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Abstract— This is an eight-ball pool training system for 

beginners and professionals alike by helping players build 
intuition about the trajectory of their hits. Our system processes 
the state of the pool table and displays predicted trajectories in 
real-time to the user as they move their cue stick. Currently, the 
state of the art are attachments to the cue stick for assisting aim or 
controlling the player’s force. Our system allows one to simulate a 
real game of pool as closely as possible with minimal augmentation 
to the cue stick. Furthermore, our system offers far better training 
by displaying all possible trajectories. 
 

Index Terms—billiards, eight-ball, pool, trajectory prediction, 
computer vision 

I. INTRODUCTION 

UR project, CueTips, is an assistive system that helps 
beginner and advanced Eight-Ball Pool players improve 

their skills. Eight ball pool is a difficult game to learn, primarily 
due to the high degree of accuracy needed to make a successful 
shot to pocket a ball. Very slight differences in the angle of the 
player’s aim can have a profound impact on the trajectory of the 
ball they hit. Without expert guidance to correct players’ aim, 
it can take a very long time to develop an intuition for where 
the ball will go depending on the player’s aim. While it is 
possible for players to hire coaches to improve their aim, doing 
so would not be feasible for the average player who wants to 
play recreationally. 

Our product is an assistive feedback system that provides 
real-time predicted trajectories based on the player’s cue stick 
position. As the player moves their cue stick around, they will 
be able to see a projection line showing them the direction and 
angle in which the ball they are aiming at will go. This will help 
players know whether they will be able to pocket the ball and 
subsequently give them insight on the correct aim location. 

A competition of our project is a similar project that was done 
in the Spring 2023 semester for Carnegie Mellon University’s 
(CMU) Electrical and Computer Engineering (ECE) Capstone 
course. This project gave players a single suggestion on which 
ball to hit, and from which angle, based on the state of the balls 
on the pool table. The advantage of our project compared to this 
one is that our project will provide real-time feedback to users, 
which will better allow users to improve their intuition for 
aiming. If the user’s aim is off, they will be able to notice that 
from our trajectory feedback, which will allow them to correct 
themselves. This is more beneficial in helping users learn as it 
provides more personalized feedback based on the user’s 
movements of the cue stick. Furthermore, our system gives  

 
users the flexibility to choose which ball to hit, which would 
allow them to improve their decision-making skills in a game 
of pool as they get to observe the trajectories of the different 
balls on the table. Our physics model also has some features 
that differ from the prior project. Firstly, our system will allow 
users to practice bank shots since we will also display the 
trajectory of the cue ball if it is aimed towards the walls of the 
table. In addition, our physics model will not only show the 
trajectory of the target ball, but also show the trajectory of the 
cue ball’s deflection due to its collision with the target ball. This 
allows users to get an idea of where the cue ball will land when 
it comes back to rest. 
 

II. USE-CASE REQUIREMENTS 

The primary goal of our project is to serve as a tool that 
effectively helps users learn to play pool.  

One of the features required to facilitate fast learning is to 
ensure that our system’s performance is fast. We want our 
system to be able to react instantaneously to user movement as 
they play the game. Hence, we must be able to achieve a latency 
of at most 100ms. This latency is measured from the time the 
user shifts their position to the time that our system provides 
and updates a projection for the trajectory of the user’s aim. We 
chose a threshold of 100ms as research has shown that this 
duration is the threshold required to create the illusion of an 
instantaneous response [1]. This immediate feedback is not only 
important in creating a responsive user interface, but also 
crucial in helping users learn instantly from their mistakes if 
their aim is not accurate. 

Accuracy is another crucial use case requirement for our 
project. In order to effectively help our users learn how to 
improve their aim when playing pool, we must be able to 
provide them with accurate predictions on the ball trajectory 
based on their cue stick’s position. We aim to have our 
predictions accurate with at most 2 degrees of error. 2 degrees 
error is the measured angle between the line of our predicted 
trajectory, and the line of the ball’s actual path after it collides 
with the cue ball. The reason we select an error of 2 degrees is 
because the pockets are of a width that would allow a ball to 
still fall in even if it were 2 degrees to the left or right of its 
predicted trajectory [2]. This is assuming that the trajectory of 
the ball was directed to the center of the pocket. 

To facilitate the high accuracy our model aims for, we must 
also have accurate object detection models. We aim to be able 
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to detect ball position within 0.2 inches of their actual position. 
If our model’s perceived location of a ball skews too far away 
from the ball’s true position, this would cause inaccuracies in 
our physics calculations that drive the trajectory prediction. 

CueTips addresses some crucial aspects of public health, 
safety, and welfare by promoting mental well-being, physical 
activity, and cognitive health. Our product aims to alleviate the 
stress associated with the learning process of pool, fostering a 
positive and supportive environment for individuals to learn 
pool. Furthermore, the interactive nature of the game serves as 
a form of recreational exercise, allowing individuals to move 
away from their sedentary lifestyles. In addition, it could also 
be useful for older individuals to engage in activities that 
stimulate cognitive functions and maintain mental acuity.  

In terms of social factors, our product aims to be accessible 
and reach a wide range of users. This motivates our choice of 
outputting visual trajectory predictions, as it would inherently 
be community-building by serving as a massive social interest 
in many parts of the world. By being accessible to everyone, 
CueTips creates room for substantial economic potential. We 
could strategically partner with entertainment venues, gaming 
centers, and sports bars to target the demographic who are not 
only passionate about the game of pool, but also seeking 
interactive and technologically advanced gaming experiences. 
Through upfront hardware sales, subscription models, and 
potential collaborations with game developers for exclusive 
content, there is a lot of potential for our product to contribute 
significantly to the economy. 

 

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 

Our project consists of several physical components. It 
consists of a pool table mounted onto a shelf to house a camera 
for object detection and a projector to project recommended 
trajectories, an inertial measurement unit integrated into a cue 
stick to collect user cue stick data on position and orientation, 
and a web application to display the user’s shot and provide 
personalized recommendations.  

 

A. Physical Structure 

The physical structure of our set-up consists of a RayChee 
pool table mounted onto a rack. The pool table is directly 
mounted onto one of the racks of the frame. This structure is 
48 inches wide, 24 inches long, and 72 inches tall. There will 
also be a second rack that is 48 inches above the pool table. 
After some testing and calibration, we determined that the 
optimal distance from the projector and the camera to achieve 
the best field of view is when they are both placed 44 inches 
above the pool table. We raised that by four inches in order to 
ensure some additional leeway in case we needed a greater 
field of view when performing our actual detection model. 

 
 

 
Fig. 1. Pool table incorporated into a shelving unit, mounted on a rack 

B. Camera and Computer Vision 

The camera we are using to perform the computer vision 
model is the Logitech C922 Pro Stream 1080p webcam. We 
will cut out the appropriate portion of our plywood rack and 
mount the camera nicely into the cut-out, in order to achieve a 
good image capture of the table. The camera will be connected 
directly to an embedded system that we will use for this project, 
the NVIDIA Jetson Nano via a USB Cable. The camera gives a 
78-degree Field of View, meaning that if we want to get a full 
capture of the pool table, we will at least have to mount it 33 
inches above the pool table.  

The NVIDIA Jetson Nano will run the backend computer 
vision model subsystem. This will include the detection of the 
current state of balls on the table, detecting which ball is the cue 
ball, the cue stick, pockets, and walls. This information will 
then be used as input to our physics model, which we will use 
to predict the trajectory of the shot the user will take. Fig. 2 
shows the full process of what happens from the moment the 
camera inputs are detected, to the trajectory calculations, and 
finally to the projection of the predicted trajectory. 
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Fig. 2. Block diagram of full network architecture 

C. Physics Model 

There are five key outputs of the computer vision model that 
we will use: An array that contains the coordinates of the 
centers and radius of all colored balls (segregated into solids 
and stripes), the center and radius of the cue ball, the location 
of the cue stick, an array of line equations of the four walls, and 
an array that contains the coordinates of the six pockets. Our 
physics subsystem contains two main parts, a function to 
calculate reflections against the walls, and a subsystem that 

calculates the predicted trajectory.  
In order to implement the wall reflections and the trajectory 

predictions, we first identify the locations of the cue ball’s 
center and two points on the cue stick. Whenever a user aims at 
a cue ball, these three points should be collinear. We will then 
extrapolate a line across these three points to estimate the 
trajectory that the cue ball will go. As we extend this line 
further, we will meet either one of the three cases: There is no 
obstacle, there is a wall that intersects the line, or there is a ball 
that intersects the line. After taking into account all of these, we 
will output the final predicted trajectory that the cue ball will 
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move in as well as where the balls they collide with will end up 
in. This predicted trajectory line will be sent as an input to our 
projector subsystem. This entire subsystem will also be run on 
the NVIDIA Jetson Nano. 
 
 

D. Projector 

The projector we are using for this project is the VOPLLS 
1080P Full HD Supported Video Projector. This projector takes 
in the coordinates of the predicted trajectory line and plots it as 
a white line on a black background. This system will also make 
sure that if the line coincides with any of the pockets, it will 
stop the trajectory of the line to indicate that the ball will go in. 
The projector will also be connected to the NVIDIA Jetson 
Nano via HDMI Cable. 

E. Cue Stick 

We will also mount a system onto the cue stick in order to 
obtain acceleration, magnetic orientation, and angular velocity. 
The proposed design of this system is depicted in Fig. 3. There 
will be three pieces of hardware mounted onto the cue stick. In 
order to sense the acceleration, magnetic orientation, and 
angular velocity, we will use a Bosch BNO055 9-Degree of 
Freedom (DoF) Inertial Measurement Unit (IMU). We will be 
using the ESP-WROOM-32 Development Board as our 
Microcontroller, which also has the ability to support 2.4GHz 
Dual-Mode Wi-Fi and Bluetooth. This is compatible with the 
Arduino IDE, which will allow us to interface with our IMU, 
and allows us to communicate with the NVIDIA Jetson Nano 
via Wi-Fi. The purpose of this is to eventually provide 
recommendations to the pool player to improve their shot. We 
will also play back the user’s shot and indicate the velocity and 
spin of the user’s shot. 
 

 
Fig. 3. System mounted onto the cue stick in order to obtain acceleration, 

magnetic orientation, and angular velocity 

F. Web Application 

Our web application provides a nice user interface to 
livestream the video output and displays the ball trajectories 
onto the table. The application will also display essential 
parameters such as user-applied force, the orientation of the cue 
stick, and mild spin dynamics depending on where the ball 
ended up. A distinctive feature of this web application lies in 
the provision of actionable feedback, promptly communicating 
errors to users and offering strategic insights for improvement 
based on individual playstyles. We will use React to create our 
front-end web application. For the backend, we will deploy a 
Flask server to receive video input from the NVIDIA Jetson 
Nano, and de-serialize the input from the IMU. 

 

IV. DESIGN REQUIREMENTS 

Our design requirements for CueTips are a translation of our 
use case requirements defined in section II. 

A. Computer Vision Subsystem 

The CV subsystem must be able to accurately detect the 
objects on the pool table. We aim for a maximum ball detection 
error of no more than 0.2 inches, which is measured from the 
center of the ball detection to the center of the ball’s actual 
location. Furthermore, we aim to detect the balls on the table 
95% of the time. To ensure as accurate readings as possible, we 
plan to perform predictions on 10 frames and correlate between 
them to figure out where the balls are. This is crucial as this data 
is used by our physics model to calculate the trajectories of a 
ball depending on the cue stick’s aim. Furthermore, we must 
also ensure that our game environment has constant visual and 
lighting conditions, to ensure the most consistent detections. To 
achieve this, we will project the ball detections, and cue stick 
detections onto the table, and physically measure the errors 
between the detection and actual. 

B. Computer Vision Subsystem 

We aim to provide feedback to the user with a latency of at 
most 100ms. This latency is measured from the time the state 
of the game changes (the user repositions the cue stick) to the 
time that our system outputs a projection onto the table. In order 
to achieve this, we plan to pipeline our system to maximize the 
number of frames we can process at a time. We will parallelize 
the different phases in our system — retrieving data from the 
camera, performing object detection on the frames, and 
executing physics calculations on the processed frames. This 
means that while the physics model is performing its 
calculations on a certain frame, the CV model is already 
performing object detections on the next frame. Furthermore, 
we plan to make use of existing NumPy vectorization 
techniques for more efficient computation on NumPy arrays 
and data sequences. 

C. Projection subsystem 

The projector subsystem is created so that there is an intuitive 
user interface so that it is easy for the user to follow the 
feedback provided by our system. We will use a projector 
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mounted overhead to display the ball trajectories predicted by 
our model onto the pool table. This allows the users to clearly 
see the trajectories as lines which they can then use to inform 
them of whether a ball will successfully go into the pocket. We 
must also ensure that the output trajectory is no more than 2 
degrees from the trajectory executed by the user in real life. This 
means that the actual path the target ball follows after it is hit 
should be no more than 2 degrees to the left or right of the 
predicted trajectory. 

V. DESIGN TRADE STUDIES 

In our system, we made four primary tradeoff decisions: two 
software-related tradeoffs, and two hardware-related tradeoffs. 
We discuss each in more detail below. 

A. Power vs Efficiency for Latency Requirements 

    Our first large hardware-related tradeoff is deciding on what 
hardware the computer vision model and physics engine would 
be run on. Originally, we wanted to run all our software systems 
on an FPGA for efficiency, as well as solving a challenging 
optimization problem. However, we quickly realized that 
running the bulk of all our software on an FPGA deviates from 
the actual purpose of the project; it is fundamentally a technical 
flair that does not add additional functionality. It added no real 
value to our use case requirements and the product itself, and 
from a real-world perspective it makes more sense for users to 
be able to use their own computers to be able to run the 
software. We decided a few weeks into the project that running 
our software on an FPGA would be a nice-to-have, but it pulled 
a lot of effort away from writing the actual software that would 
do video processing, physics computations. Further, after some 
initial testing with OpenCV on our laptops, we realized that 
putting this software on an FPGA would fail to meet the latency 
requirement. Running simple algorithms like edge and contour 
detection took up ~20ms on Apple’s M1 MacBook Pro, and 
FPGAs run at orders of magnitude slower clock speed. We did 
not want to put ourselves in a situation trying to optimize every 
line of code in order to meet the latency requirement if 
developing on an FPGA. Furthermore, there were a number of 
advantages to developing our software in Python versus C/C++, 
which we would have used if developing on the FPGA. Our 
team has far more experience working with Python than C/C++; 
using C/C++ would have resulted in more wasted time 
familiarizing ourselves with the language and its subtle 
intricacies. Additionally, Python has much better support in 
terms of open source libraries to build upon. It also allows us to 
test and develop software much faster due to its ease of use. For 
all the reasons above, we chose to use a laptop to run our 
computer vision, physics engine, and trajectory prediction 
software. 

B. Camera and projector mount construction 

One of the main issues that we and other students in the past 
have run into building a pool-based project is constructing a 
rigid mount for a camera/projector. This was a well-
documented issue with a past ECE capstone project - “8-ball 
lifeguard”. Their group’s solution was to build a wooden, LED-

studded mount attached to the pool table to hold both their 
projector and camera. After discussion with both this group and 
other capstone faculty, we learned that they had significant 
issues constructing the mount and having the camera and 
projector remain still. After seeing the issues multiple other 
groups encountered, we decided to sidestep construction of the 
mount altogether and opted to buy the mount. We settled on a 
large, metal shelf for the mount which perfectly fit around the 
pool table. This allowed us to attach both the camera and 
projector to the top with minimal extra effort. The crucial 
tradeoff we made here was using a significant amount of our 
budget on the shelf versus spending time to construct a custom 
solution. We opted for this approach because it seemed that for 
past teams, multiple weeks were spent trying to get the mount 
to work, time which could be better spent on other areas of the 
project 

C. Zero machine learning for object detection 

    The first large software tradeoff we made was opting for 
zero machine learning in our computer vision/object detection 
system. This decision was primarily made keeping in mind the 
latency use case requirement set having end-to-end prediction 
within 100ms. Our group did some initial testing with multiple 
machine learning-based object detection models (Region-
Based Convolutional Neural Network (R-CNN), YOLO, etc.) 
and measured the time it took for each frame to be processed. 
We realized that these machine learning models were at least 
an order of magnitude slower than without. Thus, in order to 
meet our latency requirement, we abandoned using machine 
learning - at least for the computer vision/object detection 
aspect of this project. The tradeoff was that developing the 
object detection system became a lot more complex. Machine 
learning models like YOLO for object detection are very 
straightforward to use and are full, out-of-the-box solutions. 
However, opting for a non-machine learning approach meant 
that we had to manually detect cue balls, sticks, and use clever 
ways to differentiate between objects (e.g. color, shape, size). 
This also means that our environment must be well-lit and as 
consistent as possible. 

D. Building the physics engine 

The other large software tradeoff we made was concerning 
the physics engine. From the beginning, our group tried to build 
the physics engine by extending existing work, papers, and 
other open-source libraries. However, after trying multiple 
open-source libraries and attempting to adapt various pool 
game engines to our use case, we were faced with a decision: 
keep attempting to adapt existing work or build our own engine 
from scratch. After a few weeks of unsuccessfully trying to 
adapt existing work, we built our own physics engine and 
prediction systems from scratch. The main reason for this 
decision was because many existing pool physics engines were 
used for pool video games or were far too complicated for our 
needs. The bulk of our physics engine lines in the trajectory 
prediction, which is more geometry heavy. Most of the physics 
engines currently out there take into account other factors like 
mass, coefficient of friction, spin, among other things. As such, 
they were unnecessarily cumbersome, and it took more effort to 
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integrate an existing physics engine into our system compared 
to writing one from scratch. It took us around 1-2 weeks to write 
a custom physics engine from scratch, far less time than opting 
for a third-party solution. 

VI. SYSTEM IMPLEMENTATION 

The trajectory projection system consists of the following 
systems: computer vision system, cue stick system, physics 
engine, projector system, and web application. 

A. Computer Vision System 

For our computer vision system, we relied heavily on the 
OpenCV library and utilized zero machine learning. The 
computer vision system consists of five components: ball 
detection, cue ball detection, pocket detection, wall detection, 
and cue stick detection. Each of these components is 
modularized as a Python class for ease-of-use when integrating 
all together. The ball detection module (class BallDetection) is 
initialized with the filename, which tells the module where to 
look for to load the frame in. The most important function in 
the BallDetection class is getBalls(). This loads the image from 
the specified file path and runs cv2.HoughCircles on the image; 
HoughCircles is run with a minimum and maximum radius of 
the desired object. This value was calculated by hand based on 
the actual radius of the balls as seen in each frame from the 
mounted camera. Then, if any circles are detected, they are 
drawn onto the original image. This image is then outputted 
from the function. For cue ball detection, we differentiate it 
specially from the other cue balls based on color. After multiple 
tests, we found a range of acceptable RGB values that identifies 
the cue ball deterministically. The pocket detection module 
(class PocketDetection) is structured similarly to the 
BallDetection class. It requires the file path of the image to be 
processed and has a similarly named getPockets function which 
is the centerpiece of the class. Again, the getPockets() function 
runs HoughCircles with custom parameters for the minimum 
and maximum radius of the pockets. By specifying the range of 
radii for both balls and pockets, we are able to differentiate 
between the two objects despite them both being circular from 
top-down. Lastly, there is the wall detection module (class 
WallDetection) which is responsible for identifying the pool 
table walls. It is similarly structured to the other two modules, 
and the main function used is getWalls(). First, the image is 
loaded in via a provided file path to the class. It is run through 
a combination of edge detection (cv2.Canny) and contour 
detection (cv2.findContours), and these contours are the 
overlay onto a black background with the same dimensions. 
Then, this is run through cv2.HoughLines to obtain a list of the 
lines detected. To classify the lines as either the top or bottom 
walls versus the left or right walls of the pool table, some clever 
heuristics are used. Since the pool table is in the shape of a 
rectangle, the left/right walls should be closer to the center of 
the image (perpendicular distance) compared to the top/bottom 
walls. Additionally, the angles of the walls should be either 90 
degrees or 0 degrees as well (normalized). These two heuristics 
are combined to classify the wall as horizontal or vertical lines. 
The four lines are then converted from polar coordinates, the 
format HoughLines returns, into rectangular. Lastly, for the cue 
stick detection module (class CueStickDetection), this draws 

primarily upon contour detection to identify the cue stick. By 
making sure we identify the balls, wall edges, and pockets 
correctly, we are able to disqualify these objects when running 
contour detection on the frame. The main function in this 
module is getCueStick() which returns the coordinates of 
roughly the tip of the cue stick. This system purely consists of 
software components. 

B. Cue Stick & IMU System 

The cue stick/IMU system consists of both hardware and 
software components. For hardware components, the cue stick 
has an Adafruit BNO055 9DOF IMU and an ESP-WROOM-32 
2.4 GHz Wi-Fi microcontroller processor attached to it. The 
data we are primarily concerned with is both the gyroscopic 
data (roll, pitch, heave) and the accelerometer data. The ESP-
32 is programmed with Arduino code and polls data from the 
IMU. We use the getVector function to fetch data from both 
VECTOR_GYROSCOPE and 
VECTOR_ACCELEROMETER. The 
VECTOR_GYROSCOPE consists of three floats representing 
roll, pitch, and heave respectively in units of degrees. The 
VECTOR_ACCELEROMETER is just the acceleration 
measured in m/s^2. To send this wirelessly to the Jetson Nano 
running the physics engine, computer vision system, we 
initialize a WIFI Server on port 80 and connect. We then write 
bytes to the connected client on the other end (which is the CV, 
physics engine system) in the format of an HTTP request 
sending this data. 

C. Physics Engine 

The physics engine was written using OpenCV and NumPy, 
and is implemented as a Python class (class Physics). The key 
functions in our physics engine are find_new_point_on_line, 
calculate_circle_and_cue, calculate_trajectory. 
find_new_point_on_line computes the point between two balls 
where a collision occurs. We determined that a collision only 
occurs if the distance between the centers of the cue ball and 
other ball is roughly ~2R (R is radius of one of the pool balls, 
we assume them identical). The trajectory of the cue ball is 
represented as a line, and the other balls on the pool table are 
passed in as arguments. Each ball is checked against the cue 
ball trajectory to check for collisions, and if there is not a 
collision, we move on. If a collision occurs, however, then we 
solve equations to find two possible intersection points by 
solving a quadratic. The closest point is taken. For 
calculate_circle_and_cue, this function is responsible for 
identifying the cue stick and balls on the pool table. It calls 
cv2.minEnclosingCircle to find circles that represent the balls 
and distinguishes the cue stick based on its radius size. This 
function is vital in representing the state of the pool table as 
concrete data in the form of two dictionaries: one containing 
data for the cue stick, and another for the centers and radii for 
the balls on the table. The last function, calculate_trajectory, 
brings the other functions together. Given a pool table frame, it 
calls calculate_circle_and_cue to process the image into a more 
code-friendly format (Python dictionary). Then, 
find_new_point_on_line is called to find the collision point (if 
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any) between the cue ball and some other ball. We take this data 
and do some mathematical computation to figure out the 
resultant vectors of the cue ball as well as the ball it collides 
with. These vectors are then returned for the projector module 
to display. 

D. Projector System 

The projector system is the final subsystem in the trajectory 
prediction system. It takes in the original frame processed as 
well as a Python dictionary containing a list of vectors to 
display. These vectors are the predicted trajectories after the cue 
ball collides with the target. It first creates an equal-dimension 
black background (calling np.zeros_like), then loops through 
the list of vectors and plots them as white lines upon the black 
background. The maximum contrast is a decision we made to 
ensure that the lines are shown on the pool table even in well-
lit environments. 

E. Web application 

The web application currently allows the user to self-
calibrate their strike with respect to both force and orientation 
of the pool stick, helping them hold it correctly. The web 
application is built with React and Flask (Python). A small 
Flask server is set up using SqLite for a small, lightweight 
database and exposes two endpoints “/accel”, “/gyro” that 
accept POST requests, and an endpoint “/update” that accepts 
GET requests. The server receives both accelerometer and 
gyroscope data on the /accel and /gyro endpoints respectively. 
The frontend polls the /update endpoint every ~200ms and 
receives the gyroscope and accelerometer data captured in that 
time period. It then displays to the user whether they are holding 
the stick correctly, and how much force was being applied to 
the cue stick. Because the poll time is frequent, the updates the 
user sees on the web application appear near instantaneous. The 
gyroscope data is also displayed back to the user (roll, pitch, 
and heave), and if the stick is not level (primarily concerned 
with pitch), then it will guide the user with directional arrows 
on how to reposition the cue stick. 

F. Public health, Safety, Welfare Considerations 

In our system implementation, we considered a number of 
public health, safety, and welfare considerations. For welfare 
considerations, we wanted the prototyped system to balance 
both power-efficiency and welfare. As such, we opted for an 
NVIDIA Jetson Nano - a middle ground between a power-
inefficient computer and an inexpensive, yet less powerful 
FPGA. This also contributes to our consideration of 
environmental factors, as we wanted to minimize our carbon 
footprint by the technology stack our system would use. This 
meant moving away from computationally-heavy machine 
learning models, and opting for embedded processors and 
microcontrollers over heavier, heat-generating computers. The 
social considerations were built into how we implemented the 
system. For a good product experience, users want to see 
instantaneous feedback and interactivity. This is why we 
stressed the importance of keeping the end-to-end processing 
per frame to be under 100ms. If we had additional delay or 

relaxed this constraint too much, the usability of the product 
would be far less. Another big concern we had was with safety, 
especially that regarding the camera and projector mount. Since 
both objects are fairly heavy and are fixed well-above the table, 
it would be dangerous to construct our own camera/projector 
mount. If the structure is unstable, the debris, projector, and 
camera could injure players using the system. As such, we 
opted to purchase an existing, sturdy metal mount that can 
support far more weight than the projector and camera to ensure 
safety of our system. 

VII. TEST, VERIFICATION AND VALIDATION 

Our project will primarily employ three methods that 
measure three metrics to evaluate the design implementation: 
1) latency, 2) trajectory prediction accuracy, 3) object detection 
accuracy. 

For testing the latency, we plan on timing the code execution 
for each frame programmatically. As soon as a frame comes in 
from the camera via OpenCV, we will include with the frame 
the marked input time as additional metadata. When the frame 
finishes processing, we will again take the time when the 
predictions are generated and find the difference (in 
milliseconds). Since the software system is entirely contained 
within the laptop, we do not need to account for transmission 
latency via Wi-Fi. Our use case requirement regarding latency 
was that end-to-end processing would be within 100ms. By 
ensuring that each individual frame takes less than 100ms to be 
processed through the entire software pipeline, we ensure that 
the user perceives changes to the projected predictions within 
100ms which has the appearance of the predictions being 
instantaneous.  

For testing the trajectory prediction accuracy, we plan to 
manually verify this. The testing plan is as follows: an 
experienced pool player will take 10 shots straight-on, and we 
will use the mounted camera to record the shots. Then, we will 
manually look through the footage and trace out the actual 
trajectory of each ball struck and compare it to the predicted 
trajectory. The angle between these two trajectories will be the 
deviation. Angle deviation from all 10 shots will be averaged, 
and this will be our final value to compare against the use-case 
specification of <= 2 degrees error. In order to account for error 
in the player’s technique and accuracy, we take the average 
deviation over multiple iterations to smoothen out this error 
from the measurement. Thus, the test captures the actual 
trajectory deviation with fair accuracy and will validate the use-
case requirement of having less than 2 degrees of angle 
deviation error. 

For object detection accuracy, the test we have planned will 
measure the offset between the projected object and the real 
object on the pool table. Since the entire image will be scaled 
the same, we will use projections of the pool balls in order to 
test the object detection accuracy. The test will be conducted as 
follows: we will set up the pool table in some arbitrary 
configuration, then take in a frame and run our computer vision 
system on it. Then, we will project the modified image with 
objects detected over the actual pool table. We will measure the 
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distance between the real pool balls and projected pool balls 
(relative to each ball’s center) by taking a picture and measuring 
the difference manually. This will ensure that our object 
detection model is accurate and correctly captures the state of 
the pool table. 

  

VIII. PROJECT MANAGEMENT 

A. Schedule 

Our schedule for the project is depicted in Fig. 4 on page 11 
of this report. The blocks in blue represent the sections that are 
being done by Andrew, green represents the sections being 
done by Tjun Jet, and the red block represents the sections being 
done by Debrina. The yellow blocks indicate the blocks that 
will be done by everyone. Our schedule includes weekly 
milestones and allows us to keep track of what has been done, 
what is currently in progress, and what has not been completed. 

B. Team Member Responsibilities 

Debrina’s primary responsibility is the Computer Vision 
subsystem. She is responsible for implementing object 
detection and segmentation algorithms. The objects that will 
have to be clearly segmented are the array of pool balls on the 
table, distinguishing between solid and stripes, cue pockets, cue 
stick, and the four walls surrounding the table. She will have to 
ensure the detections are accurate enough to meet our use case 
requirements. She is also in charge of the camera that we buy, 
and making sure the specifications are enough to perform the 
computer vision algorithms.  

Tjun Jet’s role is to work on the physics engine. The physics 
engine takes in the outputs from Debrina’s computer vision 
model and calculates the trajectory that the cue ball will follow 
if it’s being hit in a certain manner. He will focus on two main 
detection models - wall detection and ball collision mechanics. 
This means that he must take into account the reflections of the 
wall, and the mechanics when the cue ball collides with the ball. 
He then creates a single line as an output to the projector 
subsystem.  

Andrew will play a major role in the projector subsystem and 
the IMU subsystem. He will take the output from Tjun Jet’s 
physics model as input to his projector subsystem. Then, he will 
put it into a relevant frame to project the line onto the table. The 
crucial role he must play is ensuring that this line is accurate 
and well calibrated to the table, making any adjustments 
necessary if needed. He will also be responsible for taking the 
IMU data and streaming it onto our web application, to provide 
recommendations for users in terms of their shot force, angle, 
and spin. 

C. Bill of Materials and Budget 

Our bill of materials and budget can be found in Table I on 
page 10 of this report. 

D. Risk Mitigation Plans 

A difficult task in our project is ensuring that our model 
meets our use-case requirements. One risk we might encounter 
is that the latency of our detection becomes very high, making 

the user interface not as good as we want it to be, as the output 
trajectories will be too slow. Furthermore, we might also face a 
problem where a small error in angle and trajectory could lead 
to a significant error in execution of the actual pool shot. For 
object detection inaccuracies and/or large latencies, we aim to 
rely more heavily on April Tags to mitigate these issues. For 
instance, if the pool table cue detection is inaccurate or it takes 
too long to identify it, we can attach April Tags to the cue stick. 
Then, we can automatically detect the tip of the cue stick and 
save a lot of computation time by replacing our otherwise 
complex CV algorithms for cue stick detection. Additionally, 
we can mitigate latency issues by increasing the power of our 
hardware. If the processing time end-to-end significantly 
exceeds 100ms, we can opt to use a computer instead of the 
Jetson Nano to speed up the prediction process. Then, if the 
latency between wireless devices is too high, we can mitigate 
this by switching to wired connections instead of wireless. 

IX. RELATED WORK 

A project that is similar to ours was done by Team C7: 8-Ball 
Lifeguard during the Spring 2023 semester for CMU’s ECE 
Capstone course [3]. This project’s use case was also to help 
their users learn to play pool. The project gave players a single 
suggestion on which ball to hit, and from which angle, based on 
the state of the balls on the pool table. This recommendation 
would be projected onto the pool table, and the users were 
expected to follow the suggested hit. While this project has 
similar functionality to ours, we prioritize the interactive aspect 
of our proposed project as we believe it is more effective in 
helping users improve in eight-ball pool. 

X. SUMMARY 

Our project is an assistive tool that helps users learn eight-
ball pool more effectively, without the need of others’ 
instruction. Our system guides users who are playing a game of 
pool by showing users a projection of the trajectories of the 
target ball they are aiming at. This trajectory is based on the 
orientation with which the user is holding the cue stick. The 
trajectories, which are projected onto the table using a projector 
that is mounted overhead, will allow the user to see whether 
their current aim would allow them to successfully pocket a 
target ball. Our project emphasizes a responsive user interface, 
so as the user moves the cue stick around, the user will be able 
to see the trajectories readjust accordingly. An IMU attachment 
on the pool cue would provide further feedback to the user on 
the velocity and spin of their hit. Our system uses computer 
vision models to detect the state of the pool table and processes 
these frames using a physics model that we have developed 
ourselves. Some challenges that may emerge in the 
implementation of our design is ensuring the accuracy of our 
predicted trajectories and reaching a target latency of 100ms. 
However, we have created a plan to tackle these risks if needed 
by using April Tags to provide more accurate object detection 
and using a computer to run our models with a lower latency.  
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GLOSSARY OF ACRONYMS. 

CV – Computer Vision 
FPGA – Field Programmable Gate Array 
HTML – Hypertext Markup Language 
IDE – Integrated Development Environment 
IMU – Inertial Measurement Unit  
USB -- Universal Serial Bus 
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TABLE II.  BILL OF MATERIALS 

Item Part Name Manufacturer Quantity Cost @ Total 

Pool Table RayChee 
Portable Mini 
Billiard Table 

RayChee 1 $129.99 $129.99 

Rack Muscle Rack 
5-Shelf Steel 
Freestanding 

Shelving Unit, 
Black 

Muscle Rack 1 $109.00 $109.00 

WiFi-enabled 
Microcontroller 

ESP-
WROOM-32 
ESP32 ESP-

32S 
Development 

Board 

AITRIP 1 $15.99 $15.99 

Inertial Measurement 
Unit  

Adafruit 9-
DOF Absolute 

Orientation 
IMU Fusion 
Breakout - 
BNO055 

Bosch 1 $34.95 $34.95 

Embedded Processor NVIDIA 
Jetson Nano 

NVIDIA 1 $0 $0 

Laptop Macbook Air  Apple 1 $0 $0 

Camera Logitech C922 
Pro Stream 

Logitech 1 $0 $0 

Battery 9V Batteries Amazon Basics 1 $0 $0 

Projector VOPLLS 
1080P Full 
HD Mini 
Projector 

VOPLLS 1 $49.99 $49.99 

LED Light Strips Tenmiro 
65.6ft Led 

Strip Lights 

Tenmiro 1 $9.99 $9.99 

Grand Total $349.91 
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FIG. 4.  PROJECT SCHEDULE 

 

  


