Use Case Requirements | Requirement | Use Case Requirements | Design Requirements | |------------------------|-------------------------|---| | Accurate localization | < 1 meter | Individual distance measurements < 0.23 meter accuracy | | Battery life of device | > 4 hours | Capacity >10 mAh , 5 V battery Power consumption < 12.5 watts | | Responsive tracking | > 2 Hz update frequency | Distance acquisition and localization algorithms < 500 ms | | Device Price | < \$75 | < \$75 | | Infrastructure Price | < \$100 per hallway | UWB transceivers > 25 m range | ### **Solution Approach** ### **Complete Solution** The tag shows the estimated position on a map to the user via a companion web app ### **Testing Procedures** ## Accuracy Tests - Measure actual positions and distances: A laser measuring tool with millimeter precision - Find estimated position using pixel offsets on the map - Calculate the distances between actual positions and estimated positions | Test | Inputs | Passing | Result | |-------------------------------------|---|----------|--------| | Range of
Anchors and
Tags | Maximum communication range within a closed space | > 25 m | 34 m | | Distance
Measurement
Accuracy | Average distance accuracy between two DWM1001's | < 0.23 m | 0.15 m | | Localization
Accuracy | Compare predicted location with the actual location | <1 m | 0.2 m | ### **Latency Test Procedure** ## Software Latency Use Python Time library to measure the time for algorithms and web server updates ## Total Latency - Record a video of the user moving - Measure time difference between movement and display on browser | Test | Inputs | Passing | Result | |---------------------------|---|-----------|---------------------| | Localization
Precision | Maximum fluctuations in predicted location | < 0.5 m | 2.1 m | | Heading
Accuracy | Average difference of the angle of
the user's estimated orientation
compared to reality | < 20° | To Be
Determined | | Battery life of tag | Measure battery life of device | > 4 hours | 10 hours | | Test | Inputs | Passing | Result | |------------------------------|--|----------|----------| | Position Update
Latency | Measure latency of distance calculating algorithm | < 500 ms | 20 ms | | Distance Update
Frequency | Measure frequency to get new distance value | > 2 Hz | 10.1 Hz | | Tag to WebApp
Latency | Latency from sending information to webapp | < 250 ms | 67 ms | | Total Latency | Total latency from changing position in real world to getting reflected on the map | < 2 sec | 0.84 sec | | Test | Inputs | Passing | Result | |-------------------------------|---|--|--| | Navigation
algorithm | Varying starting and ending locations | Shortest paths
found 100% of
time | Length of path
always <= BFS | | Navigation
Algorithm Speed | Furthest start/end
positions on graph | < 500 ms | 125 ms | | User Experience | Qualitative feedback
from clients for quality
of directions | Clients think
directions are
helpful | 4 users provided
a rating of
4.5/5.0 | ### **Design Tradeoffs** #### **Ultrawideband Device** | ESP32 UWB | Raspberry Pi 4 | |--|--| | Lower cost (\$39.50) Lower Operating frequency | Higher cost (\$54.99) Higher Operating frequency | | (160MHz) No in-built USB-UART | (1.5GHz) Has in-built USB-UART | #### **Server Communication Protocol** | HTML Post/Requests | Websockets | |---|--| | 250 ms update timeMore intensive | 67 ms update timeOffload work to Redis server | ### **Design Tradeoffs** #### **Position Estimators** | Trilateration | Multilateration | |--|--| | Uses only 3 anchor readings Only pick closest 3 anchors | Uses >=3 anchor readings (With 4 anchors, accuracy improves ~10cm) | #### **Position Solvers** | Gradient Descent | Nelder-Mead algorithm | |---|--| | Higher PrecisionMinimizes until it converges | Lower Precision Don't have convergence issue | | (stuck at local minimum) | (~500 ms faster on Raspberry Pi) | ### **Project Management**