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Abstract—Scotty Maps is a system capable of providing highly
accurate indoor localization and navigation services to students
at Carnegie Mellon University. This project utilizes a network of
ultrawideband transceivers to localize the user within academic
buildings on campus. Our web application displays the user’s
location and provides navigational instructions to the best path to
the student’s destination. We have created a novel, inexpensive,
and scalable system offering localization accuracy of less than 0.2
meters, a frequency of 10.1 Hz, and a total maximum delay of 840
ms.

Index Terms—A* Search, IMU, Indoor Localization, Mapping,
Multilateration, Navigation Systems, Nelder-Mead, Two-Way
Ranging, Ultrawideband

I. INTRODUCTION

Navigation systems have become a ubiquitous part of our

lives, revolutionizing how we move in the world. GPS can be
leveraged to provide directions in nearly any outdoor
environment, allowing navigation systems to offer
unparalleled convenience and precision. However,
navigational systems do not work well indoors due to GPS
signals being stopped by walls. Hence, an indoor navigation
system would take our daily navigational needs even further,
providing seamless guidance within complicated buildings.

For students, the benefit of indoor navigational systems is
especially pronounced. New students and faculty at CMU may
have particularly significant difficulties in finding rooms in the
academic buildings on campus. Trying to find a room in an
unfamiliar building can both stress students and waste their
time. An indoor navigation system would assist students in
confidently finding their destinations, minimizing the
frustrations that come along with getting lost in a new place.

Scotty Maps aims to solve the problem of students
becoming lost in CMU buildings by creating a localization
system and navigation app to guide students directly to their
desired rooms. All students will need is a tag they can put in
their backpacks. Then, once they are in a building, they can
use their phone to access our web application, which will
provide them with directions to get to their destination.

Indoor navigation systems are not wholly a new idea.
Several companies have solutions regarding implementing
indoor localization systems [9]. However, these systems can
be complicated to deploy and maintain, requiring specialized
IT support that can make them prohibitively expensive for a
college campus. Instead, Scotty Maps will make a solution
tailored specifically to the unique needs of the CMU campus

by creating an affordable and scalable solution, focusing
primarily on navigation within academic buildings to
streamline the student experience.

II. USE-CASE REQUIREMENTS

Scotty Maps is designed primarily to achieve excellent
localization accuracy, along with providing highly useful
directions for the user to follow. However, along with these
goals, this project also makes a priority of being accessible,
and unobtrusive, while also protecting the privacy rights of
students who use the device.

Our project has several use case requirements, the most
important being highly accurate localization of up to an
accuracy of one meter. One meter is typically the width of
most doorways, and we believe that this localization resolution
is sufficient for preventing students from getting lost in
buildings. Then, we wanted the localization system to function
responsively, having an update frequency for the student’s
location of at least 2 Hz. Assuming the student is moving at a
walking pace, this frequency is sufficient to accurately
maintain the real-time location of the student, as students will
move less than a meter in the 500 ms.

There are also several physical characteristics of what the
final product should consist of. We wanted the portable tag the
user is carrying to have a battery life of at least 4 hours, as we
think 4 hours is approximately the maximum amount of time
we expect a student might spend walking around indoors on a
given day. Next, the size of the tag should not be excessively
large either, as we would like the tag to fit in a user’s
backpack. Hence, the device size should be less than 2 liters,
the size of a laptop. Additionally, the overall price of the tag
should not be too expensive for students to purchase, at a cost
of less than $100. Finally, the cost of installing the localization
system inside a building should be reasonable, at around $50
per hallway corner, or approximately $300 for a floor of a
typical building. Extrapolating this to a typical four-story
building gives a cost of $1200 per building, or approximately
$50,000 for all the ~40 academic buildings on the Carnegie
Mellon campus.

Due to the system constantly tracking the students as they
are moving around indoors, respecting the privacy rights of
the students becomes paramount. Security measures such as a
login system should be implemented such that bad actors will
be unable to access the system and view the locations of other
students. Furthermore, our system should avoid storing
historical data of student movements, as it should only use
relevant information on the current location of the student to
provide navigation information.
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III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

Fig. 1. A high-level view of our system architecture for finding the user’s
location and providing them with directions.

As seen in Figure 1, the high-level overview of our system
consists of a network of UWB transceivers, which function as
“anchors”. These anchors are fixed in various locations in a
building. The student carries around a “tag”. Once the tag is in
the vicinity of the anchors, the tag will communicate with the
anchors to figure out the distances between it and each of the
anchors. With the distances, it will then run localization
algorithms to determine the device’s location. This
information is communicated over Wi-Fi to our server, which
hosts our web application. Users can utilize a browser on their
phones to access the server and view the webapp, which
displays their current location in the building, as well as the
directions they need to follow to get to their destination.

Fig. 2. System block diagram showing the overall layout of our anchors,
tag, server, and user interface.

Our system block diagram is shown in Figure 2. Only a
single anchor is displayed at the left, though we are able to
have 11 total, fixed in various positions around a building for
better connectivity throughout the area of the building. These
anchors are constantly listening to UWB packets, sent by the
tag. Upon receiving these packets, the anchors respond to
initiate a communication protocol with UWB to determine the
distance between it and the tag.

A number of changes have been introduced since our design
report. The trilateration algorithm is replaced by
multilateration with Nelder-Mead algorithms to get higher
accuracy and more stability. The connection between
DWM1001 and RPi 4 is changed from SPI to UART for
convenience and faster reading of inputs. We are now using a
WebSocket connection between the tag and the server.

The tag has the functionality to communicate with all of the
anchors present and within range in our network. It runs the
localization algorithms necessary for localizing our device.
Additionally, there is also an IMU attached to the tag, which
allows us to find the user’s orientation, so we can know which
direction they are currently facing within the building. The
IMU can also be leveraged to help provide an estimation of
the direction the user is headed in, which can be used in
tandem with our UWB localization to better refine our
location. The tag can send all the necessary localization
information over WebSockets to our server.

Our server consists of a Django server that is hosted on
AWS. The server contains a Django web application, which is
the primary form of contact between the user and the
localization device. The user is able to input locations they
wish to go to via the webapp, and then the webapp will
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use that information to find navigation instructions the user
can use to get to their destination. While in navigation, the
user is able to input feedback into the system by their current
position (provided to the server by the tag). Our server is able
to keep track of the location of the user and display that
information for the user to see in the web application.

Throughout our project, we applied many principles of
engineering. Algorithms were very important to accomplish
what we wanted to do, such as multilateration for localization
purposes and A* pathfinding for navigational purposes. Our
system architecture was also very important to ensure that the
server was able to interface with both the tag and a user
sending it a large variety of inputs. Finally, we focused on
improving the user experience, making sure our navigation
provided intuitive directions and clear guidance on where the
user should go.

We also leveraged several scientific principles. As we were
dealing with UWB sensors, we needed at least an elementary
understanding of how they would travel through the air, such
as how their electromagnetism might affect how they travel,
reflect, diffract, or interfere whilst inside of a building.
Additionally, an understanding of computer science was
exercised. Being able to host a server with low latency to both
the tag and the user was crucial in decreasing the latency the
user experienced with their tag device.

Finally, there were also several principles of mathematics
used in our final project, such as geometry, linear algebra,
statistics, and calculus. Our algorithms strongly consider
geometry and trigonometry for our multilateration to function
correctly. The Nelder-Mead algorithm is purely geometric. It
utilizes the coordinates information and iteratively shrinks the
geometry formed by vertices to get the final estimation of
locations. We use a significant amount of linear algebra, such
as having a coordinate system to be able to successfully map
the user, as well as using the least squares estimation to
minimize our error. In terms of statistics, we use several
filtering techniques such as low pass filters to help decrease
localization inaccuracies from imprecision in our UWB
distances. Finally, calculus is used for our IMU, where we use
integration to get the cumulative rotation found by our
gyroscope.

IV. DESIGN REQUIREMENTS

A. Ultra-Wideband Accuracy
The most important use case requirement for our design to

achieve is high localization accuracy. To achieve an average
accuracy of less than one meter, our distance measurements
need to be even more accurate than this. Under the assumption
we are using ultrawideband sensors and computing location
with multilateration in a hallway, small errors can lead to
much larger ones due to the small, acute angles formed by the
anchors and our position. Calculating the error of a
multilateration is not straightforward due to the many factors
that impact the result. However, we can simulate the impact of
errors, having chosen the multilateration algorithm (as detailed
in Section VI.C). Assuming a user is standing anywhere in a

typical 25-meter x 2-meter hallway, we find that a maximum
error of 0.23 meters in a distance measurement causes the
resulting localization accuracy to change by approximately
one meter. Hence, we would like a distance measuring
accuracy of 0.23 meters.

To achieve a 0.23-meter distance measuring accuracy, we
use UWB and the TWR TOA protocol to determine the
distances between our UWB devices. This protocol relies upon
a tag sending a message to an anchor before the anchor
responds with a reply. The DW1000 chip on the UWB board is
then able to calculate the time of flight (TOF) using (1), where
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to the speed of light. Hence, we can solve for the resolution
the DW1000 should have to be able to measure differences in
location by using (2).
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delay of the sum of the anchor’s antenna and the anchor’s
processing speed. While solving for the propagation time of
the signal, this can be safely ignored. By using a distance of 1
meter and a speed of light of 3.0*10^8, we find that the
DW1000 should have a time resolution of at least 6.67
nanoseconds to be able to differentiate distances of one meter.
Unsurprisingly for a device with accuracy claims of 0.1
meters, this is the case, as the DW1000 has a time resolution
of approximately 15.65 picoseconds [1], implying that our
UWB boards should be capable of reaching the accuracy
necessary for our application.

B. Responsive Tracking
We would like to be able to sample the user’s location at a

frequency of at least 2 Hz to be able to capture their location
in real-time. To do this, our tag needs to obtain distances from
the anchors as well as run the localization algorithms within
500 ms. We considered it likely the communication protocols
would be the most time-consuming portion. First, we need to
be able to communicate with multiple UWB devices
simultaneously. To obtain accurate distances between the tags
and the anchors, several samples of distances should be
obtained between the same tag and anchor. The TWR TOA
protocol takes approximately 1.2 ms between a tag and anchor
when the tag is able to discover an anchor [1]. When
considering a larger network of at least 10 anchors and
assuming the tag will sample each anchor at least 5 times pers
second, we note that the overall localization time is reasonably
quick at less than 100 ms and should not bottleneck our
overall localization speed. The rest of the computation relies
on our localization algorithms. These will be run on an RPi 4,
which should be sufficiently powerful to run the algorithms
well within the required time. Altogether, these results gave us



4
18-500 Final Project Report: Scotty Maps 05/03/2024

confidence that we should be able to meet the timing
requirements for our project.

C. Power Requirements
Our tag should have a battery life of at least 4 hours, as we

assume that this is approximately the maximum time a student
will spend walking indoors in a given day. Assuming the
power consumption of the DWM-1001 development board is
approximately 82 mA at 3.5 V when it is sending data, and
noting that the power consumption of the RPi is around 600
mA at 5 V, we can use (3) to estimate our average power
consumption when constantly transmitting and processing data
is around 2.8 W.

(3)𝑝 = 𝑖𝑣
From these results, we find that our battery supply for the

tag, to last for up to 4 hours of operation, should be at least 12
Wh. Any power supply with approximately 2.5 A of capacity
at 5 V reaches this desired capacity should be sufficient for
our device to maintain a full-day battery life.

D. Range of Ultrawideband Transceivers
We would like the installation of our UWB anchors to not

be excessively expensive, at a cost of approximately $50 for a
corner of a hallway. To do this, our transceivers should span
the distance of most hallways (with longer hallways such as
those in Wean Hall being divided into two). Given this
constraint, we note that many hallways in academic buildings
at CMU have hallways that span approximately 25 meters
before meeting an “intersection” or a wall. The lengths of
hallways in academic buildings are all different and there are
many exceptions to this rule; however, from our experiences
measuring the lengths of various hallways, we believed this
distance to be typically sufficient. Hence, to keep the costs of
our Ultra-wideband receivers on the lower end, we would like
our UWB transceivers to have 25 meters of range while in an
indoor environment–the advertised distances of UWB
transceivers are typically greater than this, though the
advertised distances are usually from an idealized outdoor
environment.

Fig. 3. Example locations of anchors, in red boxes, to map out floor 2 of
ReH

Figure 3 displays an example of how anchors could be
installed inside floor two of the Roberts Engineering Hall to
map out the major walking areas, such that we have at least
three anchors with direct line of sight in each hallway for
multilateration (hence the occasional doubling of anchors).
Despite the horizontal hallways spanning further than 25
meters, the edges of the main hallways are broken up by

vertical hallways into lengths of less than 25 meters. By
installing sets of anchors in these corners, we can map out the
floor.

V. DESIGN TRADE STUDIES

A. Wireless Technology
One of the most important areas of contention when we

came up with a solution was the technology we wanted to use
for indoor localization. The choice for selecting a technology
was motivated by our use case requirements, as we wanted to
create a system with highly accurate tracking, while still
keeping our system costs relatively low. The main wireless
technologies we researched were Wi-Fi, BLE, and UWB, as
these were all involved in previous research in indoor
localization. We wanted to focus primarily on determining a
technology’s localization accuracy, then the range of the
devices, before also considering the propensity of the signals
to be subject to interference, and finally, cost.

TABLE I. WIRELESS TECHNOLOGIES TRADEOFFS

Technology
Characteristics

Accuracy Indoor Range Infrastructure Price

Wi-Fi 3 m 50 m $0

BLE 5.1 1 m 100 m $42

UWB 0.3 m 100 m $75

Table 1 summarizes some of our general findings regarding
the characteristics of the technologies we were interested in
exploring. We found the accuracy of technologies utilizing
results from previous projects and research. Wi-Fi has the
worst accuracy at approximately 3 meters [2], while Bluetooth
has an accuracy of around 1 meter [3], with UWB having the
highest accuracy of around 0.3 meters [4]. The indoor range of
these technologies varies slightly with utilizing different
devices or the assumption of the number of obstructions in an
indoor environment, though we found BLE 5.1 and UWB to
typically have higher ranges than Wi-Fi. Finally, we estimated
the infrastructure prices of using these devices along a single
50-meter-long hallway, assuming we needed 3 anchors for
BLE and UWB (to use multilateration) and 6 anchors for
Wi-Fi (due to the difference in range).

Initially, we assumed Wi-Fi would be a good technology to
use. Due to the ubiquitous nature of the internet, Wireless
Access Points (WAPs) are already built into the infrastructure
of buildings. WAPs typically have a high range (up to 50
meters indoors) and are also typically installed in a fashion
such that there is some overlap between each of them,
allowing us to triangulate the user. Utilizing these WAPs for
distance localization could reduce the cost of implementing
our system in a building. Additionally, there was a lot of
published literature regarding utilizing Wi-Fi in indoor
localization. However, previous research has shown the
accuracy of Wi-Fi systems to be lacking accuracy; typically
they struggle to become accurate to within 3 meters [2]. Wi-Fi
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inherently falls short because the technology was not built to
be an indoor localization technology. Wi-Fi finds the distance
between devices with RSSI, which lacks resolution, as well as
faltering in the face of obstructions, such as walls, rendering
Wi-Fi subject to interference.

BLE was another technology we researched. In terms of
localization, it functions quite similarly with respect to Wi-Fi,
also utilizing RSSI for distance calculation. Our research
found that the newer BLE 5.1 version was capable of
localization accuracy to around a meter with a direct line of
sight, which is a level of localization accuracy that falls
slightly short of our goal of less than one meter. The range of
BLE 5.1 is greater than that of Wi-Fi at around 100 meters;
however, a localization system would require the installation
of a large number of these devices. Assuming each device
consists of a transceiver and a microcontroller, we find that
each device costs around $14, or a cost of $42 for localization
in a hallway. Finally, due to Bluetooth also relying on RSSI, it
also suffers from being prone to interference from
obstructions.

The third technology we researched was UWB. UWB
seems to have significant advantages in many aspects that
make it more accurate in localization. Importantly, UWB is
different from narrow-band systems such as Wi-Fi and
Bluetooth as its signals have better multipath resolution, such
that UWB signals remain distinct while narrowband signals
might overlap in a multipath environment [4]. Hence, when it
comes to determining distance, UWB can rely on protocols
other than RSSI, such as Time-of-Arrival, which ultimately
leads to a significantly higher accuracy of less than 0.3 meters,
which is sufficient for our localization system. Our
investigation of the range of UWB transceivers showed they
were capable of a range of around 100 meters, high enough to
cover longer hallways. Additionally, due to UWB being
transmitted over multiple frequency bands, it is also less prone
to interference than either Wi-Fi or BLE (both of which
transmit on the 2.4 GHz band). However, the cost of a UWB
system appears to be an issue, primarily due to the newer
nature of the technology, and fewer options for transceivers.
These devices have a per-device cost of around $25 [10],
which makes localization within a hallway to be around $75.
Although the prices for UWB devices are higher than other
technologies, the advantages they have in accuracy and
providing solid range make them the suitable technology for
this project.

B. Ultrawideband Board
The choice of which UWB chip would best fit our

application ended up being a rather simple choice due to the
limited options available for cost-effective UWB solutions.
Some manufacturers such as Microchip Technology only sell
UWB chips. However, incorporating an UWB into a PCB was
beyond our expertise, so we looked for developer boards with
a UWB chip and antenna instead.

We examined UWB developer boards from NXP, SPARK
Microsystems, and Qorvo, with the results summarized in
Table 2. Boards from NXP and SPARK were relatively

expensive, costing several hundred dollars for each board, so
we opted towards Qorvo, which happens to have significantly
cheaper developer boards.

TABLE II. UWB DEVELOPMENT BOARD COST

Device Unit Price

SPARK SR1010 $999

NXP NCJ29D5 $129

Custom Qorvo DWM1000 PCB $27

Qorvo DWM1001-Dev $25

a.

Qorvo sells two varieties of chips, the DW1000 and the
DW3000. The latter is the newer, more expensive variant
offering slightly better energy efficiency, though qualities such
as the range or accuracy are rated as being the same as the
DW1000. Qorvo sells multiple packages of their DW1000
chip. One is the DWM100, which simply consists of a PCB
with a DW1000 as well as an UWB antenna. We looked into
designing PCBs for housing a DWM1000, as well as a
microcontroller to control the transceiver, and we found that
this would have a unit price of around $27. However, Qorvo
also sells DWM1001-Dev boards that encompass the
functionality our custom PCB solution would resolve at a
lower price of $25 per device. Due to these reasons, we
ultimately settled on using the DWM1001-Dev development
kits.

C. Choice of Gateway Device
The DWM1001-Dev board we selected as our UWB

transceivers is controlled by an nrf52832 microcontroller,
which does not inherently have Wi-Fi connectivity. Therefore,
we need a way to convert the device into a gateway for the tag
to post to the server to update the state of the user’s position.
Two options we explored to include this functionality are the
ESP8266 and the RPi 4. The ESP8266 has the benefit of being
a cheaper device at around $8, compared to the RPi 4’s higher
price of $62. The ESP8266 also has a smaller power
consumption while being smaller than the RPi. However, the
RPi 4 has the primary advantage of having a massively higher
amount of computing power available. With the higher
compute, we were more confident the device could handle
running our localization algorithms in the required amount of
time in tandem with the extra processing needed to acquire
data from our IMU and make location predictions with it.

D. Handling Multiple Transceivers
There will be situations where the tag can receive signals

from more than three different anchors. To deal with these
situations, there are two different approaches. One is to change
our algorithm from trilateration to multilateration, and the
other one is to pick the anchors that are closest to the tag. The
advantage of multilateral positioning is that it will create
more precise position estimates, due to the errors from many
anchors destructively interfering with each other. However, we
reasoned that the distances would not be accurate enough for
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anchors that are further away from the tag, especially in the
case where the signal from the anchor is blocked by a wall.
Ultimately, we decided to go with multilateration, as no matter
what errors build up across all the anchor networks, they tend
to cancel each other out when combined to estimate the
position.

E. Frontend Choice
After deciding on using UWB as our localization

technology and determining the components that would
compose the device, another consideration was the most
optimal frontend technology that could be used to
communicate information effectively to the user. On this front,
there were several viable options. We could design an app for
mobile devices, a Python application, or a Django web
application.

Implementing a mobile application is somewhat of a logical
option, due to the plethora of other navigation apps that many
people already use on their phones. Hence, we agreed this
option would produce an application that would be fairly
intuitive for users to use. However, the members of our group
have fairly limited experience with mobile development, and
we decided it would be excessively challenging to pursue this
approach. Another option was to take advantage of the
computing power of the RPi to host a graphical Python
program. By adding a screen, we would be able to display
directions while running the localization algorithms, which
would keep all of the computing localized on one device.
However, this option has the issue of leading to a worse user
experience, as we would need to also come up with a user
interface and work out an optimal method for considering user
input.

We ultimately chose to use a Django webserver due to our
previous expertise in developing Django apps. Django
applications tend to be particularly flexible, allowing us to
design an application that could be used on any mobile device
or laptop. By having the webserver handle requests, we would
be able to easily have a sufficient amount of connectivity
between the user interface and their physical tracker.

VI. SYSTEM IMPLEMENTATION

A. Anchor Implementation
From our block diagram in Figure 2, the anchors of our

design consist of the DWM1001-Dev boards. These boards
have a DWM1000 module which has functionality as the
UWB transceiver. We configured these boards to function as
anchors, such that they will always be listening for UWB
messages, and be ready at any time to respond to requests
from the tag to initiate an exchange of Two-Way Ranging
(TWR) Time of Arrival (TOA) data to calculate the distance
between the tag and the anchor. We set them with specific IDs
such that the tag and the anchors are in the same system
network. Thus, the tag is able to figure out the anchors that it
can communicate with. Each of the anchors Li-Po battery
powering it (though in a proper deployment it would probably
be better to use stationary wall power), with the device itself

being mounted on the wall with double-sided adhesive.
Placing the anchor approximately five feet from the floor
yielded the best range and accuracy, due to it being the height
that a person might hold it at.

B. Tag Implementation
The tag also consists of a DWM1001-Dev board, except it

is also considered a gateway device. The DWM1001-Dev
board is controlled by an nrf52832 microcontroller, which
does not have built-in Wi-Fi, hence, we connected the
development board to a RPi 4 over USB. The RPi constantly
communicates over USB to request readings from
DWM1001-Dev. This DWM1000 chip runs multiple threads,
each one performing Two-Way Ranging (TWR) with an
anchor to get the distance between itself and the anchor. Once
it has established these distances between itself and the
various anchors, it then transfers the distance data to RPi
through serial port.

The RPi has multiple threads as well; one collects the data
by reading for the most recent serial input from the
DWM1001, another runs localization algorithms such as
multilateration, and the main thread runs in a loop to send
positional information to the server. The tag is also connected
to an IMU. By communicating with the IMU over SPI, the tag
is able to use algorithms to find the orientation of the user.
Then, the RPi sends all of the localization information to the
webserver by utilizing the Python WebSockets library to be
able to form a connection with the channel on the server. The
tag device is powered by a 5V power bank, plugged into the
RPi, while the DWM1001-Dev board receives power from its
USB connection to the RPi.

C. Localization Algorithms Implementation
The most important algorithm that is used for localization is

the multilateration algorithm with four anchors.
Multilateration is the use of distances (or "ranges") for
determining the unknown position coordinates of a point of
interest [5]. Based on measurement of the two-way ranging
(TWRs) between anchors and the tag, we could get the
distances between the tag and the surrounding anchors. A
point on the Cartesian plane lies on a circle of radius(𝑥,  𝑦) 𝑟
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Equations (5), (6), (7), and (8) are based on the assumptions
that the circles that the anchors generate meet at a single point,
and the signals of the anchors can form perfect circles.
However, in real life, there could always be cases when the
circles don’t meet at a single point, and the signals can form
perfect circles. Thus, we need to find the point that best
approximates the tag position. Given a position , we can𝑋
estimate how well it replaces the ideal precise location . We𝑃
can do this simply by calculating its distance from each
anchor. If those distances perfectly match with their respective
distances, then is indeed . The more deviates from these𝑋 𝑃 𝑋
distances, the further it is deviated from . In this case, we can𝑃
treat multilateration as an optimization problem. The goal is to
find the point that minimizes the error from to . Suppose𝑋 𝑋 𝑃
the deviation from the ideal distances with the𝑑
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find the position that minimize the following equation sets.𝑋
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We can use the mean squared error to express the overall
deviations from the point to the ideal location of the current𝑋
position.

(13)
Σ(𝑑

𝑖
 − 𝑑𝑖𝑠𝑡(𝑋 − 𝐿

𝑖
))2

𝑁
To minimize the error, we used the Nelder-Mead algorithm

[6] to get the final estimation of the actual location. To make𝑋
the computation process faster, we computed an initial guess
based on the locations of the anchors and the distances from𝐿

𝑖
the anchors to the tag Let the sum of the distances be S.𝑑

𝑖
.

(14)𝑆 = Σ𝑑
𝑖

To facilitate the computation process, an initial guess of the
estimated location is calculated. The initial guess of our
position is calculated by (15).𝑋

0

(15)𝑋
0

= Σ (𝑁−1)𝑆
𝑆 − 𝑑

𝑖
𝐿

𝑖
 

The Nelder-Mead algorithm takes the initial guess of our
position along with the positions of the anchors and the
distances between the anchors and the tag to get the final
estimation of the location.

D. Data Filtering Implementation
The distance measurements that come from the tag can be

imprecise, varying by up to 1-2 m while not moving. This can
cause our distance prediction to be substantially incorrect (off
by 8-9 m at times). To combat this, we implemented a low

pass filter to discard high frequency fluctuations in our input
data. The filter works by taking the last measurement of the
user’s distance from a particular anchor, and calculating how
far away from that radius the user could be at the current
moment, based on how long ago this last valid measurement
was taken. We do this by assuming that the radius can change
no faster than 2 m/s (slightly above average walking speed).
So our condition for a valid measurement comes to (16),
where r’ is the new distance reading, r is the old one, and dt is
the time since the last valid reading..

(16)𝑎𝑏𝑠(𝑟' − 𝑟) < 2 𝑚/𝑠 ✕ Δ𝑡 

If the new distance measurement doesn’t satisfy this
constraint, we declare it invalid and discard it. After
implementing this change, we did see considerable
improvement in the accuracy of the system. However,
sometimes even small errors (of ~1 m) in each of the anchor’s
readings were enough to throw off our final position estimate
by up to 4-5 m. To remedy this, we implemented the same
filtering for the position estimate itself, and this greatly
increased the accuracy of the system, bringing errors down to
~1 m.

E. Orientation Estimation Implementation
For our orientation display, we need only the angle of the

user about the gravity vector (like the angle given by a
compass). However, while our IMU has an accelerometer with
the ability to fairly accurately estimate its angles of tilt along
the other two axes of rotation, it cannot return its rotation
about the gravity vector, as the accelerometer works by
reporting the direction of the gravity vector itself, which of
course doesn't change as one rotates in the “compass plane”.
Our IMU also has a gyroscope that can retrieve all 3 axes of
rotation, but it is only able to determine the relative rotation
from a known starting point. For this reason, we employed a
sensor fusion to maintain a quickly updated estimate of the
user’s orientation. Every time we receive a new position
estimate that is sufficiently far away (2 m) from the last one
used to estimate our orientation, we take the angle of the
vector from the previous position estimate to the current one.
This angle serves as our ground truth orientation estimate.
This update is slow, however. To fill in the downtime, we
employ the IMU, rotating our ground truth by our relative
rotation around the gravity vector given by the accelerometer,
until a new ground truth estimate arrives.

F. Web Application Implementation
The web application is built using Django and is hosted on

EC2. It powers the web application as well as the API
endpoints necessary to refresh data. The user interfaces with
the webserver, accessing the webapp using the browser on
their phone or laptop. When the user first opens the browser,
they will be directed to create an account. The account
creation process associates a private tag identifier (similar to a
MAC address) with the user to create a private connection
between the user and the tag device. The home page of the
application displays a map centered over the CMU campus,
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along with some pins the user can click to access for further
information of each of the academic buildings. The user will
be able to pan around the map and view different portions of
the campus as necessary. An image of this screen is displayed
in Figure 4.

Fig. 4. The home screen of our application.

Once the student arrives in a building, they can select a pin
of the building they would like to navigate in, which will
cause the web application to open up a map of the building. A
mockup of this view is displayed in Figure 5. The student is
able to enter the room number they would like to go to as their
destination. The webserver processes this information and
runs the navigation algorithm, using the A* pathfinding
algorithm for finding the closest path between the student and
their destination, as well as providing them with written
directions to aid them with their travel. As the student moves,
their position (as displayed on the webapp) is constantly
updated by using Javascript and occasional AJAX calls to the
webserver to ask for data, showing the student’s current
progress. Javascript will also be used to draw the desired path
the student should take to move forward.

Fig. 5. The navigation view of our application.

G. Communication From Tag to Server
Our original idea was to include an API endpoint for the tag

to constantly post updates to the server for the user’s position.
This was a very simple solution that relied only on Django.
The performance of getting a distance update was on average
within our design requirements of around 250 ms. However,
the heavy load of packets occasionally led to slowdowns.

We eventually opted towards using WebSockets, utilizing
the Django Channels library, and offloading much of the
server load from handling location updates to a separate Redis
server. Through our testing, the change to WebSockets was
worth the effort; we found our latency to drop to around 67
ms, as well as the occasional slowdowns to cease.

H. Mapping Process
The mapping process was crucial to obtain measurements of

each floor plan useful in testing so that we could synchronize
localization estimates from the localization system with the
actual position on a map in the user’s browser. To this end, we
needed to repeat this mapping process for each new area we
wanted to test the localization system, as well for the final
demonstration in the Wiegand Gym, so tools and protocols
were developed to make this process easier and less prone to
errors.

Mapping begins with using a laser measuring tool to find
the lengths and widths of the hallways of a floor. A (0,0) point
is designated in the corner of the building, and the anchors are
placed relatively to this position. One of our anchors is
configured as an initiator so that it can try communicating
with other anchors to form a network. Our testing of the
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maximum range of anchors leads to us placing them in
increments of 25 meters.

Our results from our physical mapping process is compared
to the map of the building (obtained from CMU’s online
repository of building plans [6]), where we find the pixel
locations of the origin and the offset. After demarcating the
walkable areas by marking the starting and ending positions of
hallways, a script converts the image into a two-dimensional
graph with boolean values representing walkable areas and
stores it as a JSON file.

Finally, the pixel coordinates of each room are marked in a
spreadsheet. Once this is done, all of the collected information
is exported into our server’s database. With everything put
together, the server can run our implementation of the A*
pathfinding algorithm to efficiently find the shortest path
between points. For the purposes of our demo, we are not
mapping stairs or elevators, as we will treat every floor as a
separate self-contained map.

I. Directions Implementation
When the user selects a room they want to navigate

towards, an asynchronous POST request is sent to the Django
server’s navigation API endpoint. This endpoint allows the
server to run two Breadth First Searches from the start and end
points inputted to find the nearest points in the graph. Then,
the shortest path is computed using the A* pathfinding
algorithm. Then, it computes that path into individual line
segments by determining when they change direction.
Examining pairs of adjacent line segments provides us with
the direction the user needs to turn. Then, the server compiles
the path that should be drawn on the user’s browser, as well as
generating an icon that should be used to provide a visual
indication, and sends the response back to the client.

The client parses the server’s response, drawing the path on
a canvas element placed over the map. It also calculates the
length of the path, converting it into meters, before populating
the header and footer with those values. To decrease the load
on the server, the navigation API endpoint is called sparingly.
The browser plays a role in contributing to calculating the
navigation path, automatically aligning the path’s end with the
user’s position as they walk down the hallway. As the path
grows or shortens, the metrics regarding the time remaining or
distance remaining correspondingly change.

Once the user is within two meters of the turn, the
instructions update to display the next turn they should make.
If they are at their destination, we will have the navigation
mode display this by pausing navigation. Additionally,
rerouting is also done as necessary. If the user strays too far
off the path (at least 5 meters away), the application will
assume they have gone into a different hallway, and will end
up calling the navigation API to provide an updated path.

VII. TEST, VERIFICATION AND VALIDATION

A. Results for DWM1001-Dev Range
To ensure we have sufficient connectivity inside of a

building while keeping our costs down, we need to find the

maximum distance at which two DWM1001 boards can
communicate with each other. Our goal for the maximum
range is at least 25 meters to meet the range discussed in the
design requirements. We used a laser measuring tool to
measure the distance between the two devices. We tested the
range with walls blocking and without walls. For the situation
without walls, the maximum distance between two DWM1001
devices is 35 meters. And for the situation with walls, the
maximum distance between two DWM1001 devices is 26.5
meters. Beyond either of these distances, the connection
became substantially worse. Both of the results fulfill the
design requirements.

B. Results for UWB Measurement Accuracy
Our target goal for the accuracy of our UWB measurements

was to be <0.23 meters to make sure that we would be able to
have sufficient accuracy for our multilateration to function
with < 1 meter error.

Our test involved us rolling a measuring tape between an
anchor and a tag before comparing the distance seen on the
tape with that measured by UWB. This was done in an indoor
environment to simulate actual usage. The results are shown in
Figure and reveal that the average difference is around 0.15
meters. This indicates that the accuracy of our localization
system is sufficient for accurate localization and passes the
test. This affirms our calculations from the design
requirements where we predicted this could be achieved in
theory.

C. Results for UWB Measurement Frequency
One of the goals for meeting a high update frequency for a

smooth tracking experience is to have a fast distance update
speed for our tag and its network of anchors, our goal being an
update speed of at least 2 Hz. We measured the frequency at
which our tag can get new distance values and found that this
result is at 10.1 Hz. Hence, these results reveal that we are
capable of providing very frequent updates to the user’s
position, as long as other factors are not bottlenecking the
localization process.

D. Results for Localization Algorithm Latency
Tying into our previous test with the UWB measurement

frequency, we want to make sure that none of the algorithms
for the calculation of localization are bottlenecking our
system. We find that it takes the Raspberry Pi a very fast
average of 20 ms to run our multilateration algorithm.
Additionally, the overhead of actually sending the data to the
server is only 5 ms, causing the total computation time to take
around 25 ms. This indicates that obtaining UWB distances is
our bottleneck. Furthermore, because the localization
algorithms are running on a different thread than the one
obtaining the UWB distances, our localization update
frequency is the same as our UWB measurement frequency.

E. Results for Localization Accuracy
To test the accuracy of our localization system, we stood at

random positions within the hallways of the building and used
a measuring tape to measure our distance from two walls to
find our location in 2 dimensions. An estimated location from
the localization system was obtained by using the pixel offsets
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found in the web application and converting them into meters.
The difference between the actual position and the estimated
position was calculated as the error. The average error should
be less than 1 meter to fulfill the design requirements for
accurate localization.

Fig. 6. Average Localization Distance Error

The results of our test are shown in Figure 6. We were able
to find that the average error was 0.20 meters, which meets
our use case requirements. The UWB measurement accuracy
test meeting its design requirements contributed to helping this
one pass, as we found from the design requirements
discussion.

F. Results for Localization Precision
As a part of our localization system’s accuracy, we wanted

to avoid massive jumps in the user position and limit these to
0.5 meters. To test the precision of our localization system, we
stood in a location and measured the distance of jumps we
would see in the localization system. We notice the maximum
fluctuations were approximately 2.1 meters, which was larger
than the 0.5 meter goal. Because of this, we designed a filter
for the final position estimate, that uses the change in
estimated position over time to calculate our velocity, and
rejects data points that would imply a velocity higher than
some maximum (which we specified to be 2 m/s).

G. Results for Heading Accuracy

Fig. 7. Average Rotation Error

From our use case requirements, we want the heading of the
user to be accurately represented on the map to provide a
better sense of where they should turn. To test this, we walked
along the hallway, rotating around, before stopping at parallel
angles with the hallway (in real life) before comparing the
result to that of what was seen on the browser. We took the
difference between that angle and the actual angle. The
average result over 15 trials reveals the average difference in
angle is 20 degrees (Figure 7). This aligns with our goal of 20
degrees.

H. Results for Navigation Optimality
To ensure the optimality of the travel paths proffered by our

navigation system, we used the A* pathfinding algorithm on a
map of the building floor plan that has been divided into a grid
and has had rooms and other obstructions marked as
untraversable areas. The A* pathfinding algorithm
mathematically guarantees an optimal travel path, so we need
only verify that our implementation of the A* pathfinding
algorithm is capable of always finding the shortest path.

This test was achieved by comparing the result of our A*
implementation with a known BFS solution. We tested it on a
collection of 50 randomly selected starting and ending
positions of the map and made sure the path generated by the
A* algorithm was always equal to the length of the BFS path.
This test passed, indicating the A* algorithm was able to
always find the shortest path.

I. Results for Total Latency of System
Testing the total latency of our system from user movement

to the position being updated on the user interface is important
to ensure that the user’s position does not lag too far behind.
We wanted the maximum latency under normal Wi-Fi
conditions to be under two seconds.

Our tests consisted of walking along the hallways and
recording videos of the map on the user’s phone and them
walking. We rewatched the recordings to find the differences
in the user passing landmarks in real life versus them being
reflected on the phone screen. These differences represented
the total latency of our system. After taking measurements in
different hallways, we averaged the measured latencies to get
the average latency. The maximum result was 840 ms, which
met the use case requirements.

J. Results for Tag Device Characteristics
To verify that our tag’s battery life lasts long enough to meet

our requirements, we started a navigation session with the
device, and left it running. The device was still powered on
after 4 hours, confirming that our battery life lasts long enough
to aid a student throughout the day as they are walking
indoors. Our testing actually showed that the device is capable
of lasting around 10 hours when powered by the power bank,
substantially exceeding our use case requirement.

We also measured the dimensions of the final package of
the tag to ensure that the volume is less than 2 liters in size,
ensuring it is not too much of a burden to carry around. We
measure the final size of the device to have a footprint of
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approximately 0.49 liters, leading to a compact design that
meets our use case requirement.

Finally, the cost of the tag device is $97, which meets our
use case goal of the tag device being within $100. Via our
testing of actual system metrics, as well as testing in various
floors of buildings, we have found our infrastructure cost to be
$38 per hallway corner, which meets our original use case
requirement of $50 per hallway corner.

K. Results Quality of Directions & User Experience
To validate that the directions that we deliver to the user are

understandable and that our user interface is easy to use, we
resolved to pilot the app with several potential clients, these
tests being carried out whilst testing our navigation system.
The plan was that we will give our clients the tag device, and
tell them a room in the building to navigate to. They will then
have to enter this destination into the app and follow the
directions it gives until they reach this room. After each trial,
we ask them for qualitative feedback and a rating out of 5
based on the user experience of the app, as well as the quality
of the instructions provided. Using their feedback, we work on
improvements to any features the clients had issues with. And
then we execute this feedback until we get at least 4 out of 5
on average.

While testing our navigation system, we recruited four
students to navigate to an office on the second floor of Roberts
Engineering Hall. All of these students were previously
unfamiliar with the layout of the building. We provided them
with a room to navigate towards with our application. The
users attempted to walk to the room. At the end of their
navigation session, we questioned their experience to obtain
feedback. Ultimately, we were able to get a 4.5/5.0 rating on
the usefulness of the system. The users indicated they thought
that the instructions were useful and that they appreciated the
propensity of the system to provide navigation times. These
results provide validation that our product is capable of
achieving its purpose.

VIII. PROJECT MANAGEMENT

A. Schedule
Our schedule is displayed in Figure 8. There are substantial

changes from this schedule from our original schedule. As we
obtained a better understanding of the devices we were going
to use, we correspondingly updated the schedule to account
for those differences. Additionally, we were fairly cautious
about scheduling excessive amounts of work per week, so we
left two weeks of slack at the end of the semester. As the
semester progressed, we updated our weekly schedules to
better account for where we were, and set more reasonable and
specific goals for the following weeks. However, despite the
number of changes, the core of the schedule remained the
same, where we had concurrent development of the
localization and navigation systems.

B. Team Member Responsibilities
Jeff Chen was responsible for the web application portion of

the project. He set up the web server and built the app to run in
the browser of a mobile phone. He also was responsible for
designing the entire user experience, including destination
settings, updating the real-time map (with the user’s position
marked on it), and providing navigation routing and natural
language directions. He worked with Weelie to build the
communication endpoints to support the tag’s communication
with the server. Due to his work with including maps on the
server, he ended up being in charge of mapping testing areas
and developing the tools for improving the mapping process.

Weelie Guo was in charge of the anchor devices. This
mainly involved programming the anchor devices to provide
the right data to the tag device as it is needed. He also worked
with Jeff on the mapping side of the project, planning where to
place the anchors on the map in order to maximize localization
fidelity. Additionally, he worked with Ifeanyi on the tag
device, writing the trilateration algorithm for turning distance
measurements into position estimates.

Ifeanyi Ene handled the tag device. He was responsible for
designing and building the device that pairs with the user’s
smartphone to aid in navigation. He worked with Weelie to
implement the localization routine, optimizing it with filters to
improve the accuracy of results. He also wrote the code for the
IMU to be able to estimate the user’s orientation.

C. Bill of Materials and Budget
See Table III for the full Bill of Materials.

D. Risk Management
Our initial risks we outlined in our design report related to

uncertainty towards programming and interfacing with the
DWM1001 UWB transceiver. Due to a lack of experience in
interfacing with the nrf52832 microcontroller, we were unsure
if they would be suitable for our application. This also led to
some uncertainty with our budget: there was always a chance
that pivoting to a different device could be costly, or that we
might need more transceivers than we initially assumed. Due
to this risk, our primary goal at the beginning of the project
was to tackle the issue with interfacing with the chips and start
programming them. We quickly found that the support for
programming the boards was fairly robust and that we did not
need to make any adjustments to opt for a different option.
Furthermore, once we got distance calculations, we needed to
do a substantial amount of initial testing to verify they would
be suitable for scalability.

We found many difficulties in planning our original
schedule for the semester. Planning around nine weeks ahead
revealed many difficulties as we were unsure of how long
different tasks would take, or what tasks would even be
necessary to complete later on in the semester. To alleviate the
risk of running out of time near the end of the semester, our
original schedule had two weeks of slack time. On the other
hand, to make sure that we were on track and always had
something we were striving to accomplish, we made it a point
during our weekly meetings to discuss what we were planning
on achieving in the immediate weeks (which ultimately led to
many revisions of our schedule). Ultimately, this strategy
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ended up being successful.
Throughout the process of designing our localization

system, we found a number of issues that could cause us to
miss some of our original use case goals. Among these was an
issue of position estimation latency. We found the tag was
getting distance updates from its anchors at a slow rate of
around once every few seconds. While we worked on
resolving this issue, we also worked on developing a fallback
method using our IMU. We attempted to use the IMU to
integrate the user’s position in space while using the
UWB-based position estimate to adjust this position gradually
over time using a complementary filter. Later on in the
semester, we were able to resolve the original issues we had
with the distance update frequency, which ended up rendering
much of the work done on the IMU as obsolete. In hindsight,
this was a relatively extreme risk mitigation. Development
time spent on two split ventures slowed down development for
both, though it was a sacrifice we were willing to make for a
fallback plan.

IX. ETHICAL ISSUES

Our system handles location data, which is very sensitive,
and even moves it over the web. If this data could be acquired
by the wrong third party, it could lead to stalking and general
unwanted surveillance. To combat this concern, we have
locked access to the system behind user profiles. This way, a
user’s location data is available only to them and anyone else
they share their password with. The server itself also does not
save passwords, saving hashes instead, adding further security
to the user’s private data.

One possible edge case we are missing for our application is
accessibility for people who are vision impaired. Our
application requires a screen to read. To improve accessibility,
we can include features such as text-to-speech and
speech-to-text to allow these users to be able to interact with
the different menus and listen to the instructions the device
provides them.

Scotty Maps not only has a highly accurate localization
system and helpful navigation system, but we have also
developed many tools for implementing the system in a wide
range of environments. If the system were to be applied in
more environments outside of just schools, it could provide a
substantial aid for people navigating in large, unfamiliar
indoor environments such as shopping malls or airports. The
widespread adoption of indoor navigation in these areas could
help people become more comfortable navigating them and
decrease the time they spend lost.

X. RELATED WORK

The indoor localization aspect of our project is similar to the
Inexpensive Sports RTLS System capstone project that was
done in Spring 2020. This team also used DWM1001
development boards to do indoor localization. Instead of using
TWR TOA for localization purposes, this group used TDOA
instead.

Additionally, in Spring 2023, a capstone team developed a

project called “WiSpider”, which also used wireless signals to
localize devices within buildings. However, they used Wi-Fi
signals rather than UWB. Furthermore, they used pre-installed
CMU Wi-Fi access points rather than building their own
anchor devices [8].

We designed a navigation system interface heavily inspired
by many extremely popular navigation apps such as Google
Maps, Apple Maps, and Waze. However, instead of a focus on
mapping the globe, we will instead focus on mapping out
CMU academic buildings.

There is also a company named Sewio that offers a similar
UWB-based tagging and indoor localization service, but based
on the size of the deployment (if we use all ~40 academic
buildings on the CMU campus), their system can easily run
into the hundreds of thousands of dollars, making it much less
accessible [9].

XI. SUMMARY

In conclusion, we were able to successfully develop a
project that solves the use case of students navigating indoors
within CMU buildings. Our system was able to meet all design
specifications. Users can experience a low latency, long
battery life, accurate localization service with navigation
options and clear directions. See Section VII for a detailed
breakdown of the system’s performance.

As for the limits of the system, the most notable would be
the assumption that the user is never moving faster than 2 m/s.
While this is a rather comfortable walking speed, it doesn’t
work for cases where the user is briskly walking to their
destination. Additionally, the DWM1001 specification states
that a UWB anchor network can support up to 15 tags for the
TWR protocol while maintaining its current update frequency
due to bandwidth. Hence, beyond 15 users on a single floor,
the location update frequency will drop from 10 Hz to 1 Hz.

Through completing this project, we have learned about
UWB and the different protocols that can be used to obtain
distance estimates from them for localization. The primary
thing we did not predict going into the project was the
imprecision of the distance readings. Any student in a
subsequent semester wanting to adapt or improve upon this
project should do their best to have their system not rely
primarily on these distance readings.
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GLOSSARY OF ACRONYMS

BLE – Bluetooth Low Energy
RPi – Raspberry Pi
RSSI – Received Signal Strength Indicator
TDOA – Time Difference of Arrival
TOA – Time of Arrival
TWR – Two-Way Ranging
UWB – Ultra Wideband
IMU – Inertial Measurement Unit
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TABLE III. BILL OF MATERIALS

Description Model Number Manufacturer Quantity Cost

Raspberry Pi 4 Raspberry Pi Foundation 1 Inventory

IMU GY-521 HiLetGo 1 $3.33

UWB Development Boards DWM1001-Dev Qorvo 12 Inventory

Li-Ion Batteries for DWM1001 16340 CWUU 12 $2.50

Battery Pack for Tag 10000mAh Charmast 1 $20.00

Laser Measuring Tool* LX-201 LEXIVON 1 $50.00

Adhesive Strips* Heavy Duty 3M 1 $6.00

Li-Ion Battery Charger* 16340 GRACETOP 1 $10.00

Total Cost $119.33

* = Added after Design Report
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Fig. 8. Gantt chart with our planned schedule.


