
1
18-500 Design Project Report: CueTips 03/01/2024

Abstract— This is an eight-ball pool training system for

beginners and professionals alike by helping players build
intuition about the trajectory of their hits. Our system processes
the state of the pool table and displays predicted trajectories in
real-time to the user as they move their cue stick. Currently, the
state of the art are attachments to the cue stick for assisting aim or
controlling the player’s force. Our system allows one to simulate a
real game of pool as closely as possible with minimal augmentation
to the cue stick. Furthermore, our system offers far better training
by displaying all possible trajectories.

Index Terms—billiards, eight-ball, pool, trajectory prediction,
computer vision

I. INTRODUCTION

UR project, CueTips, is an assistive system that helps
beginner and advanced Eight-Ball Pool players improve

their skills. Eight ball pool is a difficult game to learn, primarily
due to the high degree of accuracy needed to make a successful
shot to pocket a ball. Very slight differences in the angle of the
player’s aim can have a profound impact on the trajectory of the
ball they hit. Without expert guidance to correct players’ aim,
it can take a very long time to develop an intuition for where
the ball will go depending on the player’s aim. While it is
possible for players to hire coaches to improve their aim, doing
so would not be feasible for the average player who wants to
play recreationally.

Our product is an assistive feedback system that provides
real-time predicted trajectories based on the player’s cue stick
position. As the player moves their cue stick around, they will
be able to see a projection line showing them the direction and
angle in which the ball they are aiming at will go. This will help
players know whether they will be able to pocket the ball and
subsequently give them insight on the correct aim location.

A competition of our project is a similar project that was done
in the Spring 2023 semester for Carnegie Mellon University’s
(CMU) Electrical and Computer Engineering (ECE) Capstone
course. This project gave players a single suggestion on which
ball to hit, and from which angle, based on the state of the balls
on the pool table. The advantage of our project compared to this
one is that our project will provide real-time feedback to users,
which will better allow users to improve their intuition for
aiming. If the user’s aim is off, they will be able to notice that
from our trajectory feedback, which will allow them to correct
themselves. This is more beneficial in helping users learn as it
provides more personalized feedback based on the user’s
movements of the cue stick. Furthermore, our system gives

users the flexibility to choose which ball to hit, which would
allow them to improve their decision-making skills in a game
of pool as they get to observe the trajectories of the different
balls on the table. Our physics model also has some features
that differ from the prior project. Firstly, our system will allow
users to practice bank shots since we will also display the
trajectory of the cue ball if it is aimed towards the walls of the
table. In addition, our physics model will not only show the
trajectory of the target ball, but also show the trajectory of the
cue ball’s deflection due to its collision with the target ball. This
allows users to get an idea of where the cue ball will land when
it comes back to rest.

II. USE-CASE REQUIREMENTS

The primary goal of our project is to serve as a tool that
effectively helps users learn to play pool.

One of the features required to facilitate fast learning is to
ensure that our system’s performance is fast. We want our
system to be able to react instantaneously to user movement as
they play the game. Hence, we must be able to achieve a latency
of at most 100ms. This latency is measured from the time the
user shifts their position to the time that our system provides
and updates a projection for the trajectory of the user’s aim. We
chose a threshold of 100ms as research has shown that this
duration is the threshold required to create the illusion of an
instantaneous response [1]. This immediate feedback is not only
important in creating a responsive user interface, but also
crucial in helping users learn instantly from their mistakes if
their aim is not accurate.

Accuracy is another crucial use case requirement for our
project. In order to effectively help our users learn how to
improve their aim when playing pool, we must be able to
provide them with accurate predictions on the ball trajectory
based on their cue stick’s position. We aim to have our
predictions accurate with at most 2 degrees of error. 2 degrees
error is the measured angle between the line of our predicted
trajectory, and the line of the ball’s actual path after it collides
with the cue ball. The reason we select an error of 2 degrees is
because the pockets are of a width that would allow a ball to
still fall in even if it were 2 degrees to the left or right of its
predicted trajectory [2]. This is assuming that the trajectory of
the ball was directed to the center of the pocket.

To facilitate the high accuracy our model aims for, we must
also have accurate object detection models. We aim to be able

C0: CueTips

Andrew Gao, Debrina Angelica, and Tjun Jet Ong

Department of Electrical and Computer Engineering, Carnegie Mellon University

O

2
18-500 Design Project Report: CueTips 03/01/2024

to detect ball position within 0.2 inches of their actual position.
If our model’s perceived location of a ball skews too far away
from the ball’s true position, this would cause inaccuracies in
our physics calculations that drive the trajectory prediction.

CueTips addresses some crucial aspects of public health,
safety, and welfare by promoting mental well-being, physical
activity, and cognitive health. Our product aims to alleviate the
stress associated with the learning process of pool, fostering a
positive and supportive environment for individuals to learn
pool. Furthermore, the interactive nature of the game serves as
a form of recreational exercise, allowing individuals to move
away from their sedentary lifestyles. In addition, it could also
be useful for older individuals to engage in activities that
stimulate cognitive functions and maintain mental acuity.

In terms of social factors, our product aims to be accessible
and reach a wide range of users. This motivates our choice of
outputting visual trajectory predictions, as it would inherently
be community-building by serving as a massive social interest
in many parts of the world. By being accessible to everyone,
CueTips creates room for substantial economic potential. We
could strategically partner with entertainment venues, gaming
centers, and sports bars to target the demographic who are not
only passionate about the game of pool, but also seeking
interactive and technologically advanced gaming experiences.
Through upfront hardware sales, subscription models, and
potential collaborations with game developers for exclusive
content, there is a lot of potential for our product to contribute
significantly to the economy.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

Our project consists of several physical components. It
consists of a pool table mounted onto a shelf to house a camera
for object detection and a projector to project recommended
trajectories, an inertial measurement unit integrated into a cue
stick to collect user cue stick data on position and orientation,
and a web application to display the user’s shot and provide
personalized recommendations.

A. Physical Structure

The physical structure of our set-up consists of a RayChee
pool table mounted onto a rack. The pool table is directly
mounted onto one of the racks of the frame. This structure is
48 inches wide, 24 inches long, and 72 inches tall. There will
also be a second rack that is 48 inches above the pool table.
After some testing and calibration, we determined that the
optimal distance from the projector and the camera to achieve
the best field of view is when they are both placed 44 inches
above the pool table. We raised that by four inches in order to
ensure some additional leeway in case we needed a greater
field of view when performing our actual detection model.

Fig. 1. Pool table incorporated into a shelving unit, mounted on a rack

B. Camera and Computer Vision

The camera we are using to perform the computer vision
model is the Logitech C922 Pro Stream 1080p webcam. We
will cut out the appropriate portion of our plywood rack and
mount the camera nicely into the cut-out, in order to achieve a
good image capture of the table. The camera will be connected
directly to an embedded system that we will use for this project,
the NVIDIA Jetson Nano via a USB Cable. The camera gives a
78-degree Field of View, meaning that if we want to get a full
capture of the pool table, we will at least have to mount it 33
inches above the pool table.

The NVIDIA Jetson Nano will run the backend computer
vision model subsystem. This will include the detection of the
current state of balls on the table, detecting which ball is the cue
ball, the cue stick, pockets, and walls. This information will
then be used as input to our physics model, which we will use
to predict the trajectory of the shot the user will take. Fig. 2
shows the full process of what happens from the moment the
camera inputs are detected, to the trajectory calculations, and
finally to the projection of the predicted trajectory.

3
18-500 Design Project Report: CueTips 03/01/2024

Fig. 2. Block diagram of full network architecture

C. Physics Model

There are five key outputs of the computer vision model that
we will use: An array that contains the coordinates of the
centers and radius of all colored balls (segregated into solids
and stripes), the center and radius of the cue ball, the location
of the cue stick, an array of line equations of the four walls, and
an array that contains the coordinates of the six pockets. Our
physics subsystem contains two main parts, a function to
calculate reflections against the walls, and a subsystem that

calculates the predicted trajectory.
In order to implement the wall reflections and the trajectory

predictions, we first identify the locations of the cue ball’s
center and two points on the cue stick. Whenever a user aims at
a cue ball, these three points should be collinear. We will then
extrapolate a line across these three points to estimate the
trajectory that the cue ball will go. As we extend this line
further, we will meet either one of the three cases: There is no
obstacle, there is a wall that intersects the line, or there is a ball
that intersects the line. After taking into account all of these, we
will output the final predicted trajectory that the cue ball will

4
18-500 Design Project Report: CueTips 03/01/2024

move in as well as where the balls they collide with will end up
in. This predicted trajectory line will be sent as an input to our
projector subsystem. This entire subsystem will also be run on
the NVIDIA Jetson Nano.

D. Projector

The projector we are using for this project is the VOPLLS
1080P Full HD Supported Video Projector. This projector takes
in the coordinates of the predicted trajectory line and plots it as
a white line on a black background. This system will also make
sure that if the line coincides with any of the pockets, it will
stop the trajectory of the line to indicate that the ball will go in.
The projector will also be connected to the NVIDIA Jetson
Nano via HDMI Cable.

E. Cue Stick

We will also mount a system onto the cue stick in order to
obtain acceleration, magnetic orientation, and angular velocity.
The proposed design of this system is depicted in Fig. 3. There
will be three pieces of hardware mounted onto the cue stick. In
order to sense the acceleration, magnetic orientation, and
angular velocity, we will use a Bosch BNO055 9-Degree of
Freedom (DoF) Inertial Measurement Unit (IMU). We will be
using the ESP-WROOM-32 Development Board as our
Microcontroller, which also has the ability to support 2.4GHz
Dual-Mode Wi-Fi and Bluetooth. This is compatible with the
Arduino IDE, which will allow us to interface with our IMU,
and allows us to communicate with the NVIDIA Jetson Nano
via Wi-Fi. The purpose of this is to eventually provide
recommendations to the pool player to improve their shot. We
will also play back the user’s shot and indicate the velocity and
spin of the user’s shot.

Fig. 3. System mounted onto the cue stick in order to obtain acceleration,

magnetic orientation, and angular velocity

F. Web Application

Our web application provides a nice user interface to
livestream the video output and displays the ball trajectories
onto the table. The application will also display essential
parameters such as user-applied force, the orientation of the cue
stick, and mild spin dynamics depending on where the ball
ended up. A distinctive feature of this web application lies in
the provision of actionable feedback, promptly communicating
errors to users and offering strategic insights for improvement
based on individual playstyles. We will use React to create our
front-end web application. For the backend, we will deploy a
Flask server to receive video input from the NVIDIA Jetson
Nano, and de-serialize the input from the IMU.

IV. DESIGN REQUIREMENTS

Our design requirements for CueTips are a translation of our
use case requirements defined in section II.

A. Computer Vision Subsystem

The CV subsystem must be able to accurately detect the
objects on the pool table. We aim for a maximum ball detection
error of no more than 0.2 inches, which is measured from the
center of the ball detection to the center of the ball’s actual
location. Furthermore, we aim to detect the balls on the table
95% of the time. To ensure as accurate readings as possible, we
plan to perform predictions on 10 frames and correlate between
them to figure out where the balls are. This is crucial as this data
is used by our physics model to calculate the trajectories of a
ball depending on the cue stick’s aim. Furthermore, we must
also ensure that our game environment has constant visual and
lighting conditions, to ensure the most consistent detections. To
achieve this, we will project the ball detections, and cue stick
detections onto the table, and physically measure the errors
between the detection and actual.

B. Computer Vision Subsystem

We aim to provide feedback to the user with a latency of at
most 100ms. This latency is measured from the time the state
of the game changes (the user repositions the cue stick) to the
time that our system outputs a projection onto the table. In order
to achieve this, we plan to pipeline our system to maximize the
number of frames we can process at a time. We will parallelize
the different phases in our system — retrieving data from the
camera, performing object detection on the frames, and
executing physics calculations on the processed frames. This
means that while the physics model is performing its
calculations on a certain frame, the CV model is already
performing object detections on the next frame. Furthermore,
we plan to make use of existing NumPy vectorization
techniques for more efficient computation on NumPy arrays
and data sequences.

C. Projection subsystem

The projector subsystem is created so that there is an intuitive
user interface so that it is easy for the user to follow the
feedback provided by our system. We will use a projector

5
18-500 Design Project Report: CueTips 03/01/2024

mounted overhead to display the ball trajectories predicted by
our model onto the pool table. This allows the users to clearly
see the trajectories as lines which they can then use to inform
them of whether a ball will successfully go into the pocket. We
must also ensure that the output trajectory is no more than 2
degrees from the trajectory executed by the user in real life. This
means that the actual path the target ball follows after it is hit
should be no more than 2 degrees to the left or right of the
predicted trajectory.

V. DESIGN TRADE STUDIES

In our system, we made four primary tradeoff decisions: two
software-related tradeoffs, and two hardware-related tradeoffs.
We discuss each in more detail below.

A. Power vs Efficiency for Latency Requirements

 Our first large hardware-related tradeoff is deciding on what
hardware the computer vision model and physics engine would
be run on. Originally, we wanted to run all our software systems
on an FPGA for efficiency, as well as solving a challenging
optimization problem. However, we quickly realized that
running the bulk of all our software on an FPGA deviates from
the actual purpose of the project; it is fundamentally a technical
flair that does not add additional functionality. It added no real
value to our use case requirements and the product itself, and
from a real-world perspective it makes more sense for users to
be able to use their own computers to be able to run the
software. We decided a few weeks into the project that running
our software on an FPGA would be a nice-to-have, but it pulled
a lot of effort away from writing the actual software that would
do video processing, physics computations. Further, after some
initial testing with OpenCV on our laptops, we realized that
putting this software on an FPGA would fail to meet the latency
requirement. Running simple algorithms like edge and contour
detection took up ~20ms on Apple’s M1 MacBook Pro, and
FPGAs run at orders of magnitude slower clock speed. We did
not want to put ourselves in a situation trying to optimize every
line of code in order to meet the latency requirement if
developing on an FPGA. Furthermore, there were a number of
advantages to developing our software in Python versus C/C++,
which we would have used if developing on the FPGA. Our
team has far more experience working with Python than C/C++;
using C/C++ would have resulted in more wasted time
familiarizing ourselves with the language and its subtle
intricacies. Additionally, Python has much better support in
terms of open source libraries to build upon. It also allows us to
test and develop software much faster due to its ease of use. For
all the reasons above, we chose to use a laptop to run our
computer vision, physics engine, and trajectory prediction
software.

B. Camera and projector mount construction

One of the main issues that we and other students in the past
have run into building a pool-based project is constructing a
rigid mount for a camera/projector. This was a well-
documented issue with a past ECE capstone project - “8-ball
lifeguard”. Their group’s solution was to build a wooden, LED-

studded mount attached to the pool table to hold both their
projector and camera. After discussion with both this group and
other capstone faculty, we learned that they had significant
issues constructing the mount and having the camera and
projector remain still. After seeing the issues multiple other
groups encountered, we decided to sidestep construction of the
mount altogether and opted to buy the mount. We settled on a
large, metal shelf for the mount which perfectly fit around the
pool table. This allowed us to attach both the camera and
projector to the top with minimal extra effort. The crucial
tradeoff we made here was using a significant amount of our
budget on the shelf versus spending time to construct a custom
solution. We opted for this approach because it seemed that for
past teams, multiple weeks were spent trying to get the mount
to work, time which could be better spent on other areas of the
project

C. Zero machine learning for object detection

 The first large software tradeoff we made was opting for
zero machine learning in our computer vision/object detection
system. This decision was primarily made keeping in mind the
latency use case requirement set having end-to-end prediction
within 100ms. Our group did some initial testing with multiple
machine learning-based object detection models (Region-
Based Convolutional Neural Network (R-CNN), YOLO, etc.)
and measured the time it took for each frame to be processed.
We realized that these machine learning models were at least
an order of magnitude slower than without. Thus, in order to
meet our latency requirement, we abandoned using machine
learning - at least for the computer vision/object detection
aspect of this project. The tradeoff was that developing the
object detection system became a lot more complex. Machine
learning models like YOLO for object detection are very
straightforward to use and are full, out-of-the-box solutions.
However, opting for a non-machine learning approach meant
that we had to manually detect cue balls, sticks, and use clever
ways to differentiate between objects (e.g. color, shape, size).
This also means that our environment must be well-lit and as
consistent as possible.

D. Building the physics engine

The other large software tradeoff we made was concerning
the physics engine. From the beginning, our group tried to build
the physics engine by extending existing work, papers, and
other open-source libraries. However, after trying multiple
open-source libraries and attempting to adapt various pool
game engines to our use case, we were faced with a decision:
keep attempting to adapt existing work or build our own engine
from scratch. After a few weeks of unsuccessfully trying to
adapt existing work, we built our own physics engine and
prediction systems from scratch. The main reason for this
decision was because many existing pool physics engines were
used for pool video games or were far too complicated for our
needs. The bulk of our physics engine lines in the trajectory
prediction, which is more geometry heavy. Most of the physics
engines currently out there take into account other factors like
mass, coefficient of friction, spin, among other things. As such,
they were unnecessarily cumbersome, and it took more effort to

6
18-500 Design Project Report: CueTips 03/01/2024

integrate an existing physics engine into our system compared
to writing one from scratch. It took us around 1-2 weeks to write
a custom physics engine from scratch, far less time than opting
for a third-party solution.

VI. SYSTEM IMPLEMENTATION

The trajectory projection system consists of the following
systems: computer vision system, cue stick system, physics
engine, projector system, and web application.

A. Computer Vision System

For our computer vision system, we relied heavily on the
OpenCV library and utilized zero machine learning. The
computer vision system consists of five components: ball
detection, cue ball detection, pocket detection, wall detection,
and cue stick detection. Each of these components is
modularized as a Python class for ease-of-use when integrating
all together. The ball detection module (class BallDetection) is
initialized with the filename, which tells the module where to
look for to load the frame in. The most important function in
the BallDetection class is getBalls(). This loads the image from
the specified file path and runs cv2.HoughCircles on the image;
HoughCircles is run with a minimum and maximum radius of
the desired object. This value was calculated by hand based on
the actual radius of the balls as seen in each frame from the
mounted camera. Then, if any circles are detected, they are
drawn onto the original image. This image is then outputted
from the function. For cue ball detection, we differentiate it
specially from the other cue balls based on color. After multiple
tests, we found a range of acceptable RGB values that identifies
the cue ball deterministically. The pocket detection module
(class PocketDetection) is structured similarly to the
BallDetection class. It requires the file path of the image to be
processed and has a similarly named getPockets function which
is the centerpiece of the class. Again, the getPockets() function
runs HoughCircles with custom parameters for the minimum
and maximum radius of the pockets. By specifying the range of
radii for both balls and pockets, we are able to differentiate
between the two objects despite them both being circular from
top-down. Lastly, there is the wall detection module (class
WallDetection) which is responsible for identifying the pool
table walls. It is similarly structured to the other two modules,
and the main function used is getWalls(). First, the image is
loaded in via a provided file path to the class. It is run through
a combination of edge detection (cv2.Canny) and contour
detection (cv2.findContours), and these contours are the
overlay onto a black background with the same dimensions.
Then, this is run through cv2.HoughLines to obtain a list of the
lines detected. To classify the lines as either the top or bottom
walls versus the left or right walls of the pool table, some clever
heuristics are used. Since the pool table is in the shape of a
rectangle, the left/right walls should be closer to the center of
the image (perpendicular distance) compared to the top/bottom
walls. Additionally, the angles of the walls should be either 90
degrees or 0 degrees as well (normalized). These two heuristics
are combined to classify the wall as horizontal or vertical lines.
The four lines are then converted from polar coordinates, the
format HoughLines returns, into rectangular. Lastly, for the cue
stick detection module (class CueStickDetection), this draws

primarily upon contour detection to identify the cue stick. By
making sure we identify the balls, wall edges, and pockets
correctly, we are able to disqualify these objects when running
contour detection on the frame. The main function in this
module is getCueStick() which returns the coordinates of
roughly the tip of the cue stick. This system purely consists of
software components.

B. Cue Stick & IMU System

The cue stick/IMU system consists of both hardware and
software components. For hardware components, the cue stick
has an Adafruit BNO055 9DOF IMU and an ESP-WROOM-32
2.4 GHz Wi-Fi microcontroller processor attached to it. The
data we are primarily concerned with is both the gyroscopic
data (roll, pitch, heave) and the accelerometer data. The ESP-
32 is programmed with Arduino code and polls data from the
IMU. We use the getVector function to fetch data from both
VECTOR_GYROSCOPE and
VECTOR_ACCELEROMETER. The
VECTOR_GYROSCOPE consists of three floats representing
roll, pitch, and heave respectively in units of degrees. The
VECTOR_ACCELEROMETER is just the acceleration
measured in m/s^2. To send this wirelessly to the Jetson Nano
running the physics engine, computer vision system, we
initialize a WIFI Server on port 80 and connect. We then write
bytes to the connected client on the other end (which is the CV,
physics engine system) in the format of an HTTP request
sending this data.

C. Physics Engine

The physics engine was written using OpenCV and NumPy,
and is implemented as a Python class (class Physics). The key
functions in our physics engine are find_new_point_on_line,
calculate_circle_and_cue, calculate_trajectory.
find_new_point_on_line computes the point between two balls
where a collision occurs. We determined that a collision only
occurs if the distance between the centers of the cue ball and
other ball is roughly ~2R (R is radius of one of the pool balls,
we assume them identical). The trajectory of the cue ball is
represented as a line, and the other balls on the pool table are
passed in as arguments. Each ball is checked against the cue
ball trajectory to check for collisions, and if there is not a
collision, we move on. If a collision occurs, however, then we
solve equations to find two possible intersection points by
solving a quadratic. The closest point is taken. For
calculate_circle_and_cue, this function is responsible for
identifying the cue stick and balls on the pool table. It calls
cv2.minEnclosingCircle to find circles that represent the balls
and distinguishes the cue stick based on its radius size. This
function is vital in representing the state of the pool table as
concrete data in the form of two dictionaries: one containing
data for the cue stick, and another for the centers and radii for
the balls on the table. The last function, calculate_trajectory,
brings the other functions together. Given a pool table frame, it
calls calculate_circle_and_cue to process the image into a more
code-friendly format (Python dictionary). Then,
find_new_point_on_line is called to find the collision point (if

7
18-500 Design Project Report: CueTips 03/01/2024

any) between the cue ball and some other ball. We take this data
and do some mathematical computation to figure out the
resultant vectors of the cue ball as well as the ball it collides
with. These vectors are then returned for the projector module
to display.

D. Projector System

The projector system is the final subsystem in the trajectory
prediction system. It takes in the original frame processed as
well as a Python dictionary containing a list of vectors to
display. These vectors are the predicted trajectories after the cue
ball collides with the target. It first creates an equal-dimension
black background (calling np.zeros_like), then loops through
the list of vectors and plots them as white lines upon the black
background. The maximum contrast is a decision we made to
ensure that the lines are shown on the pool table even in well-
lit environments.

E. Web application

The web application currently allows the user to self-
calibrate their strike with respect to both force and orientation
of the pool stick, helping them hold it correctly. The web
application is built with React and Flask (Python). A small
Flask server is set up using SqLite for a small, lightweight
database and exposes two endpoints “/accel”, “/gyro” that
accept POST requests, and an endpoint “/update” that accepts
GET requests. The server receives both accelerometer and
gyroscope data on the /accel and /gyro endpoints respectively.
The frontend polls the /update endpoint every ~200ms and
receives the gyroscope and accelerometer data captured in that
time period. It then displays to the user whether they are holding
the stick correctly, and how much force was being applied to
the cue stick. Because the poll time is frequent, the updates the
user sees on the web application appear near instantaneous. The
gyroscope data is also displayed back to the user (roll, pitch,
and heave), and if the stick is not level (primarily concerned
with pitch), then it will guide the user with directional arrows
on how to reposition the cue stick.

F. Public health, Safety, Welfare Considerations

In our system implementation, we considered a number of
public health, safety, and welfare considerations. For welfare
considerations, we wanted the prototyped system to balance
both power-efficiency and welfare. As such, we opted for an
NVIDIA Jetson Nano - a middle ground between a power-
inefficient computer and an inexpensive, yet less powerful
FPGA. This also contributes to our consideration of
environmental factors, as we wanted to minimize our carbon
footprint by the technology stack our system would use. This
meant moving away from computationally-heavy machine
learning models, and opting for embedded processors and
microcontrollers over heavier, heat-generating computers. The
social considerations were built into how we implemented the
system. For a good product experience, users want to see
instantaneous feedback and interactivity. This is why we
stressed the importance of keeping the end-to-end processing
per frame to be under 100ms. If we had additional delay or

relaxed this constraint too much, the usability of the product
would be far less. Another big concern we had was with safety,
especially that regarding the camera and projector mount. Since
both objects are fairly heavy and are fixed well-above the table,
it would be dangerous to construct our own camera/projector
mount. If the structure is unstable, the debris, projector, and
camera could injure players using the system. As such, we
opted to purchase an existing, sturdy metal mount that can
support far more weight than the projector and camera to ensure
safety of our system.

VII. TEST, VERIFICATION AND VALIDATION

Our project will primarily employ three methods that
measure three metrics to evaluate the design implementation:
1) latency, 2) trajectory prediction accuracy, 3) object detection
accuracy.

For testing the latency, we plan on timing the code execution
for each frame programmatically. As soon as a frame comes in
from the camera via OpenCV, we will include with the frame
the marked input time as additional metadata. When the frame
finishes processing, we will again take the time when the
predictions are generated and find the difference (in
milliseconds). Since the software system is entirely contained
within the laptop, we do not need to account for transmission
latency via Wi-Fi. Our use case requirement regarding latency
was that end-to-end processing would be within 100ms. By
ensuring that each individual frame takes less than 100ms to be
processed through the entire software pipeline, we ensure that
the user perceives changes to the projected predictions within
100ms which has the appearance of the predictions being
instantaneous.

For testing the trajectory prediction accuracy, we plan to
manually verify this. The testing plan is as follows: an
experienced pool player will take 10 shots straight-on, and we
will use the mounted camera to record the shots. Then, we will
manually look through the footage and trace out the actual
trajectory of each ball struck and compare it to the predicted
trajectory. The angle between these two trajectories will be the
deviation. Angle deviation from all 10 shots will be averaged,
and this will be our final value to compare against the use-case
specification of <= 2 degrees error. In order to account for error
in the player’s technique and accuracy, we take the average
deviation over multiple iterations to smoothen out this error
from the measurement. Thus, the test captures the actual
trajectory deviation with fair accuracy and will validate the use-
case requirement of having less than 2 degrees of angle
deviation error.

For object detection accuracy, the test we have planned will
measure the offset between the projected object and the real
object on the pool table. Since the entire image will be scaled
the same, we will use projections of the pool balls in order to
test the object detection accuracy. The test will be conducted as
follows: we will set up the pool table in some arbitrary
configuration, then take in a frame and run our computer vision
system on it. Then, we will project the modified image with
objects detected over the actual pool table. We will measure the

8
18-500 Design Project Report: CueTips 03/01/2024

distance between the real pool balls and projected pool balls
(relative to each ball’s center) by taking a picture and measuring
the difference manually. This will ensure that our object
detection model is accurate and correctly captures the state of
the pool table.

VIII. PROJECT MANAGEMENT

A. Schedule

Our schedule for the project is depicted in Fig. 4 on page 11
of this report. The blocks in blue represent the sections that are
being done by Andrew, green represents the sections being
done by Tjun Jet, and the red block represents the sections being
done by Debrina. The yellow blocks indicate the blocks that
will be done by everyone. Our schedule includes weekly
milestones and allows us to keep track of what has been done,
what is currently in progress, and what has not been completed.

B. Team Member Responsibilities

Debrina’s primary responsibility is the Computer Vision
subsystem. She is responsible for implementing object
detection and segmentation algorithms. The objects that will
have to be clearly segmented are the array of pool balls on the
table, distinguishing between solid and stripes, cue pockets, cue
stick, and the four walls surrounding the table. She will have to
ensure the detections are accurate enough to meet our use case
requirements. She is also in charge of the camera that we buy,
and making sure the specifications are enough to perform the
computer vision algorithms.

Tjun Jet’s role is to work on the physics engine. The physics
engine takes in the outputs from Debrina’s computer vision
model and calculates the trajectory that the cue ball will follow
if it’s being hit in a certain manner. He will focus on two main
detection models - wall detection and ball collision mechanics.
This means that he must take into account the reflections of the
wall, and the mechanics when the cue ball collides with the ball.
He then creates a single line as an output to the projector
subsystem.

Andrew will play a major role in the projector subsystem and
the IMU subsystem. He will take the output from Tjun Jet’s
physics model as input to his projector subsystem. Then, he will
put it into a relevant frame to project the line onto the table. The
crucial role he must play is ensuring that this line is accurate
and well calibrated to the table, making any adjustments
necessary if needed. He will also be responsible for taking the
IMU data and streaming it onto our web application, to provide
recommendations for users in terms of their shot force, angle,
and spin.

C. Bill of Materials and Budget

Our bill of materials and budget can be found in Table I on
page 10 of this report.

D. Risk Mitigation Plans

A difficult task in our project is ensuring that our model
meets our use-case requirements. One risk we might encounter
is that the latency of our detection becomes very high, making

the user interface not as good as we want it to be, as the output
trajectories will be too slow. Furthermore, we might also face a
problem where a small error in angle and trajectory could lead
to a significant error in execution of the actual pool shot. For
object detection inaccuracies and/or large latencies, we aim to
rely more heavily on April Tags to mitigate these issues. For
instance, if the pool table cue detection is inaccurate or it takes
too long to identify it, we can attach April Tags to the cue stick.
Then, we can automatically detect the tip of the cue stick and
save a lot of computation time by replacing our otherwise
complex CV algorithms for cue stick detection. Additionally,
we can mitigate latency issues by increasing the power of our
hardware. If the processing time end-to-end significantly
exceeds 100ms, we can opt to use a computer instead of the
Jetson Nano to speed up the prediction process. Then, if the
latency between wireless devices is too high, we can mitigate
this by switching to wired connections instead of wireless.

IX. RELATED WORK

A project that is similar to ours was done by Team C7: 8-Ball
Lifeguard during the Spring 2023 semester for CMU’s ECE
Capstone course [3]. This project’s use case was also to help
their users learn to play pool. The project gave players a single
suggestion on which ball to hit, and from which angle, based on
the state of the balls on the pool table. This recommendation
would be projected onto the pool table, and the users were
expected to follow the suggested hit. While this project has
similar functionality to ours, we prioritize the interactive aspect
of our proposed project as we believe it is more effective in
helping users improve in eight-ball pool.

X. SUMMARY

Our project is an assistive tool that helps users learn eight-
ball pool more effectively, without the need of others’
instruction. Our system guides users who are playing a game of
pool by showing users a projection of the trajectories of the
target ball they are aiming at. This trajectory is based on the
orientation with which the user is holding the cue stick. The
trajectories, which are projected onto the table using a projector
that is mounted overhead, will allow the user to see whether
their current aim would allow them to successfully pocket a
target ball. Our project emphasizes a responsive user interface,
so as the user moves the cue stick around, the user will be able
to see the trajectories readjust accordingly. An IMU attachment
on the pool cue would provide further feedback to the user on
the velocity and spin of their hit. Our system uses computer
vision models to detect the state of the pool table and processes
these frames using a physics model that we have developed
ourselves. Some challenges that may emerge in the
implementation of our design is ensuring the accuracy of our
predicted trajectories and reaching a target latency of 100ms.
However, we have created a plan to tackle these risks if needed
by using April Tags to provide more accurate object detection
and using a computer to run our models with a lower latency.

9
18-500 Design Project Report: CueTips 03/01/2024

GLOSSARY OF ACRONYMS.

CV – Computer Vision
FPGA – Field Programmable Gate Array
HTML – Hypertext Markup Language
IDE – Integrated Development Environment
IMU – Inertial Measurement Unit
USB -- Universal Serial Bus

REFERENCES
[1] R. B. Miller, "Response time in man-computer conversational

transactions," in Proc. AFIPS Fall Joint Computer Conference, vol. 33,
pp. 267-277, 1968.

[2] AZBilliards Forums, "Fractional Aiming and Required Accuracy,"
Available: https://forums.azbilliards.com/threads/fractional-aiming-and-
required-accuracy.522183/.

[3] Agarwal, Rager, Ray "Team C7: 8-Ball Lifeguard" Carnegie Mellon
University. Available: https://course.ece.cmu.edu/~ece500/projects/s23-
teamc7/.

10
18-500 Design Project Report: CueTips 03/01/2024

TABLE II. BILL OF MATERIALS

Item Part Name Manufacturer Quantity Cost @ Total

Pool Table RayChee
Portable Mini
Billiard Table

RayChee 1 $129.99 $129.99

Rack Muscle Rack
5-Shelf Steel
Freestanding

Shelving Unit,
Black

Muscle Rack 1 $109.00 $109.00

WiFi-enabled
Microcontroller

ESP-
WROOM-32
ESP32 ESP-

32S
Development

Board

AITRIP 1 $15.99 $15.99

Inertial Measurement
Unit

Adafruit 9-
DOF Absolute

Orientation
IMU Fusion
Breakout -
BNO055

Bosch 1 $34.95 $34.95

Embedded Processor NVIDIA
Jetson Nano

NVIDIA 1 $0 $0

Laptop Macbook Air Apple 1 $0 $0

Camera Logitech C922
Pro Stream

Logitech 1 $0 $0

Battery 9V Batteries Amazon Basics 1 $0 $0

Projector VOPLLS
1080P Full
HD Mini
Projector

VOPLLS 1 $49.99 $49.99

LED Light Strips Tenmiro
65.6ft Led

Strip Lights

Tenmiro 1 $9.99 $9.99

Grand Total $349.91

11
18-500 Design Project Report: CueTips 03/01/2024

FIG. 4. PROJECT SCHEDULE

