
Use Case Requirements

Requirement	Use Case Requirements	Design Requirements
Accurate localization	< 1 meter	Individual distance measurements < 0.23 meter accuracy
Battery life of device	> 4 hours	Capacity >10 mAh , 5 V battery Power consumption < 12.5 watts
Responsive tracking	> 2 Hz update frequency	Distance acquisition and localization algorithms < 500 ms
Device Price	< \$75	< \$75
Infrastructure Price	< \$100 per hallway	UWB transceivers > 25 m range

Solution Approach

Complete Solution

The tag shows the estimated position on a map to the user via a companion web app

Testing Procedures

Accuracy Tests

- Measure actual positions and distances: A laser measuring tool with millimeter precision
- Find estimated position using pixel offsets on the map
- Calculate the distances between actual positions and estimated positions

Test	Inputs	Passing	Result
Range of Anchors and Tags	Maximum communication range within a closed space	> 25 m	34 m
Distance Measurement Accuracy	Average distance accuracy between two DWM1001's	< 0.23 m	0.15 m
Localization Accuracy	Compare predicted location with the actual location	<1 m	0.2 m

Latency Test Procedure

Software Latency

 Use Python Time library to measure the time for algorithms and web server updates

Total Latency

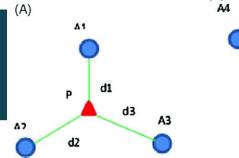
- Record a video of the user moving
- Measure time difference between movement and display on browser

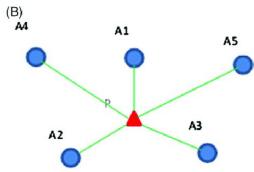
Test	Inputs	Passing	Result
Localization Precision	Maximum fluctuations in predicted location	< 0.5 m	2.1 m
Heading Accuracy	Average difference of the angle of the user's estimated orientation compared to reality	< 20°	To Be Determined
Battery life of tag	Measure battery life of device	> 4 hours	10 hours

Test	Inputs	Passing	Result
Position Update Latency	Measure latency of distance calculating algorithm	< 500 ms	20 ms
Distance Update Frequency	Measure frequency to get new distance value	> 2 Hz	10.1 Hz
Tag to WebApp Latency	Latency from sending information to webapp	< 250 ms	67 ms
Total Latency	Total latency from changing position in real world to getting reflected on the map	< 2 sec	0.84 sec

Test	Inputs	Passing	Result
Navigation algorithm	Varying starting and ending locations	Shortest paths found 100% of time	Length of path always <= BFS
Navigation Algorithm Speed	Furthest start/end positions on graph	< 500 ms	125 ms
User Experience	Qualitative feedback from clients for quality of directions	Clients think directions are helpful	4 users provided a rating of 4.5/5.0

Design Tradeoffs

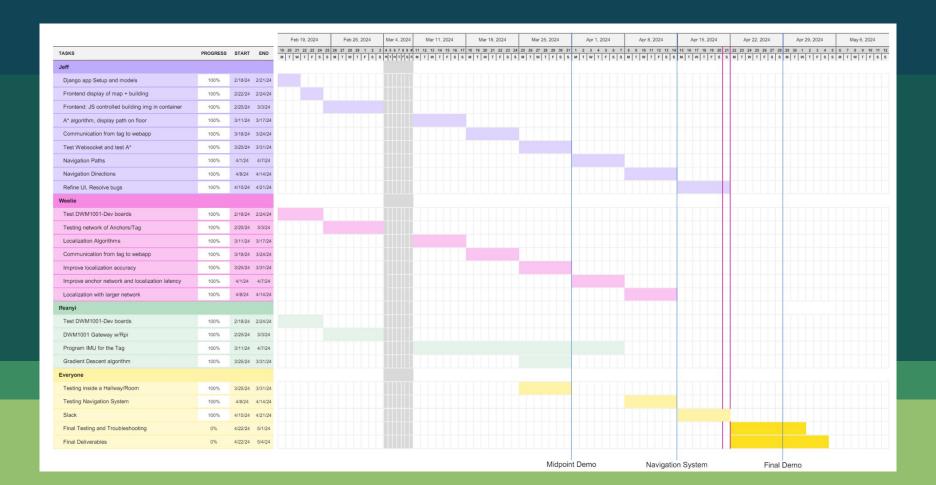

Ultrawideband Device


ESP32 UWB	Raspberry Pi 4
 Lower cost (\$39.50) Lower Operating frequency	 Higher cost (\$54.99) Higher Operating frequency
(160MHz) No in-built USB-UART	(1.5GHz) Has in-built USB-UART

Server Communication Protocol

HTML Post/Requests	Websockets
250 ms update timeMore intensive	67 ms update timeOffload work to Redis server

Design Tradeoffs


Position Estimators

Trilateration	Multilateration
 Uses only 3 anchor readings Only pick closest 3 anchors 	 Uses >=3 anchor readings (With 4 anchors, accuracy improves ~10cm)

Position Solvers

Gradient Descent	Nelder-Mead algorithm
Higher PrecisionMinimizes until it converges	 Lower Precision Don't have convergence issue
(stuck at local minimum)	(~500 ms faster on Raspberry Pi)

Project Management

