order to meet our latency requirements, we
decided to opt out of machine learning for this project. This
made the latency requirements easy to meet, but also added
much more algorithmic complexity to the computer vision
subsystems. Because our detection had to now be deterministic
and done manually, we had to have several layers of masking,
filtering, edge/contour detection, color detection to account for
inconsistencies in our detection.

D. Open-source vs physics engine from scratch
 In developing the physics engine, a big tradeoff we made
involved deciding between leveraging open source pool physics
libraries and game engines versus constructing ours from
scratch. Deciding to leverage existing work - whether it be from
research papers, game engines, etc - would give us a well-
tested, robust, and verified physics engine for our system;
however, it would be possible that adapting it to our use case
would be difficult. On the other hand, writing our physics
engine from scratch would let us have full control over the
functionality and let us keep it both lightweight and highly
specialized for our system. However, this would mean getting
deeply involved in the theoretical aspects of ball/wall collisions,
spin physics, and changes in momentum. Ultimately, our team
decided to write the physics engine from scratch. We initially
decided to try to adapt existing game engines, research papers,

and physics libraries for our use case. However, much of the
existing work was too heavy for our system. They involved a
lot of extra functionality that we did not need, and this made it
more difficult to adapt them to our use case. The core of our
engine focuses on trajectory prediction, and trying to account
for other variables like mass or friction coefficient proved to be
very time-consuming with little return on investment. Thus, we
decided to develop our own custom physics engine from
scratch, which we accomplished in 1-2 weeks.

E. Cue stick detection improvements
 This tradeoff involves the technical details of the cue stick
detection subsystem, and what we did to improve both the
stability and sensitivity of its detection. The biggest issue with
the cue stick is being able to both detect subtle movements from
the user moving the cue stick while also keeping the trajectory
displayed stable if the user does not move it. Initially, our cue
stick subsystem relied on detecting a small portion of the front
of the cue stick. It detected the contours and approximated the
front as a small rectangle. We then drew a line between the
edges of the rectangle and used it as the trajectory of the cue
stick. This method resulted in a fairly accurate trajectory line
for the cue stick. However, at times it was unstable, and the
trajectory would randomly jump significantly. To improve this,
we had to add additional layers of computer vision algorithms
to stabilize the stick’s trajectory. The crucial difference was
masking the pool table with a range of green in order to filter
out noise. With just this change, the cue stick trajectory was
much more stable than before. Then, we replaced the polygon
approximation with contour detection, filtering for an area
range, finding the minimum enclosing rectangle around the cue
stick. We then took the midpoints of the short sides of the
rectangle, and took the connecting line as the stick’s trajectory.
With these changes, we achieved a good balance between
stability and sensitivity for the cue stick. These improvements
did come at a cost - the latency increased, and the sensitivity
decreased compared to the previous method. However, this was
an acceptable tradeoff - because of our other decisions, we had
a good amount of room to work with regarding latency; there
was also a decrease in sensitivity, but not by an amount that
would significantly affect the user experience negatively.

F. Handling ball spin
 Ball spin and its implementation was both another tradeoff
and important design decision we made. We decided between
two options to incorporate spin into our system. The first
method was incorporating ball spin by mounting an inertial
measurement unit (IMU) onto the cue stick and collecting
gyroscope data from it. This would then be streamed real-time
to the physics engine which would incorporate spin by detecting
the angle at which the cue stick strikes the cue ball (z-axis). The
second method was delegating spin input to the user. They
would have an option on the web application to select the part
of the cue ball they were going to strike. This input would be
sent to the physics engine, which would then account for the
desired spin and change the predicted trajectory accordingly.

6
18-500 Final Project Report: CueTips 04/04/2024

The first method involves very little input from the user - they
would just have to aim at the cue ball and strike. The second
method, however, involves the user a little more at the cost of a
slightly clunkier user experience. This decision primarily trades
off technical complexity for user experience quality.
Ultimately, our team decided to go with the second method.
Although the user experience is slightly clunkier, it results in a
more accurate implementation of spin. We initially tried to
implement the first method, but we ran into an issue with the
IMU data drifting, especially with the gyroscope. After a few
minutes, the gyroscope drifts by several dozens of degrees. The
data becomes extremely unreliable, thus, we decided to forgo
the IMU altogether. Implementing the first method with spin
would result in a completely inaccurate trajectory, so we
decided to implement spin with the second method. The user
experience is a bit clunkier, but it is fundamentally more
accurate - which is more important at the end of the day.

G. Calibration
 Calibrating our entire system was a minor part of our project,
yet had significant impact. The crucial tradeoff with the
calibration was increasing software complexity and setup time
in exchange for consistent, lasting detections as well as an
insightful optimization. Our calibration subsystem is run before
the actual application starts. It takes a set number of frames in
the beginning, runs our wall and pocket detection algorithms,
then sets permanent state for the duration of the application’s
run. Previously, we had been trying to run the wall and pocket
detection algorithms for each frame, but we realized that this
was both unnecessary and wasteful. The only part of the game
that changes are the balls and cue stick; the pool table walls and
pockets stay constant. As such, we can pre-compute the
detected walls and pockets, and fix them in the same positions
for the application’s entire run. This not only reduced our
latency, but also resulted in more stable detections. Previously,
when we ran the wall and pocket detection algorithms on each
frame, other objects (like moving balls, cue stick) would
interfere in the detection and produce inaccurate results. By
fixing them from the start for the entire run, we were able to
avoid such errors. Furthermore, since we now only compute the
walls and pockets once, we can leave it out of processing each
frame, making it significantly faster.

VI. SYSTEM IMPLEMENTATION
 Our overall system consists of six different subsystems: An
initial calibration system, ball detection subsystem, cue stick
detection subsystem, physics shot calculation subsystem, a web
application, and a projector subsystem.

A. Initial Calibration Subsystem
 The initialization of our system includes a crucial 5-second
calibration step aimed at ensuring the accuracy of subsequent
wall and pocket detection for shot calculations later on. Our
WallDetection module has its primary ‘getWalls()’ function
that facilitates the extraction of valid wall data. Initially, an

image is loaded via a specified file path, undergoing a series of
transformations which include green colored masking
(cv2.bitwise_and with the image and mask) followed by edge
detection (cv2.Canny). We subsequently use heuristic
algorithms to classify these lines into top, bottom, left, and right
walls based on their spatial relationships within the image and
their angular orientation. Conversion from polar to rectangular
coordinates further refines this data for subsequent processing
and analysis. Additionally, the PocketDetection module,
through the implementation of the ‘getPockets()’ function
employs cv2.HoughCircles() with custom parameters to detect
potential pockets. These detections are then validated against
previously identified walls to ensure adherence to size and
distance criteria, thereby confirming their classification as
pockets. Acknowledging the variability inherent in individual
frame detections, our system employs a strategy of aggregating
multiple frame detections to establish the most frequent and
accurate values for both walls and pockets, thereby facilitating
precise calibration of the walls and pockets. Figure 3 shows an
example of the calibrated walls and pockets. The green lines
represent the detected walls, and the blue circle represents the
location of the detected pockets.

Fig. 3. Ball detections and outlines drawn.

B. Cue Stick Detection Subsystem
 The cue stick detection subsystem is an essential component
of our pool analysis framework, serving to accurately identify
and track the movement of the cue stick during gameplay. This
subsystem begins by applying green colored masking to isolate
the cue stick from the background, enhancing subsequent
detection accuracy. Following this, Gaussian blur is applied to
reduce noise and refine the edges of the masked image,
facilitating more precise contour detection of the cue stick.
Through contour detection, the subsystem identifies the outline
of the cue stick, laying the foundation for precise bounding and
classification. As the balls have not been filtered out of the
picture, we cross check the contour locations with the ball
locations, as well as use shape and radius size detections to
differentiate the cue stick from the cue ball. Subsequently, we
use the ‘minEnclosingRectangle()’ function to create a
bounding rectangle around the detected contour, effectively
encapsulating the cue stick within a defined region of interest.
Within this rectangle, two points are drawn based on the shorter
sides of the rectangle, serving as reference markers for
subsequent classification. Through a distance-based
classification process, one point is identified as the cue tip,

7
18-500 Final Project Report: CueTips 04/04/2024

while the other is classified as the opposite end of the cue stick.
This ensures accurate tracking and analysis of cue stick
movements. Figure 4 shows an example of the cue stick being
detected in the picture.

Fig. 4. Cue stick detection shown on the image.

C. Shot Calculation Subsystem
 Our shot calculation system is integrated within the Physics
class that utilizes OpenCV and NumPy libraries, serving as a
fundamental component for predicting ball trajectories and
collision points on the pool table. At its core, the system
comprises a function to detect ball collisions, a wall reflection
function to calculate reflections off table walls, and a pocket
collision function for identifying the points of intersections with
pockets. The ball collision function calculates the precise point
of the collision between two balls on the table. Collision is
determined to occur if the distance between the centers of the
cue ball and another ball approximates twice the radius of the
balls. Leveraging quadratic equations, this function computes
the intersection points of the cue ball trajectory with other balls,
selecting the closest point as the collision point. Next, the wall
reflection function accounts for reflection physics and ball
cushion dynamics, implementing rigorous equations that model
reflected ball shots, including factors such as angle of incidence
and ball cushion interaction. This allows users to execute
strategic bank shots with precision. Lastly, the pocket collision
function detects instances where the trajectory line intersects
with a pocket, thereby halting the trace of the line. By
accurately identifying these points of intersection, the system
provides insights into shot outcomes, when the ball enters the
pocket. The run_physics() function traces a trajectory line
starting from the cue stick, which serves as an initial projection
for the cue ball’s movement. Subsequently, if this trajectory
intersects with any balls or walls on the table, the ball and wall
collision functions are executed to calculate the ensuing
trajectory adjustments. This iterative process continues until the
trajectory line intersects with a pocket, or reaches its pre-coded
maximum line length, at which point the line is halted,
signifying the completion of the shot prediction process. It is
also worth noting that the trajectory line only appears if the cue
tip is brought close enough to the cue ball and doesn’t work
when it is brought close to any other ball. Figure 5 shows the
example of the trajectory line being projected onto the table.

Fig. 5. Calculated trajectory presented on the table.

D. Web Application subsystem Subsystem

 The Web Application subsystem represents a user-friendly
interface that enables users to see a livestream of the video
footage, simultaneously observing the real-time detection of
crucial game elements including walls, pockets, balls, cue stick,
and predicted trajectories. This feature-rich functionality allows
users to have comprehensive insights into gameplay dynamics,
aiding strategic decision-making and enhancing gameplay
experience. Additionally, users can select their intended spin
directly on the website. Upon confirming the selection, updated
spin trajectories are dynamically generated and displayed,
providing users with immediate feedback on the potential
outcomes of their shots. The front end of the application was
coded using React, ensuring a responsive and intuitive user
interface. The backend employs Flask to handle video
streaming and perform complex computations necessary for
real-time detection and trajectory prediction. This combination
of technologies allowed us to deliver a seamless and immersive
user experience. Figure 6 shows the completed web application.

Fig. 6. Web application.

E. Projector Subsystem
 The projector subsystem consists of both a hardware and
software component for visualizing predicted trajectories in our
trajectory prediction system. The hardware component consists
of a camera, shelf mount, and a projector. These components
work together to capture the original frame of the pool table,
process it, and project the predicted trajectories onto the table
surface. The software component is the final stage of the
trajectory prediction process. It receives the original frame
processed by preceding subsystems, along with a python array
consisting of a list of vectors representing the points of

8
18-500 Final Project Report: CueTips 04/04/2024

collisions. The software first creates an equal-dimension black
background using ‘np.zeros_like’, providing a canvas for
trajectory prediction. It then iterates through the list of vectors,
plotting them as white lines onto the black background. This
approach ensures maximum contrast, guaranteeing clear
visibility of the trajectory lines even in well-lit environments.

VII. TESTING, VERIFICATION AND VALIDATION
 We employed four testing methods to evaluate the
performance of our product and validate the accuracy of our
shot calculations. We ran multiple tests to ensure we satisfied
the three metrics that are central to our use case requirements:
1) latency, 2) trajectory prediction accuracy, and 3) object
detection accuracy.

A. Methodology for Testing Object Detection Accuracy
Our first use case requirement specifies a target metric to

detect pool balls within 0.2 inches from their actual locations.
In order to verify this design requirement, we employed a test
that involved executing our object detection model on a set of
carefully selected test suites. Four different test suites were
devised which covered the following scenarios: 1) normal balls
on the table, 2) balls adjacent to each other, 3) balls close to
walls, and 4) balls close to pockets. These different test suites
were designed to ensure that we comprehensively tested our
system's ability to accurately detect pool balls across various
table configurations and positions. We manually set up five
different randomized ball layouts for each of the four test suites
in order to have a larger sample size of test cases, which would
increase the reliability of our measurements. Figure 7 below
shows the test suites that were used for ball detection.

Fig. 7. Test suites we used to test ball detection accuracy.

After the object detection model had been run on each table
setting with a unique ball layout, we proceeded to take the
measurement of the ball detection error. The process of taking
this measurement involved manually identifying the center and
radius of each pool ball in the table setting, then comparing it
with the corresponding center and radius returned by our ball
detection model. Next, the Euclidean distance between the
detected center and the true center of each ball in the setting was
calculated. This distance is what we utilize as the detection error
of our ball detection model.

B. Methodology for Testing Trajectory Accuracy
To validate the accuracy of shot calculations, two distinct

tests were performed. One measured the success rate of the
trajectory accuracy, while the other sought to measure the
average error of our predicted trajectories.

The first test we performed sought to calculate the success

rate of our shot calculations. To do this, we had a user execute
20 shots using our system, then calculated the percentage of
shots out of these attempts that were successfully pocketed. For
each shot, the user was prompted to aim a target ball into a
pocket while following the trajectory guidance provided by our
system. We chose to test three different types of shots in order
to evaluate our product’s efficacy in different gameplay
scenarios. For each type of shot, the user begins by aiming the
cue stick at the cue ball, and the objective is to pocket a target
ball. These shots included normal shots, bank shots, and kiss
shots. We define a normal shot to be a scenario in which the
user aims the cue ball to hit another target ball directly. Bank
shots are when the user aims the cue ball to bounce off the wall
prior to the cue ball colliding with a target ball. Lastly, a kiss
shot is where there are cascading collisions involving two target
balls. The cue ball is aimed toward a target ball, which will hit
another target ball into a pocket. The sequence of collisions for
each of these types of shots are detailed in Table I.

TABLE I. COLLISION SEQUENCES FOR EACH SHOT TYPE

Shot Type Sequence of Collisions

Normal Shot Cue Ball - Target Ball - Pocket

Bank Shot Cue Ball - Wall - Target Ball - Pocket

Kiss Shot Cue Ball - Target Ball 1 - Target Ball 2 - Pocket

The notation “A-B” signifies that a collision occurs that starts from object A and goes on to object B.

The next test we performed sought to measure the average

error of our predicted trajectories. This test was meant to
validate our use-case requirement of having a predicted shot
trajectory accuracy of less than 2 degrees. This angle is a
measure between the trajectory line predicted by our system and
the actual trajectory line followed by the target ball. In order to
take this measurement, we aimed a cue ball to hit a target ball
to the wall and compared the coordinate of the target ball’s
actual collision location with the location predicted by our
model. We first took note of the starting coordinate of the target
ball. We then took a shot to hit the target ball towards the wall.
Next, we obtained the predicted coordinate of collision by
running our physics model stopping it when it predicts a wall
collision. Finally, to get the true coordinate of collision, we
programmed a separate test bench that was designed to detect
when a target ball collides with a wall. When this collision
occurs, the program would stop itself and print out the
coordinate of the target ball upon its collision with the wall.
After the starting point and the two collision points were taken,
we measured the angle between the two paths. This measured

9
18-500 Final Project Report: CueTips 04/04/2024

angle is what we utilize as the shot calculation error of our
trajectory prediction. This method allowed us to quantitatively
determine the accuracy of our trajectory prediction.

Fig. 8. Different types of shots executed to test trajectory accuracy.

C. Methodology for Testing Latency
Finally, to test the end-to-end latency of our project, we

timed the code execution for each frame programmatically. As
soon as a frame comes in from the camera via OpenCV’s
imread function, we include with the frame the marked input
time as additional metadata. When the frame finishes
processing, we again take the time when the predictions are
generated and find the difference (in milliseconds) between the
starting time and the ending time. Since the software system is
entirely contained within the laptop, we do not need to account
for transmission latency via Wi-Fi. Our use case requirement
regarding latency was that end-to-end processing would be
within 100ms. By ensuring that each individual frame takes less
than 100ms to be processed through the entire software
pipeline, we ensure that the user perceives changes to the
projected predictions within 100ms which has the appearance
of the trajectory outputs being instantaneous.

D. Results for Object Detection Accuracy
The data we collected from our object detection

accuracy tests showed that we were able to exceed our target
metric. We took an average of all the errors we had sampled in
our tests and found that the average error in our ball detections
was only 0.05 inches. This measure is much lower than our
original target error of at most 0.2 inches. These accurate results

can be attributed to the use of color masking and detection
averaging, both of which were additional design iterations we
implemented on top of our principal ball detection model. With
this method, we were able to generate accurate and stable object
detections, as portrayed by the low error we have measured.

E. Results for Trajectory Accuracy
For our trajectory accuracy test evaluating the success

rate of our predictions, we were able to achieve satisfactory
results for each of the different types of shots. Our use case
requirement called for an accuracy rate of 95% for all types of
shots. We were able to achieve this target metric for normal
shots and come close for bank shots and kiss shots. Our
trajectory calculation system was most accurate for normal
shots, with a success rate of 100%. The success rate for kiss
shots was 90%, and for bank shots it was 75%. The lower
success rate in kiss shots and bank shots can be attributed to
greater losses in energy as a result of a greater number of
collisions. We addressed this issue by iterating upon our design
to take into account the cushioning of the walls and losses due
to friction in order to minimize the inaccuracies present in these
types of shots.

F. Results for Latency
The results we collected from timing our code showed

that our system has an average latency per frame processing of
22ms. This is a statistic that far exceeds our expected target
latency of 100ms. We were able to achieve such high
performing results by solely using OpenCV for image
processing. A tradeoff that was made in order to achieve this
low latency was to forgo the use of machine learning.

TABLE II. SUMMARY OF TEST RESULTS

Use Case
Requirement Specification Performance

Ball Detection
[PASS]

Detect pool balls
within 0.2in from
actual ball location

Overall Average
Error: 0.05in

Shot
Calculation
[PARTIAL]

Predicted trajectory
must be 95% accurate

Normal shots:
100%
Kiss shots: 90%
Bank shots: 75%

Predicted trajectory
must be within 2o of
actual trajectory

Error of 1.13o on
average

Latency
[PASS]

Achieve latency of less
than 100ms

22ms on average
(far exceeded
expectations)

10
18-500 Final Project Report: CueTips 04/04/2024

VIII. PROJECT MANAGEMENT

A. Schedule
Our schedule for the project is depicted in Fig. 9 on page 14

of this report. The blocks in blue represent the sections that are
being done by Andrew, green represents the sections being
done by Tjun Jet, and the red block represents the sections being
done by Debrina. The yellow blocks indicate the blocks that
will be done by everyone. Our schedule includes weekly
milestones and allows us to keep track of what tasks should be
done by a given week.

Throughout the semester, our schedule underwent changes
involving the expected completion date of certain tasks. Tasks
related to trajectory output on the projector were delayed as we
put our focus to first creating a robust system backend in the
early stages of our project. Tasks involving testing, verification,
and error checking tended to be prolonged. We decided to
extend the timeline for these tasks as we realized that there were
many more iterations of testing that needed to be done during
the integration stages. Lastly, tasks related to spin
implementation and the web application were also delayed and
prolonged. Spin proved to require more complex
implementations; hence we needed more time to complete this.
Furthermore, since the spin selection step was executed through
our web application, we also extended our timeline for the web
application development to work on it in parallel with the spin
implementation. Changes to our schedule have been made in
yellow and are shown in Fig. 9 on page 14.

B. Team Member Responsibilities
Debrina’s primary responsibility is the Computer Vision

subsystem. She is responsible for implementing object
detection and segmentation algorithms. The objects that will
have to be clearly segmented are the array of pool balls on the
table, distinguishing between the cue ball and the target balls,
cue pockets, and the four walls surrounding the table. She must
ensure the detections are accurate enough to meet our use case
requirements. Debrina’s secondary responsibility is supporting
in the implementation of the physics model to conduct tests and
feature improvements as further requirements emerge
throughout the development process.

Tjun Jet’s primary role is to work on the physics engine. The
physics engine takes in the outputs from Debrina’s computer
vision model and calculates the trajectory that the cue ball will
follow if it’s being hit in a certain manner. He will focus on two
main detection models - wall detection and ball collision
mechanics. He must consider the reflections of the wall and the
mechanics when the cue ball collides with the ball. Tjun Jet’s
secondary role is to support the spin implementation by
conducting research on the physics behind spin and assisting in
its implementation.

Andrew will play a primary role in the projector subsystem
and the spin subsystem, web application development, and cue
stick detection. He must ensure that the cue stick detection is
accurate and stable to minimize flickering in the trajectory
predictions. Furthermore, he is in charge of implementing the
spin mechanics and integrating this to the web application to

allow users to interface with our system.

C. Bill of Materials and Budget
Our bill of materials and budget can be found in Table I on
page 10 of this report. At the end of the semester, we no
longer needed the IMU since we determined that it did not
contribute much value to our system due to frequent
inaccuracies it faced. Since we no longer used the IMU, we
no longer needed the ESP32 and the 9V batteries that were
meant to be used with the IMU.

D. Risk Management
To handle our project risks from the standpoint of

scheduling, we initially left plenty of buffer time in the last few
weeks of the semester. We started off with a plan that would
allow us to complete the project a few weeks early. This would
give us plenty of time to spare in case we encountered
roadblocks that would lead to delays in our schedule.

From the standpoint of resources, since our project did not
require many expensive components, we felt comfortable in
allocating more of our budget to make purchases that would
ensure the quality of our components. We prioritized selecting
items that had good quality (as opposed to selecting the most
affordable option) to avoid having to repurchase a component
due to it falling short of expectations. An example of this is our
selection of the shelving unit to hold the pool table and
projector. Even though the shelf was on the pricier end, it was
the most sturdy option available and fit our use case very well.

We handled risks related to design by developing a well-
defined API early on to ensure that the interfacing between our
different subsystems remained consistent. This allowed for
tolerance in design changes since we could easily adapt to them.
Each subsystem would be able to continue to run correctly as
long as we ensure strict invariants related to the inputs received
by each subsystem.

At the start of the semester, we anticipated that one risk we
might encounter is that the latency of our detection becomes
very high, making the user interface not as good as we want it
to be, as the output trajectories will be too slow. We addressed
this risk by structuring our implementation to rely only on
OpenCV’s object detection library. Our risk reduction measure
was to choose not to use any machine learning in our system as
this would lead to slowdowns.

When risks did develop into issues, we turned to some risk
mitigation strategies. A notable instance involves our cue stick
detection subsystem. At the start of the semester we had
identified detection inaccuracy to be a potential risk. We
anticipated that inaccurate object detections, primarily cue stick
detection, would lead to incorrect trajectory calculations. While
we initially thought to use April Tags to address this risk, we
decided to move away from April Tags as we learned that it did
not allow for a smooth user interface. We initially used April
Tags to detect the cue stick by mounting it onto the cue stick.
However, this restricted the user’s ability to orient the cue stick
in any way they want. Hence, we decided to experiment with
different approaches using OpenCV to effectively detect and
isolate the cue stick.

11
18-500 Final Project Report: CueTips 04/04/2024

IX. ETHICAL ISSUES
There are a few ethical issues that may relate to our

product. To name a few: structural integrity of the
camera/projector mount, privacy concerns with camera usage,
accessibility for sight-impaired users, and skin tones affecting
computer vision subsystems.

A major potential ethical issue health-wise has to do
with the structural integrity of the mount that the camera and
projector is fixed on. Our team opted for a heavily modified
metal shelf frame to mount our equipment; the shelf is made of
metal, and both the camera and projector are placed a decent
height above where the player would be playing. If the structure
were to collapse or be damaged, the user could be seriously
injured by the equipment mounted on top or the metal from the
shelf itself. Everyone who uses this product would be affected
by this issue. To mitigate this, we could rigorously test and
perform structural analysis to ensure that the structure does not
collapse, and that it can withstand collisions, shaking, general
wear-and-tear, etc.

Another concern would be users’ concerns about our
system’s camera usage. The camera mounted on top could lead
our users to believe that we are collecting data about them, or
storing the frame data we collect of them when using our
product. We do not store any data, and once a frame is
processed and trajectory predictions are shown, it is gone.
However, many users could still hold suspicions, and this is a
concern that can affect all users. To mitigate this, we can open-
source our code and put disclaimers in the web application that
we do not store frame data. By doing this, those concerned can
verify rigorously that we do not store camera footage.

Accessibility is yet another potential concern for sight-
impaired users of our product. From the beginning, our product
was designed with visual feedback in mind; however, sight-
impaired users would not be able to use our product in its
current state since the trajectory predictions are visual -
projected on top of the pool table. To mitigate this, we could
extend our system to give audio feedback. We could implement
another computer vision subsystem that guides the user to
where the cue ball is, or how to move the stick to aim.

Lastly, skin tones is another ethical concern that may
affect our project. Since we utilize color detection in our
system, users of different skin tones may see varying results.
For instance, our cue ball detection algorithms rely on using
HoughCircles to identify circular objects with roughly a set
radius and comparing the percentage of white (a range of white)
pixels to all other pixels. If someone with a very pale skin tone
were to use the system, it is possible that our ball detection
system would confuse their hand or fist as the cue ball. This
difference in usability depending on the user’s skin tone is a big
ethical consideration to be addressed. To mitigate this issue, we
could change the functionality of the system. One such solution
would be to show trajectory predictions for any ball the cue
stick is pointed at - doing so would eliminate the need to
identify the cue ball from the rest via color detection. Another
solution would be to do some sort of contour counting or area
filtering, making sure that “hand-like” features are disqualified
from being cue ball candidates.

X. RELATED WORK
 The most similar project to ours is a 18-500 capstone project
last year - S23 Team C7’s “8-ball lifeguard” [3]. The project
was designed for beginners to learn how to play pool. It does
this by providing the user with the most optimal shot to take
given the current pool table state. They take in the game state
via a camera, compute the best shot to take, then output it onto
the pool table via a projector. This project is similar to ours in
functionality and system/hardware. However, the use case
requirements and software systems are very different. We
wanted to heavily prioritize the responsiveness and interactivity
of the system by allowing the user more control over the shot,
helping them build intuition by experimenting with various
shots and seeing the predicted trajectories change in real-time.

XI. SUMMARY
 Our system was able to meet the design specifications. We
set out to create an assistive product that helps people learn how
to play pool more effectively. Our design specifications
involved three components: low latency, accurate object/game
state detection, and accurate trajectory predictions. For latency,
our target metric was 100ms, but we far exceeded expectations
by reducing the end-to-end latency to 22ms on average. For
game state detection, we wanted to distinguish all different
objects in the game (cue stick, balls, pockets, walls) with 100%
accuracy, which we were able to achieve. Furthermore, as a
quantitative metric, we aimed for <0.2in error in our ball
detection; our project met this metric with 0.05in of error.
Lastly, for trajectory prediction accuracy, our target was 2
degrees of error from the predicted line to the actual shot line.
Our system also met this metric, with 1.13 degrees of error from
testing various shots.
 From this project, we learned much about addressing the
technical challenges within our project. However, more
importantly, there were several high-level lessons learned that
are applicable to all engineering projects: 1) users first, 2)
allocate time for the unexpected, 3) build to have it work - not
perfect. One of the most important lessons we learned is to
understand that engineering does not exist in a vacuum; we are
always building for an end user. It is very easy to get wrapped
up in the technical details and make design decisions that make
sense technically, but produce a poorer user experience. For
instance, when coming up with our feedback implementation,
we initially thought of just displaying the trajectories via our
web application. This would be the most straightforward way
to display the feedback, as we would only need to stream the
video via Flask to our React frontend. We realized, however,
that it would be a very poor user experience to have to
constantly look back and forth between web application and
pool table to take each shot. Ultimately, we decided to have the
projector display the predicted trajectories on top of the pool
table. Many people who used our system far preferred this
display to the web application’s due to its intuitive interface and
responsiveness.

12
18-500 Final Project Report: CueTips 04/04/2024

 The second lesson we learned was to allocate time for the
unexpected. Throughout our project, we often ran into technical
issues that we had not accounted for. As a result, the
development of some components took much longer than
expected. Some subsystems with a timeline of 1-2 weeks took
as long as 3-4 weeks to fully complete. If we were to redo the
project again, we would try to allocate extra time for building
the subsystems that we did not have a full implementation plan
for. These often were the places where we ran into unexpected
technical issues that cost more time to resolve.

Lastly, we learned that it is more important to have things
work rather than to make it perfect. Our team had 12-13 weeks
to complete this project, and oftentimes we had to move fast at
the expense of code quality or cleanliness. Spending extra time
over-optimizing each function or formatting/documenting
everything could result in not being able to finish other critical
tasks. Throughout the duration of our project, we employed
hacky shortcuts that enabled us to move faster to complete the
actual critical parts of our system. For instance, initially we
tried to integrate auto-cropping into our calibration subsystem;
it was annoying to keep having to crop our video every time the
camera moved. However, we realized that building this
functionality out would not contribute meaningfully to the
actual user experience - it was just a quality-of-life
improvement for our own sake. It would take at least a day or
two to develop, and we decided instead to keep a file with all
the different camera crops we used, labeled each, and just
remembered which to use. We didn’t have to build the cropping
system, and we also saved 10 minutes each work session not
having to manually recalibrate the crop every time.

Regarding future work, we do not plan to continue this
project after this semester, that some of us either pursuing
graduate school or entering the industry. CueTips was a great
experience for all of us in terms of embracing the technical
challenges in engineering, working collaboratively as a team,
and most importantly, allowing us to also experience the
process of learning the game of pool.

XII. GLOSSARY OF ACRONYMS.
IMU – Inertial Measurement Unit
FPGA – Field-Programmable Gate Array
GHz – Gigahertz
MHz – Megahertz
CV – computer vision
R-CNN – Region-based Convolutional Neural Network
YOLO – You Only Look Once
RGB – Red, Green, Blue
USB – Universal Serial Bus
ms – milliseconds

XIII. REFERENCES
[1] R. B. Miller, "Response time in man-computer conversational

transactions," in Proc. AFIPS Fall Joint Computer Conference, vol. 33,
pp. 267-277, 1968.

[2] AZBilliards Forums, "Fractional Aiming and Required Accuracy,"
Available: https://forums.azbilliards.com/threads/fractional-aiming-and-
required-accuracy.522183/.

[3] Agarwal, Rager, Ray "Team C7: 8-Ball Lifeguard" Carnegie Mellon
University. Available: https://course.ece.cmu.edu/~ece500/projects/s23-
teamc7/.

13
18-500 Final Project Report: CueTips 04/04/2024

TABLE III. BILL OF MATERIALS

Item Part Name Manufacturer Quantity Cost @ Total
Pool Table RayChee

Portable Mini
Billiard Table

RayChee 1 $129.99 $129.99

Rack Muscle Rack
5-Shelf Steel
Freestanding

Shelving Unit,
Black

Muscle Rack 1 $109.00 $109.00

WiFi-enabled
Microcontroller

ESP-
WROOM-32
ESP32 ESP-

32S
Development

Board

AITRIP 1 $15.99 $15.99

Inertial Measurement
Unit

Adafruit 9-
DOF Absolute

Orientation
IMU Fusion
Breakout -
BNO055

Bosch 1 $34.95 $34.95

Laptop Macbook Air Apple 1 $0 $0
Camera Logitech C922

Pro Stream
Logitech 1 $0 $0

Battery 9V Batteries Amazon Basics 1 $0 $0
Projector VOPLLS

1080P Full
HD Mini
Projector

VOPLLS 1 $49.99 $49.99

LED Light Strips Tenmiro
65.6ft Led

Strip Lights

Tenmiro 1 $9.99 $9.99

Grand Total $349.91

14
18-500 Final Project Report: CueTips 04/04/2024

FIG. 9. PROJECT SCHEDULE

