CO-CueTips Design Review

Andrew Gao (agao2), Debrina Angelica (dangelic), Tjun Jet Ong (tjunjeto),

Use Case

There is a steep learning curve when it comes to learning how to play billiards. Without proper guidance from professionals or friends, it can often lead to frustration or discouragement.

CueTips is a Computer Vision based pool table that enhances the pool learning experience by projecting predicted shot trajectory in real time.

- Software systems (Computer Vision)
- Hardware Systems (Embedded Devices, Hardware IMU)
- Signals and Systems (Wireless communication among devices)

Use Case Requirements

Use Case Requirement	Technical Requirement					
Detect pool balls within 0.2in from actual ball location	CV model accurately detect ball's contours and calculates center no further than 0.2in from ball's actual location.					
Predicted trajectory must be within 2° of actual trajectory	Object detection must be calibrated to frame generated by AprilTags, and calculations from physics models must be accurate.					
Achieve latency of less than 100ms	One cycle of sending video data, executing object detection, running physics calculations, and outputting trajectory prediction executes in at most 100ms .					

Solution Approach: Object Detection

Pool Ball Detection	Use Canny edge detection and cv2.findContours to detect cue balls and identify their centerpoints.					
Wall Detection	Use Hough Line transform to detect lines in video feed.					
Cue Stick Detection	Use findContours to detect cue stick. Use a 9-axis IMU attachment on pool cue to gather and data. Process using Ceva's sensor hub software (to detect vertical position of cue stick).					
Localization & Calibration with AprilTags	Use AprilTags to determine the camera's position and orientation in a given environment. Minimize image distortion and provides better accuracy for stick orientation.					

Solution Approach: Trajectory Prediction

8-Ball Physics Libraries Implement 8ball simulations based on online pool simulation libraries. The ones we are focusing on are P<u>oolTool</u> and <u>Pool</u> <u>Projection</u>.

Solution Approach: Instantaneous Feedback

Projector	Projector mounted overhead will display our predicted trajectories on the pool table.					
Camera	720p webcam at 60fps and a diagonal field of vision of 78°. Mounted overhead to provide data on game state that is used by our object detection and physics models.					
Web Application	Our web application will be one of primary ways the user interacts with the project.					
	 Full view of table and predictions. Whether user is holding cue stick correctly. Acceleration/force with which users strike the ball with the cue stick. 					

Implementation Plan

What we are referencing	Past pool table project implementations. Open-source libraries for building physics engine, AprilTag detection, object detection.						
What programs we	Python, OpenCV for edge detection. React/Flask for web server						
use	display. Arduino for cue stick system.						
What we are buying	amera, projector, and the mount for both. NVIDIA Jetson Nano , rduino Nano, ESP32 WiFi module, BNO055 IMU.						
What we are	 Environment detection model: gathering frame data from						
developing on our	camera, motion from IMU. Video/frame processing system - includes physics						
own	computation, edge/object detection, etc. Sensor fusion algorithms						

Testing

Latency	Target: < <u>100ms</u> end-to-end.							
	Procedure: We will time the code's execution from the point that it receives a particular frame to the point that it outputs a predicted trajectory based on that frame.							
Trajectory Projection	Target: < <u>2</u> ° between real and predicted trajectory.							
accuracy	Procedure: Project the predicted trajectory on the table. An experienced pool player will take 10 shots, and we will video record the shots. Measure average angle deviation from the video.							
Object detection	Target: < <u>0.2in</u> between real and predicted ball detections.							
accuracy	Procedure: Project detections of balls and measure distance between real and projected balls by taking a picture and measuring the difference through scaling the image.							

Validation and Verification

Latency	Verification: Time code execution from start to end.							
	Risk Factors: Timing of code may not accurately reflect actual latency as there might be additional latency due to wireless transmission.							
Trajectory Projection accuracy	 Verification: Video record the player's shot and measure the angle between the ball's actual trajectory and our predicted trajectory. Risk Factors: Variation in pool shots from player testing as they may not hit completely in the center. Thus, we will take 10 shots and average. 							
Object detection accuracy	 Verification: Measure the difference in position between our projection and the actual position of the ball and cue. Risk Factors: Parallax error may lead to potential inaccuracy in error measurement. It may also be difficult to measure differences in ball location. 							

Work Distribution

Andrew	AprilTag Detection and Integration.Take model output and test it on projector.
Debrina	 Ensure accurate detections for cue stick, table walls, solid and striped balls. Web Application
Tjun Jet	 Physics calculations for wall reflections and ball collisions. Hardware sensor fusion between cue stick and camera.
All	 Building of frame to mount camera and projector, Testing and integration

Schedule

Category	Person	Status	Task	W4	W5	W6	W7	BRK	W8	W9	W10	W11	W12	W13	W14
Design	All 👻	Doing 🔹	Acquire components												
	Debrina 🔹	Doing •	Research camera libraries		39										ĵ
	Tjun Jet 🔹 👻	Done 🔹	Research CV libraries and application methods												
Computer Vision	Debrina 🔹	Done 🔹	Detection of Cue Stick		20										
	Debrina 🔹	Done 🔹	Detection of Pool Balls												
	Debrina 🔹	Done 🔹	Detection of Walls of the Table								j i				j.
	Debrina 🔹	Doing 🔹	Detection of Pockets												
	Debrina 🔹	Doing •	Distinguish between cue ball, solids and stripes												Ĵ
	Debrina 🔹	Doing 🔹	First round testing of detection accuracy												
	Debrina 🔹	Not Done 🔹	Second round testing of detection accuracy												1
	(Andrew 🔹	Done 🔹	April Tag Detection												
Trajectory Projection	(Tjun Jet 🔹 👻	Done 🔹	Physics calculations of cue ball's reflection on stick												
	(Tjun Jet 🔹 👻	Doing 🔹	Handle the case of cue ball not aligned with cue stick												
	Tjun Jet 🔹 🔻	Doing •	Physics calculations on a ball's trajectory												
	(Tjun Jet 🔹 🔻	Not Done 🔹	Compute trajectory based on online images												
	Tjun Jet 🔹	Not Done 🔹	Successfully compute a trajectory based on actual inputs												
-	(Andrew 🔹	Not Done 🔹	Output trajectory onto projector			-									
	(Tjun Jet 🔹	Not Done 🔹	First round testing of trajectory accuracy												
Camera and	All 🔹	Not Done 🔹	Design frame to mount camera and projector												
Projector Mount	(All 👻	Not Done 🔷	Build frame for camera mount		64 50		ļ		(* 1						
	All 🔹	Not Done 🔹	Mount camera and projector onto frame												
	All 🔹	Not Done 🔹	Calibrate camera to testing environment (April Tags etc.)												
Hardware	(Andrew 🔹	Done 🔹	Access the camera from computer through wireless												
	Andrew 🔹	Not Done 🔷	Mount IMU and stands onto the CueStick												
	(Andrew 🔻	Not Done 🔹 🔻	Ensure IMU Data is correct with cue stick movements			- 1									
	Andrew 🔹	Not Done 🔹	IMU Data well integrated with web application												
Web Application	(Andrew 🔹	Not Done 🔹	Create local application												
	Andrew 🔹	Not Done 🔹	Integrate camera feed to web application												
	(Andrew 🔻	Not Done 🔹 👻	Integrate accelerometer feed to web application							2					
	Andrew 🔹	Not Done 🔹	Integrate recommendation system to the web application												
	All 👻	Not Done 🔹 🔻	Error checking and refining												
Integration	(All 🔹	Not Done 🔷	Communication between devices												
	All 🔹	(Not Done 🔹	Integration with Web Application												
	(All 💌	(Not Done 🔷	Full integration												
Slack	All 🔹	Not Done 🔹	Slack Time												