
1
18-500 Design Project Report: Scotty Maps 03/01/2024

Abstract—Scotty Maps will be a system capable of providing
highly accurate indoor localization and navigation services to
students at Carnegie Mellon University. This project will utilize a
network of ultrawideband transceivers to localize the user within
academic buildings on campus. Our web application will display
the user’s location, as well as provide navigational instructions to
the best paths to the student’s destination. We hope to create a
novel, inexpensive, and scalable system that can be easily
implemented in preexisting buildings on campus, streamlining
the experience of new students exploring buildings on campus.

Index Terms—Indoor Localization, Mapping, Navigation
Systems, Time of Arrival, Ultrawideband

I. INTRODUCTION

Navigation systems have become a ubiquitous part of our

lives, revolutionizing how we move the world. GPS can be
leveraged to provide directions in nearly any outdoor
environment, allowing navigation systems to offer
unparalleled convenience and precision. However,
navigational systems do not work well indoors due to GPS
signals being stopped by walls. Hence, an indoor navigation
system would take our daily navigational needs even further,
providing seamless guidance within complicated buildings.

For students, the benefit of indoor navigational systems is
especially pronounced. New students at CMU may have
particularly significant difficulties in finding rooms in the
academic buildings on campus. Trying to find a room in an
unfamiliar building can both stress students and waste their
time. An indoor navigation system would assist students in
confidently finding their destinations, minimizing the
frustrations that come along with getting lost in a new place.

Scotty Maps aims to solve the problem of students
becoming lost in CMU buildings by creating a localization
system and navigation app to guide students directly to their
desired rooms. All students will need is a tag they can put in
their backpacks. Then, once they are in a building, they can
use their phone to access our web application, which will
provide them with directions to get to their destination.

Indoor navigation systems are not wholly a new idea.
Several companies have solutions regarding implementing
indoor localization systems. However, these systems are often
enterprise-level and are designed for large-scale commercial
applications, making them prohibitively expensive for a
college campus. Instead, Scotty Maps will make a solution
tailored specifically to the unique needs of the CMU campus

by creating an affordable and scalable solution, focusing
primarily on navigation within academic buildings to
streamline the student experience.

II. USE-CASE REQUIREMENTS

Scotty Maps will be designed primarily to achieve excellent
localization accuracy, along with providing highly useful
directions for the user to follow. However, along with these
goals, this project will also have an intent of being accessible,
and unobtrusive, while also protecting the privacy rights of
students who will be using the device.

Our project has several use case requirements, the most
important being highly accurate localization of up to an
accuracy of one meter. One meter is typically the width of
most doorways, and we believe that this localization resolution
is sufficient for preventing students from getting lost in
buildings. Then, we would like the localization system to
function responsively, having an update frequency for the
student’s location of at least 2 Hz. Assuming the student is
moving at a walking pace, this frequency is sufficient to
accurately maintain the real-time location of the student, as
students will move less than a meter in the 500 ms.

There are also several physical characteristics of what the
final product should consist of. We would like the portable tag
the user is carrying to have a battery life of at least 4 hours, as
we think 4 hours is approximately the maximum amount of
time we expect a student might spend walking around indoors
on a given day. Next, the size of the tag should not be
excessively large either, as we would like the tag to fit in a
user’s backpack. Hence, the device size should be less than 2
liters, the size of a laptop. Additionally, the overall price of the
tag should not be too expensive for students to purchase, at a
cost of less than $100. Finally, the cost of installing the
localization system inside a building should be reasonable, at
around $50 a hallway, or approximately $300 for a floor of a
typical building.

Due to the system constantly tracking the students as they
are moving around indoors, respecting the privacy rights of
the students becomes paramount. Security measures such as a
login system will be implemented such that bad actors will be
unable to access the system and view the locations of other
students. Furthermore, our system should avoid storing
historical data of student movements, as it should only use
relevant information on the current location of the student to
provide navigation information. Finally, we are also going to
be using CMU building floorplans in the navigational view of
our web application. This information typically requires an

Scotty Maps
Jeff Chen, Ifeanyi Ene, Weelie Guo

Department of Electrical and Computer Engineering, Carnegie Mellon University

2
18-500 Design Project Report: Scotty Maps 03/01/2024

AndrewID to access, so we think it would be prudent for our
web application to only support usage from people with
AndrewIDs.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

Fig. 1. A high-level view of our system implementation for finding the
user’s location and providing them with directions.

As seen in Figure 1, the high-level overview of our system
consists of a network of UWB transceivers, which function as
“anchors”. These anchors will be fixed in various locations in
a building. The student carries around a “tag”. Once the tag is
in the vicinity of the anchors, the tag will communicate with
the anchors to figure out the distances between it and each of
the anchors. With the distances, it will then run localization
algorithms to determine the device’s location. This
information is communicated over Wi-Fi to our server, which
will host our web application. Users will utilize a browser on
their phones to access the server and view the webapp, which
will display their current location in the building, as well as
the directions they need to follow to get to their destination.

Fig. 2. System block diagram showing the overall layout of our anchors,
tag, server, and user interface.

Our system block diagram is shown in Figure 2. An anchor
is displayed at the very leftmost part of the image. In our final
design, we aim to have at least 10 anchors fixed in various
positions around a building for better connectivity throughout
the area of the building. These anchors will be constantly
listening to UWB packets, sent by the tag. Upon receiving
these packets, the anchors will respond to initiate a
communication protocol with UWB to determine the distance
between it and the tag.

The tag will have the functionality to communicate with all
of the anchors present in our network. It runs the localization
algorithms necessary for localizing our device. Additionally,
there is also an IMU attached to the tag, which will allow us to
find the user’s orientation, so we can know which direction
they are currently facing within the building. The IMU can
also be leveraged to help provide an estimation of the
direction the user is headed in, which can be used in tandem
with our UWB localization to better refine our location. The
tag can send all the necessary localization information over
Wi-Fi to our server.

Our server consists of a Django server that will be hosted on
AWS. The server contains a Django web application, which
will be the primary form of contact between the user and the
localization device. The user will be able to input locations
they wish to go to via the webapp, and then the webapp will
use that information to find navigation instructions the user
can use to get to their destination. While in navigation, the
user will be able to input feedback into the system by their
current position (provided to the server by the tag). Our server
will be able to keep track of the location of the user and
display that information for the user to see in the web
application.

3
18-500 Design Project Report: Scotty Maps 03/01/2024

IV. DESIGN REQUIREMENTS

A. Ultrawideband Accuracy
The most important use case requirement we would like the

design to focus on is localization accuracy. To achieve a high
accuracy of less than one meter, we would like to use UWB
and the TWR TOA protocol to determine the distances
between our UWB devices. This protocol relies upon a tag
sending a message to an anchor before the anchor responds
with a reply. The DW1000 chip on the UWB board is then
able to calculate the time of flight (TOF) using (1), where is𝑡

1

the start time of the initiator, and is the time at which the𝑡
2

initiator receives the response from the responder.

(1)𝑇𝑂𝐹 =
𝑡

2
−𝑡

1
−𝑡

𝑟𝑒𝑝𝑙𝑦

2
The propagation speed of UWB signals through air is equal

to the speed of light. Hence, we can solve for the resolution
the DW1000 should have to be able to measure differences in
location by using (2).

(2)𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑐
(𝑡

2
−𝑡

1
−𝑡

𝑟𝑒𝑝𝑙𝑦
)

2

We can assume that is a fixed constant based on the𝑡
𝑟𝑒𝑝𝑙𝑦

delay of the sum of the anchor’s antenna and the anchor’s
processing speed. While solving for the propagation time of
the signal, this can be safely ignored. By using a distance of 1
meter and a speed of light of 3.0*10^8, we find that the
DW1000 should have a time resolution of at least 6.67
nanoseconds to be able to differentiate distances of one meter.
Unsurprisingly for a device with accuracy claims of 0.1
meters, this is the case, as the DW1000 has a time resolution
of approximately 15.65 picoseconds [1]. Our findings reveal
that our UWB boards are capable of reaching the accuracy
necessary for our application.

B. Responsive Tracking
We would like to be able to sample the user’s location at a

frequency of at least 2 Hz to be able to capture their location
in real-time. To do this, our tag needs to obtain distances from
the anchors as well as run the localization algorithms within
500 ms. It is likely the communication protocols could be the
most time-consuming portion. First, we need to be able to
communicate with multiple UWB devices simultaneously. To
obtain accurate distances between the tags and the anchors,
several samples of distances should be obtained between the
same tag and anchor. The TWR TOA protocol takes
approximately 1.2 ms between a tag and anchor when the tag
is able to discover an anchor [1]. When considering a larger
network of at least 10 anchors and assuming the tag will
sample each anchor at least 5 times, we note that the overall
localization time is reasonably quick at less than 100 ms and
should not bottleneck our overall localization speed. The rest
of the computation relies on our localization algorithms. These
will be run on an RPi 4, which should be sufficiently powerful
to run the algorithms well within the required time. Altogether,
these results show we should be able to meet the timing
requirements for our project.

C. Power Requirements
Our goal is for our tag to have a battery life of at least 4

hours, as we assume that this is approximately the maximum
time a student will spend walking indoors in a given day.
Assuming the power consumption of the DWM-1001
development board is approximately 82 mA at 3.5 V when it
is sending data, and noting that the power consumption of the
RPi is around 600 mA at 5.0 V, we can use (3) to estimate our
average power consumption when constantly transmitting and
processing data is around 2.8 watts.

(3)𝑝 = 𝑖𝑣
From these results, we find that our battery supply for the

tag should be at least 12 watt-hours. Any power supply with
approximately 2.5 amps of capacity at 5 volts should be
sufficient for our device to maintain a full-day battery life.

D. Range of Ultrawideband Transceivers
We would like the installation of our UWB anchors to not

be excessively expensive, at a cost of approximately $50 for a
corner of a hallway. To do this, we would like our transceivers
to span the distance of most hallways (with longer hallways
such as those in Wean Hall being divided into two). Given this
constraint, we note that many hallways in academic buildings
at CMU have hallways that span approximately 25 meters
before meeting an “intersection” or a wall. The lengths of
hallways in academic buildings are all different and there are
many exceptions to this rule; however, from our brief
experiences measuring out the lengths of various hallways, we
believe this distance is typically sufficient. Hence, to keep the
costs of our ultrawideband receivers on the lower end, we
would like our UWB transceivers to have 25 meters of range.

Fig. 3. Example locations of anchors, in red boxes, to map out floor 2 of
ReH

Figure 3 displays an example of how anchors could be
installed inside floor two of the Roberts Engineering Hall to
map out the major walking areas, such that we have at least
three anchors with direct line of sight in each hallway for
trilateration. Despite the horizontal hallways spanning further
than 25 meters, the edges of the main hallways are broken up
by vertical hallways into lengths of less than 25 meters. By
installing sets of anchors in these corners, we are able to map
out the floor.

4
18-500 Design Project Report: Scotty Maps 03/01/2024

V. DESIGN TRADE STUDIES

A. Wireless Technology
One of the most important areas of contention when we

came up with a solution was the technology we wanted to use
for indoor localization. The choice for selecting a technology
was motivated by our use case requirements, as we wanted to
create a system with highly accurate tracking, while still
keeping our system costs relatively low. The main wireless
technologies we researched were Wi-Fi, BLE, and UWB, as
these were all involved in previous research in indoor
localization. We wanted to focus primarily on determining a
technology’s localization accuracy, then the range of the
devices, before also considering the propensity of the signals
to be subject to interference, and finally, cost.

TABLE I. WIRELESS TECHNOLOGIES TRADEOFFS

Technology
Characteristics

Accuracy Indoor Range Infrastructure Price

Wi-Fi 3 m 50 m $0

BLE 5.1 1 m 100 m $42

UWB 0.3 m 100 m $75

Table 1 summarizes some of our general findings regarding
the characteristics of the technologies we were interested in
exploring. We found the accuracy of technologies utilizing
results from previous projects and research. Wi-Fi has the
worst accuracy at approximately 3 meters [2], while Bluetooth
has an accuracy of around 1 meter [3], with UWB having the
highest accuracy of around 0.3 meters [4]. The indoor range of
these technologies varies slightly with utilizing different
devices or the assumption of the number of obstructions in an
indoor environment, though we found BLE 5.1 and UWB to
typically have higher ranges than Wi-Fi. Finally, we estimated
the infrastructure prices of using these devices along a single
50-meter-long hallway, assuming we needed 3 anchors for
BLE and UWB (to use trilateration) and 6 anchors for Wi-Fi
(due to the difference in range).

Initially, we assumed Wi-Fi would be a good technology to
use. Due to the ubiquitous nature of the internet, Wireless
Access Points (WAPs) are already built into the infrastructure
of buildings. WAPs typically have a high range (up to 50
meters indoors) and are also typically installed in a fashion
such that there is some overlap between each of them,
allowing us to triangulate the user. Utilizing these WAPs for
distance localization could reduce the cost of implementing
our system in a building. Additionally, there was a lot of
published literature regarding utilizing Wi-Fi in indoor
localization. However, our literature review showed the
accuracy of Wi-Fi systems to be lacking accuracy; typically
they struggled to become accurate to within 3 meters. Wi-Fi
inherently falls short because the technology was not built to
be an indoor localization technology. Wi-Fi finds the distance
between devices with RSSI, which lacks resolution, as well as
faltering in the face of obstructions, such as walls, rendering

Wi-Fi subject to interference.
BLE was another technology we researched. In terms of

localization, it functions quite similarly with respect to Wi-Fi,
also utilizing RSSI for distance calculation. Our research
found that the newer BLE 5.1 version was capable of
localization accuracy to around a meter with a direct line of
sight, which is a level of localization accuracy that falls
slightly short of our goal of less than one meter. The range of
BLE 5.1 is greater than that of Wi-Fi at around 100 meters;
however, a localization system would require the installation
of a large number of these devices. Assuming each device
consists of a transceiver and a microcontroller, we find that
each device costs around $14, or a cost of $42 for localization
in a hallway. Finally, due to Bluetooth also relying on RSSI, it
also suffers from being prone to interference from
obstructions.

The third technology we researched was UWB. UWB
seems to have significant advantages in many aspects that
make it more accurate in localization. Importantly, UWB is
different from narrow-band systems such as Wi-Fi and
Bluetooth as its signals have better multipath resolution, such
that UWB signals remain distinct while narrowband signals
might overlap in a multipath environment [4]. Hence, when it
comes to determining distance, UWB can rely on protocols
other than RSSI, such as Time-of-Arrival, which ultimately
leads to a significantly higher accuracy of less than 0.3 meters,
which is sufficient for our localization system. Our
investigation of the range of UWB transceivers showed they
were capable of a range of around 100 meters, high enough to
cover longer hallways. Additionally, due to UWB being
transmitted over multiple frequency bands, it is also less prone
to interference than either Wi-Fi or BLE (both of which
transmit on the 2.4 GHz band). However, the cost of a UWB
system appears to be an issue, primarily due to the newer
nature of the technology, and fewer options for transceivers.
These devices have a per-device cost of around $25, which
makes localization within a hallway to be around $75.
Although the prices for UWB devices are higher than other
technologies, the advantages they have in accuracy and
providing solid range make them the suitable technology for
this project.

B. Ultrawideband Board
The choice of which UWB chip would best fit our

application ended up being a rather simple choice due to the
limited options available for cost-effective UWB solutions.
Some manufacturers such as Microchip Technology only sell
UWB chips. However, incorporating an UWB into a PCB was
beyond our expertise, so we looked for developer boards with
a UWB chip and antenna instead.

We examined UWB developer boards from NXP, SPARK
Microsystems, and Qorvo, with the results summarized in
Table 2. Boards from NXP and SPARK were relatively
expensive, costing several hundred dollars for each board, so
we opted towards Qorvo, which happens to have significantly
cheaper developer boards.

5
18-500 Design Project Report: Scotty Maps 03/01/2024

TABLE II. UWB DEVELOPMENT BOARD COST

Device Unit Price

SPARK SR1010 $999

NXP NCJ29D5 $129

Custom DWM1000 PCB $27

DWM1001-Dev $25

a.

Qorvo sells two varieties of chips, the DW1000 and the
DW3000. The latter is the newer, more expensive variant
offering slightly better energy efficiency, though qualities such
as the range or accuracy are rated as being the same as the
DW1000. Qorvo sells multiple packages of their DW1000
chip. One is the DWM100, which simply consists of a PCB
with a DW1000 as well as an UWB antenna. We looked into
designing PCBs for housing a DWM1000, as well as a
microcontroller to control the transceiver, and we found that
this would have a unit price of around $27. However, Qorvo
also sells DWM1001-Dev boards that encompass the
functionality our custom PCB solution would resolve at a
lower price of $25 per device. Due to these reasons, we
ultimately settled on using the DWM1001-Dev development
kits.

C. Choice of Gateway Device
The DWM1001-Dev board we selected as our UWB

transceivers is controlled by an nrf52832 microcontroller,
which does not inherently have Wi-Fi connectivity. Therefore,
we need a way to convert the device into a gateway for the tag
to post to the server to update the state of the user’s position.
Two options we explored to include this functionality are the
ESP8266 and the RPi 4. The ESP8266 has the benefit of being
a cheaper device at around $8, compared to the RPi 4’s higher
price of $62. The ESP8266 also has a smaller power
consumption while being smaller than the RPi. However, the
RPi 4 has the primary advantage of having a massively higher
amount of computing power available. With the higher
compute, we can be more confident the device can handle
running our localization algorithms in the required amount of
time in tandem with the extra processing needed to acquire
data from our IMU and make location predictions with it.

D. Raspberry Pi to DWM1001-Dev Communication
There are basically two ways to connect RPi to DWM1001:

SPI and USB. SPI has a master clock and data is transferred
simultaneously in and out. USB uses differential NRZ
signaling and the data transferring between RPi and
DWM1001-Dev is not synchronized. The advantage of SPI is
that it can transfer data in any direction at the same time, and
it is slightly faster than USB because it is synchronized.
However, we only need a one-way data transaction, and the
USB connection is already fast enough (115,200 baud rate).
The disadvantage of using SPI is that it will use a lot of GPIO
ports, but we still need to connect the IMU to RPi with GPIO
ports. The IMU position must reflect the position of the tag, so
it must use GPIO ports, but RPi doesn’t have enough ports to

support both SPI and IMU connections. In this case, USB
communication will save the GPIO ports for IMU. When
using USB to connect between RPi and DWM1001-Dev, it is
also easier for our team to adjust the position of
DWM1001-Dev because it will collaborate with IMU to
approximate the current tag position on the map. Based on the
above reasons, we decided to select USB communication over
SPI communication.

E. Handling Multiple Transceivers
There will be situations where the tag could receive signals

from more than three different anchors. To deal with this
situation, there are two different approaches. One is to change
our algorithm from trilateration to multilateration, and the
other one is to pick the anchors that are closest to the tag. The
advantage of multilateral positioning is that it will create
more precise positions of the tag in 3D space. However, since
our project is mainly for solving this problem on a single floor,
this advantage is not important. Also, the distances will be not
accurate enough for anchors that are further away from the
tag, especially in the case where the signal from the anchor is
blocked by a wall. Based on the above reasons, we stick on
implementing trilateration and pick the closest three anchors
each time for the algorithm.

F. Frontend Choice
After deciding on using UWB as our localization

technology and determining the components that would
compose the device, another consideration was the most
optimal frontend technology that could be used to
communicate information effectively to the user. On this front,
there were several viable options. We could design an app for
mobile devices, a Python application, or a Django web
application.

Implementing a mobile application is somewhat of a logical
option, due to the plethora of other navigation apps that many
people already use on their phones. Hence, this option could
produce an application that would be fairly intuitive for users
to use. However, the members of our group have fairly limited
experience with mobile development, and we decided it would
be excessively challenging to pursue this approach. Another
option was to take advantage of the computing power of the
RPi to host a graphical Python program. By adding a screen,
we would be able to display directions while running the
localization algorithms, which would keep all of the
computing localized on one device. However, this option has
the issue of leading to a worse user experience, as we would
need to also come up with a user interface and work out an
optimal method for considering user input.

We ultimately chose to use a Django webserver due to our
previous expertise in developing Django apps. Django
applications tend to be particularly flexible, allowing us to
design an application that could be used on any mobile device
or laptop. By having the webserver handle requests, we would
be able to easily have a sufficient amount of connectivity
between the user interface and their physical tracker.

6
18-500 Design Project Report: Scotty Maps 03/01/2024

VI. SYSTEM IMPLEMENTATION

A. Anchor Implementation
From our block diagram, the anchors of our design will

consist of the DWM1001-Dev boards. These boards have a
DWM1000 module which has functionality as the UWB
transceiver. We will configure these boards to function as
anchors, such that they will always be listening for UWB
messages, and be ready at any time to respond to requests
from the tag to initiate an exchange of Two-Way Ranging
(TWR) Time of Arrival (TOA) data to calculate the distance
between the tag and the anchor. They will be set with a
specific id such that the tag and the anchors will be in the
same system network. Thus, the tag will be able to figure out
the anchors that it can communicate with. Each of the anchors
will have a DC jack to be plugged into a nearby wall socket,
with the device itself being mountable on any wall with
double-sided adhesive, the higher the better, as it gives more
range than if placed on the floor. For easy mapping purposes,
since all anchors are two-way communicators, the devices can
also talk to each other to get their distances from one another.
Such an array of distances could be used to create a
scale-accurate 3D map of all the anchor points, which we need
only to align with the map of the building to get the positions
of all anchors relative to the building. Our code will set the
initial positions of these anchors on the map, and then the
anchors can adjust themselves automatically by measuring the
distances with other anchors. This is a routine we will use to
set up the system initially, after which the anchor positions
will be remembered and used to locate the user when they
perform trilateration on their distances from each of the
anchors.

B. Tag Implementation
The tag also consists of a DWM1001-Dev board, except it

is also considered a gateway device. The DWM1001-Dev
board is controlled by an nrf52832 microcontroller, which
does not have built-in Wi-Fi, hence, we will connect the
development board to a RPi 4 over USB. The RPi will
constantly ping UWB devices by communicating over USB by
requesting readings from DWM1001-Dev. This DWM1000
chip will be running multiple threads, each one performing
Two-Way Ranging (TWR) with an anchor to get the distance
between itself and the anchor. Once it has established these
distances between itself and the various anchors, it will then
transfer the distance data to RPi through serial port. The RPi
will then run localization algorithms such as trilateration for
the approximation of current location relative to all the
anchors and the centroid of the triangle to find the more
accurate location. The tag will also be connected to an IMU.
By communicating with the IMU over SPI, the tag will be able
to use algorithms to find the orientation of the user. Then, the
RPi will send all of the localization information to the
webserver by utilizing the Python requests library to post
information to the server’s database. The tag device will be
powered by a 5V power bank, which will be plugged into the
RPi, while the DWM1001-Dev board will receive power from

its USB connection to the RPi.

C. Localization Algorithms Implementation
The most important algorithm that will be used for

localization is the trilateration algorithm. Trilateration is the
use of distances (or "ranges") for determining the unknown
position coordinates of a point of interest. [5] Based on
measurement of the times of arrival (TOAs) between anchors
and the tag, we could get the distances between the tag and the
surrounding anchors. A point on the Cartesian plane(𝑥, 𝑦)
lies on a circle of radius centered at if and only if𝑟

1
(𝑐𝑥, 𝑐𝑦)

is a solution to (4).
(4)(𝑥 − 𝑐𝑥)2 + (𝑦 − 𝑐𝑦)2 = 𝑟

1
2

With the same reasoning, we can derive equations for the
circles generated by the three different anchors. Since each
one has its own position, we can express their positions with

The radius of the circles the form(𝑥
1
, 𝑦

1
), (𝑥

2
, 𝑦

2
), (𝑥

3
, 𝑦

3
).

can be expressed as The problem of trilateration is𝑟
1
, 𝑟

2
, 𝑟

3
.

solved mathematically by finding the point that𝑃 = (𝑥, 𝑦)
simultaneously satisfies these equations of these circles.

(5)(𝑥 − 𝑥
1
)2 + (𝑦 − 𝑦

1
)2 = 𝑟

1
2

(6)(𝑥 − 𝑥
2
)2 + (𝑦 − 𝑦

2
)2 = 𝑟

2
2

(7)(𝑥 − 𝑥
3
)2 + (𝑦 − 𝑦

3
)2 = 𝑟

3
2

Equations (5), (6), and (7) are based on the assumptions that
the circles that the anchors generate meet at a single point, and
the signals of the anchors can form perfect circles. However,
in real life, there could always be cases when the circles don’t
meet at a single point, and the signals can form perfect circles.
Thus, we need to find the point that best approximates the tag
position. Given a position , we can estimate how well it𝑋
replaces the ideal precise location . We can do this simply by𝑃
calculating its distance from each anchor. If those distances
perfectly match with their respective distances, then is𝑋
indeed . The more deviates from these distances, the𝑃 𝑋
further it is deviated from . In this case, we can treat𝑃
trilateration as an optimization problem. The goal is to find the
point that minimizes the error from to . Suppose the𝑋 𝑋 𝑃
deviation from the ideal distances with the actual𝑑

1
, 𝑑

2
, 𝑑

3
distances between the tag and the anchors are , and𝑒

1
, 𝑒

2
, 𝑒

3
the anchor’s locations are We need to find the𝐿

1
, 𝐿

2
, 𝐿

3
.

position that minimize the following equation sets.𝑋
(8)𝑒1 = 𝑑

1
 − 𝑑𝑖𝑠𝑡(𝑋 − 𝐿

1
)

(9)𝑒2 = 𝑑
2
 − 𝑑𝑖𝑠𝑡(𝑋 − 𝐿

2
)

(10)𝑒3 = 𝑑
3
 − 𝑑𝑖𝑠𝑡(𝑋 − 𝐿

3
)

We can use the mean squared error to express the overall
deviations from the point to the ideal location of the current𝑋
position.

(11)
Σ(𝑑

𝑖
 − 𝑑𝑖𝑠𝑡(𝑋 − 𝐿

𝑖
))2

𝑁
To minimize the error, we will use algorithms that get the
centroid of the triangle to find the point . The area𝑋

7
18-500 Design Project Report: Scotty Maps 03/01/2024

overlapped by the three circles will form three vertices
By using perspective correct interpolation, we can𝑣

1
, 𝑣

2
, 𝑣

3
.

find the centroid of this triangle for the final decision.

(12)
Σ𝑉

𝑖

𝑁
Figure 4 is a demonstration of how the general trilateration
algorithm works.

Fig. 4. Trilateration algorithm demonstration

D. Web Application Implementation
The user is able to interface with the webserver, accessing

the webapp using the browser on their phone or laptop. The
home page of the application displays a map centered over the
CMU campus, along with some pins the user can click to
access for further information of each of the academic
buildings. The user will be able to pan around the map and
view different portions of the campus as necessary. A mockup
of how this would look like on a phone is displayed in Figure
5.

Fig. 5. Mockup of the home screen of our application.

Once the student arrives in a building, their browser will try

to use geolocation to find which building they are in, which
will cause the web application to open up a map of the
building. A mockup of this view is displayed in Figure 6. The
student will be able to confirm they are indeed at the building,
and then will be able to enter the room number they would
like to go to as their destination. The webserver processes this
information and runs the navigation algorithm, using the A*
pathfinding algorithm for finding the closest path between the
student and their destination, as well as providing them with
written directions to aid them with their travel. As the student
moves, their position (as displayed on the webapp) will be
constantly updated by using Javascript AJAX calls to the
webserver to ask for data, showing the student’s current
progress. Javascript will also be used to draw the desired path
the student should take to move forward.

Fig. 6. Mockup of the navigation view of our application.

E. Directions Implementation
Once we know the location of the user (via trilateration) and

the direction they're facing (via IMU), as well as which way
they need to go (via the pathfinding algorithm), we can give
them directions for what to do next in order to reach their
destination. When a user is walking down a long hallway, we
will direct them to “Walk Forward”, with additional mention
of how long they must walk until they need to make the next
turn, whether that be 50ft, 100ft, etc. Once the user is within
10ft of the turn, we will instruct them to “Turn Right”/”Turn
Left”. Once their rotation confirms that they have completed
this turn, we will go back to instructing them to walk forward.
When they are within 5 feet of the door of the room they asked
to navigate to and facing the door, we will inform them that
“You have reached your destination!” If at any point the user
is facing opposite the direction of intended travel, we will
simply direct them to “Turn Around”. To compute the
direction of intended travel, we will use the A* gradient of
each grid cell of our map. That is, we will compute for each
cell the direction of reduced travel distance to the destination
(easily computed by taking the average of the gradient of

8
18-500 Design Project Report: Scotty Maps 03/01/2024

distance from the target across all neighboring cells).

F. Mapping Process
As mentioned previously in the “Anchor Implementation”

section, we will develop a routine where all anchors
communicate with each other to find their relative positions to
one another. This works by each pair using TWR to get their
distance between each other, followed by sending these
distances to a laptop, on which we can solve a simultaneous
equation of all their distances to get their relative positions in
3D space. From there, we just need to align this map of anchor
points with our map of the building (which we will obtain
from CMU’s online repository of building plans [6]). To do
this, we can stand at exactly 3 points (at a minimum; 4 or
more would likely increase the robustness and accuracy of the
alignment) and mark where we are currently standing on the
map. These marked points can then be employed, along with
the corresponding points given by our tracking system, to
solve for a location and rotation transformation that fits the
anchor points to the map. This way, for any point provided by
our tracking system, we can obtain the corresponding point on
the map. From there, we can divide the map into a grid of cells
with a size of 10 cm, which creates a grid detailed enough to
fit slanted or circular hallways. Using this grid, we can run the
A* pathfinding algorithm, which requires a space to be
discretely tiled to provide navigation across it. Additionally,
we would need to demarcate the grid with walkable zones and
obstacles, which the A* pathfinding algorithm would also
need to provide accurate navigation that steers around rooms
and other obstructions. For the purposes of our demo, we are
not mapping stairs or elevators, as we will treat every floor as
a separate self-contained map.

VII. TEST, VERIFICATION AND VALIDATION

A. DWM1001-Dev Range
To ensure we have sufficient connectivity inside of a

building, we need to find the maximum distance at which two
DWM1001 boards can communicate with each other. We can
use a tape to measure the distance between the two devices.
We need to make sure the maximum range is at least 25 meters
to meet the range discussed in the design requirements.
Furthermore, we will test to make sure that the distance
remains accurate even through walls to ensure a useful indoor
range.

B. Localization Accuracy
To test the accuracy of our localization system, we will

stand at random positions within the hallways of the building
and use a measuring tape to measure our distance from two
walls to find our location in 2 dimensions. We will then obtain
an estimated location from our localization system. Then our
physical location will be compared to the result from our
localization system by finding the difference. After taking a
few dozens of these measurements, we will take an average of
the measured errors. To pass this test, our average error should
be less than 1m, and we will consider that our system is
accurate enough to measure the position of the user within a

margin of error the size of most building features. We will
create situations where anchors and the tag are blocked by the
walls and repeat the above process.

C. Navigation Optimality
To ensure the optimality of the travel paths proffered by our

navigation system, we will use the A* pathfinding algorithm
on a map of the building floor plan that has been divided into a
grid and has had rooms and other obstructions marked as
untraversable areas. The A* pathfinding algorithm
mathematically guarantees an optimal travel path, so we need
only verify that our implementation of the A* pathfinding
algorithm is correct, which we can do by benchmarking our
code against a library of test cases, which we will obtain from
coding challenge websites such as HackerRank and LeetCode.

D. Latency of Localization Updates
Testing the latency of our localization system in obtaining

its position is important to ensure we can have a high enough
update frequency. We need to measure the total latency of our
localization system, from the communication protocols in
getting distances between the tag and the anchors to the
latency of the algorithms for localization. The overall latency
should be less than 500 ms.

Additionally, we also need to make sure that updates to the
user position in real life are updated on the user interface in a
timely manner. Upon finding a new update for the user’s
location, we need to timestamp this message before sending it
to the webserver. Then, we can compare this timestamp to the
time the Javascript in the browser receives the data, taking the
difference to find the latency present. We would like this
latency to be within 2 seconds.

E. Tag Device Convenience
To verify that our tag’s battery life lasts long enough to meet

our requirements, we will start a navigation session with the
device, and leave it running. If the device is still powered on
after 4 hours, then we will have confirmed that our battery life
lasts long enough to aid a student throughout the day as they
are walking indoors. We will also measure the dimensions of
the final package of the tag to ensure that the volume is less
than 2 liters in size, ensuring it is not too much of a burden to
carry around.

F. Quality of Directions & User Experience
To validate that the directions that we deliver to the user are

understandable and that our user interface is easy to use and
successfully guides the user to their destination quickly and
easily, we will pilot the app with several testers. These tests
will be carried out whilst testing our navigation system. We
will give our clients the tag device, and tell them a room in the
building to navigate to. They will then have to enter this
destination into the app and follow the directions it gives until
they reach this room. After each trial, we will ask them for
qualitative feedback and a rating out of 5 based on the user
experience of the app, as well as the quality of the instructions
provided. Using their feedback, we can work on

9
18-500 Design Project Report: Scotty Maps 03/01/2024

improvements to any features the clients had issues with. We
plan to execute this feedback until we get at least 4 out of 5 on
average across a round of 5 test users.

VIII. PROJECT MANAGEMENT

A. Schedule
Our schedule is displayed in Figure 7. We will work on the

localization system and the navigation system in parallel,
before reconvening later on in the semester to make sure that
the two subsystems can properly work together. By the
mid-point demo milestone, we would like to have
accomplished localization in a hallway, along with some basic
connectivity to the user’s phone to display their position. Two
weeks afterward, we have our navigation system milestone,
where we would like to have successfully been able to test the
device from within an entire floor in a building. The final
milestone is the final demo. At this point, we would have liked
to troubleshoot our design to improve the localization and the
navigation system, resolving issues coming about our testing
and validation.

B. Team Member Responsibilities
will be responsible for the web applicationJeff Chen

portion of the project. He will set up the web server and build
the app to run in the browser of a mobile phone. He will also
be responsible for designing the entire user experience,
including destination settings, updating the real-time map
(with the user’s position marked on it), and providing
navigation directions. He will work with Weelie to build the
communication endpoints to support the tag’s communication
with the server.

will be in charge of the anchor devices. ThisIfeanyi Ene
includes designing and building the anchor devices, as well as
programming them to provide the right data to the tag device
as it is needed. He will also be responsible for everything to do
with the mapping side of the project. This includes the actual
mapping process as well as implementing the pathfinding
algorithm.

will handle the tag device. He will beWeelie Guo
responsible for designing and building the device that will pair
with the user’s smartphone to aid in navigation. He will
implement the localization routine that will get the distances
from the anchors and use them to estimate the user’s position.
He will also write the code for the tag device to provide this
information to the smartphone.

C. Bill of Materials and Budget
See Table III for the full Bill of Materials.

D. Risk Mitigation Plans
There are several risks associated with our project that

could hamper our progress. The primary issue is that we have
limited experience with development on the DWM1001
development boards. These boards are controlled by the
nrf52832, which our group has no prior experience
programming. Hence, if there are any issues coming up

regarding the chip’s performance or capabilities, we might
need to pivot towards using another microcontroller that could
better suit our needs, such as the ATMega328p or the ESP32.

Additionally, it could simply be that the range of the
DWM1001 or the accuracy in a small indoor environment,
such as a hallway, could prove to be insufficient, or the
accuracy is lacking. If these factors arise, we could consider
pivoting to a different technology such as Wi-Fi.

IX. RELATED WORK

The indoor localization aspect of our project is similar to the
Inexpensive Sports RTLS System capstone project that was
done in Spring 2020. This team also used DWM1001
development boards to do indoor localization. Instead of using
TWR TOA for localization purposes, this group used TDOA
instead.

Additionally, in Spring 2023, a capstone team developed a
project called “WiSpider”, which also used wireless signals to
localize devices within buildings. However, they used Wi-Fi
signals rather than UWB. Furthermore, they used pre-installed
CMU Wi-Fi access points rather than building their own
anchor devices.

We are designing a navigation system interface heavily
inspired by many extremely popular navigation apps such as
Google Maps, Apple Maps, and Waze. However, instead of a
focus on mapping the globe, we will instead focus on mapping
out CMU academic buildings.

X. SUMMARY

In conclusion, the project we are proposing seeks to change
the way students navigate campus, by providing reliable and
accurate information about exactly where they are and how to
get to anywhere they might want to go. No longer will a
student who has an event in a room they have never visited
before have to settle for using Google Maps, which will help
direct them to the building, but no further. No longer will a
student who is not sure how they got somewhere be stuck or
lost, either having to ask for directions or wander aimlessly
looking for an exit if no one is around. Instead, any student
who wants to be anywhere, as long as they have this device,
can simply pull out their phone, open up the web app, type in
the room they are looking for, and almost instantly receive
directions to their desired destination.

To achieve this vision and this impact, we must find a way
to assemble a fully working device for under $100, that can
communicate with both the user’s smartphone as well as our
network of UWB access points. These access points must
provide constant and accurate measures of their distance from
the user. We must be able to use all this distance data to
localize the user to the building map and calculate the path
they must take from where they are to their destination, all of
this computed in real-time. All this must also be done
efficiently enough to give the user a full day’s worth of battery
life. And finally, all this must be collected into an interface
that the user can easily operate and understand, to get them
easily, reliably, and quickly to their destination.

mailto:jrchen@andrew.cmu.edu
mailto:iie@andrew.cmu.edu
mailto:wg2@andrew.cmu.edu

10
18-500 Design Project Report: Scotty Maps 03/01/2024

GLOSSARY OF ACRONYMS

BLE – Bluetooth Low Energy
RPi – Raspberry Pi
RSSI – Received Signal Strength Indicator
TDOA – Time Difference of Arrival
TOA – Time of Arrival
TWR – Two-Way Ranging
UWB – Ultrawideband

REFERENCES

[1] DecaWave. 2014. The implementation of two-way ranging with the
DW1000.

[2] Yuntian Brian Bai, Suqin Wu, Guenther Retscher, Allison Kealy, Lucas
Holden, Martin Tomko, Aekarin Borriak, Bin Hu, Hong Ren Wu, and
Kefei Zhang. 2014. “A new method for improving Wi-Fi-based indoor
positioning accuracy”, Journal of Location Based Services, 8:3, 135-147,
DOI: 10.1080/17489725.2014.977362

[3] Ramirez, Ramiro, Chien-Yi Huang, Che-An Liao, Po-Ting Lin,
Hsin-Wei Lin, and Shu-Hao Liang. 2021. "A Practice of BLE RSSI
Measurement for Indoor Positioning" Sensors 21, no. 15: 5181.
https://doi.org/10.3390/s21155181

[4] Mazhar, F., Khan, M.G. & Sällberg, B. Precise Indoor Positioning Using
UWB: A Review of Methods, Algorithms and Implementations.
Wireless Pers Commun 97, 4467–4491 (2017).
https://doi.org/10.1007/s11277-017-4734-x

[5] F. Thomas and L. Ros, "Revisiting trilateration for robot localization," in
IEEE Transactions on Robotics, vol. 21, no. 1, pp. 93-101, Feb. 2005,
doi: 10.1109/TRO.2004.833793.

[6] Building Floor Plans and Room Information. Carnegie Mellon
University. (n.d.).
https://www.cmu.edu/finance/property-space/floorplan-room/index.html

11
18-500 Design Project Report: Scotty Maps 03/01/2024

TABLE III. BILL OF MATERIALS

Description Model Number Manufacturer Quantity Cost

Raspberry Pi 4 Raspberry Pi Foundation 1 $62.00

IMU GY-521 HiLetGo 1 $3.33

UWB Development boards DWM1001-Dev Qorvo 12 $25.00

Li-Ion Batteries 16340 CWUU 11 $2.50

Battery Pack 5000mAh YUMGOOD 1 $10.00

Total Cost $402.83

12
18-500 Design Project Report: Scotty Maps 03/01/2024

Fig. 7. Gantt chart with our planned schedule.

