CueTips
CO: Tjun Jet Ong, Andrew Gao, Debrina Angelica
18-500 Capstone Design, Spring 2024

Electrical & Computer

{ ENGINEERING
Carnegie Mellon

Electrical and Computer Engineering Department
Carnegie Mellon University

Product Pitch

There is a steep learning curve when it comes to learning how to play billiards.
Without proper guidance from professionals or experienced friends, it can
often lead to frustration or discouragements. CueTips uses Computer Vision to
enhance the pool learning experience by predicting shot trajectories in real
time, acting as a personal coach and guiding your shots with precision.

Qur goal is to create an immersive, responsive experience that's precise and
engaging. Important key metrics we wanted to achieve were: accurate ball
detection (<0.2in), accurate shot calculations (<2 degrees of the margin of
error), and a full system end-to-end latency of less than 100ms. Throughout
the semester, we managed to achieve an average ball prediction accuracy of
0.05inches, an average shot prediction accuracy of 1.13 degrees margin of
error, and an end-to-end latency of about 22ms. To interact with our system,
there will also be a web application available for users to select their desired
metrics.

System Architecture

System Description

Our product is composed of (6) primary systems:
o Ball Detection System
o This is responsible for detecting all balls currently on the pool table, excluding the
ones that have already been pocketed. It differentiates between the cue ball and
the other balls. We used OpenCV'’s HoughCircles to detect the balls.
e Cue Stick Detection System
o This will find the cue stick on the pool table and detect its trajectory line - where
the user is aiming. This system also includes an accelerometer attached to the
cue stick that detects how fast the user is hitting. This is done using color masking
and OpenCV’s BoundingRect functions.
e Wall and Pocket Calibration System
o The calibration system detects where the pool table walls are as well as the six
pockets using Canny Edge Detection and OpenCV’s HoughLines. These are
calibrated and set in the beginning and kept constant while the software runs.
e Physics Engine System
o The physics engine takes in data from all the other systems and computes the
predicted trajectory of the user’s aim. As the user moves the cue stick around, the
physics engine computes the changes in trajectory in real-time.
o Web Application System
o This consists of a frontend (React) and backend (Flask), receives user data about

where they want to strike the ball, and sends it to the backend which is integrated
Shot Calculation System with the physics engine and other systems.
— :)) e Projection System
? g ﬁﬁ;m’mm Enysics Calciiations o This is responsible for taking the predicted trajectories and outputting them to the
e Bl Collion trajectory projector for instantaneous feedback for the user’s aim.
Ball Detection objects b _
|, Camera %) -— data — Wall and Pocket detections
Cue Stick D \Wall leﬂedllon_trajectuw
Detected
Wall and Pocket Estimate fine lengih | Projector and cue stick
Detection based on velocity came;ad Detected |
mounte
Auto Calibration Physics San Metal above cue ball
system calculations frame Predicted
mount LED light trajectory
— Provide post-shot :
a UsB Projector Drawing S e
E__= Return output line as Full Product, Side View Ball, Physics, Cue Stick, Calibration
= Input: Qutput line array amay ’
Projector g = —
= i Calculate predictions | | »
s i on an mage Temectoy Predcton | | stem Evaluation
Calibrate projecior r
| with pockets | IMU Detection We evaluated our system's performance based on its processing speed and accuracy.
“Oulput predicted | A tradeoff that was made in order to achieve low latency was to forgo the use of machine
e inrenlinic o) drem mcchinton learning. We were able to achieve a latency of 22ms, far exceeding expectations, by
using OpenCV for image processing. Accuracy of our system was evaluated based on

()

User selects
spin and vetocity

Post shot
recommendations

@

j (CV)]

Web Application (Laptop)

1) Displays pool table

) User selects ideal
spin

ESP32 BNOO55 IMU 3} User setects ideal

velocity

4) User recaives
recommendations

Conclusions & Additional Information

We were able to achieve most of the goals we set
for ourselves, and built a product that provides
instantaneous trajectory predictions for pool players
of all levels. Some next steps would be to migrate
the software to an Nvidia Jetson Nano, create a
more personalized training experience for users
(play recommendations, technique adjustments
specific to each user), and tracking ball spin
automatically with a better IMU. We’d also like to
test on a life-sized pool table if possible. We learned
a lot about applied computer vision in a real-world
product, as well as integration between multiple
sensors and devices.

SCAN ME to view our
website!

the accuracy of the ball detections and the trajectory predictions. We found that our ball
detection accuracy performed very well, with an average error of 0.05in. Ball detections
also performed well in potential edge cases where balls are placed adjacent to each
other or nearby the table walls and pockets. The performance of our trajectory prediction
accuracy was very high, especially for regular shots (aiming target ball to pocket).
Though there were more unsuccessful shots for bank shots (bouncing target ball of a
wall and into pocket).

Test Results

Test Metric Testing Methodology Target Measured Performance
Ball Project ball detection. Detect pool balls 0.05in average error
Detection |Measure distance between within 0.2in from sample:
Accuracy |real and projected balls. actual ball location |5 frames, 15 balls per frame
Trajectory |Success Ratio 95% of shots must |Normal shots: 100%
Prediction Project predicted trajectory on successfully pocket |Kiss shots:
Accuracy | e taple. Take 20 shots to hit |2 Pall Bank shots: 75%

a target ball to the pocket by

following our trajectory ;3’"2’5: "

guidance. Determine 0 shots per shot type

percentage of successful

shots.

Angle Deviation: Project the | Predicted trajectory |1.13° error on average

predicted trajectory on table. |must be within 2° of

Take 20 shots to hit a target |actual trajectory sample: 20 shots

ball to the wall. Measure

average angle deviation from

actual to projected coordinate

of the wall collision.
End-to-end | Time the code execution from [Achieve per-frame |22ms on average
Latency the point when it receives a processing time of

particular frame to the point |at most 100ms sample: 10 runs

when it outputs a predicted

trajectory based on that

frame.

