
EyeSpy Final Report - 1 May 2024 Page 1 of 16

EyeSPy
Authors: Varun Rajesh, Neelansh Kaabra, Michael Lang

Affiliation: Electrical and Computer Engineering, Carnegie Mellon University

Abstract— Our project aims to offer a portable and
cost-effective solution for enhancing campsite safety
with a Camping Perimeter Security System. Designed
specifically for the wilderness, this system provides an
early warning to campers about potential intrusions
within a 50-meter range, allowing ample time to take
appropriate measures. Unlike existing models that
are expensive and reliant on internet connectivity, our
system ensures complete 360-degree surveillance of the
campsite without the need for external networks. With
a substantial battery life that supports three days of
operation, it is ideal for remote outdoor use.

Index Terms—Camera, Compression, Computer
Vision, ESP32, FPGA, JPEG, Open-Source, Discrete
Cosine Transform

1 INTRODUCTION

In an era where outdoor activities are increasingly pop-
ular, ensuring the safety of campers in remote locations
has become paramount. The use case of our project is a
Camping Perimeter Security System designed to provide
early warning signals to individuals in outdoor environ-
ments. The importance of such a system is underscored by
the growing need for security measures in camping areas,
where the remoteness and lack of connectivity render tra-
ditional systems ineffective.

Campers require a system that is not only portable
and robust but also operates independently of internet
connectivity. Our product serves this need by offering
a stand-alone, comprehensive surveillance solution that
monitors the vicinity of the campsite. This system is par-
ticularly crucial for campers who venture into areas where
wildlife or other potential threats may encroach upon their
temporary habitat. By using our system, campers can
enjoy peace of mind, knowing they have complete surveil-
lance to any possible disturbances with ample time to react.

Current competing technologies typically rely on a sta-
ble internet connection and are often cumbersome, making
them unsuitable for the unpredictability and mobility in-
herent in camping. The ones that are portable and easy to
use, are generally way too expensive for a camping purpose.
Our approach offers a significant advantage by delivering
a system that is lightweight, low-cost, and autonomous,
requiring no external power or internet sources.

The primary goal of our project is to enhance the safety
and security of outdoor enthusiasts by delivering a user-

friendly and reliable security system that adapts to the
various challenges posed by wilderness environments. Sec-
ondary goals include ensuring the system’s affordability and
ease of use, promoting wider accessibility and adoption.

2 USE-CASE REQUIREMENTS

The Use-Case Requirements for our product can be di-
vided into three major components, each pivotal to our
project’s success:

2.1 Continuous Streaming

The system is designed to provide continuous, around-
the-clock surveillance of the campsite through a sophis-
ticated streaming mechanism. Our product incorporates
multiple camera nodes strategically placed to cover the
entire camping area, ensuring comprehensive monitoring.
The cameras will help provide surveillance and allow for
campers to take adequate actions upon seeing a threat.
The quality of the video frames will be such that the user
can easily discern between the objects seen and take appro-
priate measures accordingly. The system will be optimized
for energy efficiency, guaranteeing adequate streaming for
a 3 day camping trip without compromising the system’s
effectiveness.

2.2 Portable Camera Nodes

Camera nodes are the pivotal components of the secu-
rity system, designed for portability and resilience. Since
we envision our product to be used in a campsite, and
campers will be moving every few hours, our entire system
will be easy to install without burdening the user. The
product has to be fully wireless and weather-resistant, ca-
pable of functioning in diverse environmental conditions.

2.3 Reduced Costs

A key requirement for the system is affordability, ensur-
ing that it is accessible to a wide range of outdoor enthu-
siasts. To this end, our entire system should not be highly
expensive and strike a balance between cost and functional-
ity. This cost strategy is crucial in providing a competitive
advantage in the market, making advanced camping secu-
rity systems economically viable for consumers.

EyeSpy Final Report - 1 May 2024 Page 2 of 16

Figure 1: The overall architecture with 6 remote camera nodes

3 ARCHITECTURE AND/OR
PRINCIPLE OF OPERATION

The overall architecture of this project consists of a dis-
tributed architecture of remote nodes and a single central
node. Figure 1 shows off this high level description of the
minimum viable product: 6 remote camera nodes and a
single central node. The remote camera nodes stream their
video feeds to the central node which displays it.

The remote node will also house an ESP32 microcon-
troller. This will be responsible for interfacing with the
camera itself. Then, it will perform JPEG compression
with the goal of minimizing the amount of data that has
to be transmitted. Finally, using the onboard WiFi of the
ESP32, the information from each frame will be transmit-
ted to the central node.

This will all be powered by an appropriately sized
Lithium battery to support a 24 hour runtime. In addi-
tion, a 3D printed enclosure will be placed around these
elements to create a weather resistant enclosure.

On the other side of the system is the central node. The
central node is responsible for ingesting the video streams
from the remote camera nodes. The central node consists
of an ESP32 and two Lattice ECP5 FPGAs.

The ESP32 will act as a transceiver, receiving wireless
packets from the remote camera nodes and then transmit-
ting them to the FPGA over a SPI interface. The JPEG

decoding FPGA will then apply the opposite of the en-
coding algorithm implemented on the camera nodes to re-
cover the video stream. The decoding FPGA will then send
that data over OctoSPI to the HDMI composition FPGA.
The HDMI FPGA will then buffer these video frames in its
memory and will create a composited image of all the cam-
era streams. This final video stream will then be outputted
to a portable monitor. This will all be powered by an ap-
propriately sized battery to support a 24 hour runtime.

The main difference in our implementation is that in
the design report, the FPGA portion of the central node
required only one FPGA. In the final implementation, there
are two FPGAs. One of the FPGAs is solely responsible for
decompressing the JPEG stream while the second FPGA
is responsible for driving the HDMI display. This was done
due to a logic block limitations of the ECP5 FPGAs that
we are using

There were many engineering principles that we learned
throughout the completion of our project. In terms of en-
gineering concepts that we learnt, some of them included:

• ESP32 Toolchain and Development

• ESP32 Camera Drivers and Wireless Communica-
tions

• Open Source FPGA Toolchain Setup

• JPEG Decompression implementation on FPGA

EyeSpy Final Report - 1 May 2024 Page 3 of 16

• High speed busses between FPGAs

• HDMI Drivers for FPGA

Beyond that, we also learnt some high level principles
that are applicable to engineering principles.

• Managing Feature Creep

• Breaking Down Large Tasks into Smaller Ones

In terms of principles of science, there were also many
principles that were used here. The main principle that
were are able to apply was how to test and validate a sys-
tem. We were able to create quantitative requirements for
various tests for our systems which enabled us to assert the
validity of our design.

The other principle that we learnt in terms of science,
we learnt about how to perform analytical debugging of our
design. We were bound to run into issues and we learnt how
to break the design up into more manageable units and test
individual sections of the design to ensure that small bugs
are not propagated into the rest of the integration.

Finally, in terms of mathematics, we learnt a lot about
how to theoretically model some of the various systems in
our design. One of the main constraints that we faced was
things like wireless and memory bandwidths. We learnt to
mode how much information is required to move between
various systems as well as how much time we have between
these transactions.

4 DESIGN REQUIREMENTS

Each of our three main use case requirements can be de-
rived into multiple design requirements that support them.
We break this down by use case requirement.

4.1 Continuous Streaming

From our requirement of being able to monitor a full 360
degree coverage of our campsite, we have identified that we
will require 6 cameras to cover the full field-of-view. Then
to support the ability to identify the objects that are within
the vicinity of the camera, we will require the video feeds
to be 240p resolution with a frame rate of 10fps.

Then, to ensure that the user can actually see the video
streams that are being transmitted, it is required to have
at least a 720p display. This is the minimum resolution for
an HD display and provides adequate resolution to discern
objects and monitor their surroundings.

These come together to form our first main set of design
requirements, we must be able to stream at least 6 cam-
eras, at 240p, at 10Hz. This must be displayed on a 720p
monitor without dropping more than 10% of the frames.

4.2 Portable Camera Nodes

For our requirement of having a portable camera node,
we are able to derive some more design requirements. A

portable camera system cannot contain many, if any, wires.
This would make the system clunky and incompatible for
wilderness uses cases. This means that our system must be
wireless and run on its own batteries.

To make it easy to setup the cameras anywhere, it is
required to have at least a 50m range from the portable
remote camera nodes to the central node. This will also
provide the user with sufficient response time to take ap-
propriate action if something is detected around the camp-
site.

In addition, to make sure that our solution is compati-
ble with wilderness use cases, we must make sure that it is
fully weather resistant and can handle being in the rain.

4.3 Reduced Costs

Having done a survey of the market of products for secu-
rity systems, we have determined that the current solutions
are wildly expensive. Because of this, we have determined
that a fair price for each of these components is as follows.

The remote camera node should be at most $50 while
the central node should be at most $150. This means that
the cost of a total system comes out to be less than $500.

5 DESIGN TRADE STUDIES

5.1 Remote Node Compute Selection

The remote camera nodes have to take in the data that
is send from the camera’s image sensor and then transmit
that data to the central node to display to the camper. The
need to decode raw camera sensor data and transmit that
data over Wi-Fi can require a substantial amount of pro-
cessing. Furthermore, to maximize transmission efficiency
and battery life, we plan on using a compression system
to minimize the size of each frame. Using compression also
extends the range of our system since the data rate require-
ments are lower and thus a less aggressive and more noise
tolerant Wi-Fi modulation schema can be used. The use of
compression requires that the compute node be sufficiently
powerful to complete all the compression steps in 100 ms
(10 fps). Even though compression does take energy to run,
it is all made up in the time saved transmitting RF signals.

The remote camera node also needs to have sufficient
amounts of memory to serve as a frame buffer. A frame
buffer is needed to enable compression and the benefits
that it brings. Frame buffers must reside in fast and high
endurance memory. The needs for high speed comes from
the fact that this frame buffer is in the hot path of the
processing and high endurance since every frame will write
to this buffer

Power Consumption is also an important factor. As
a battery operated system, minimizing power consump-
tion can lead to either better system endurance or a more
portable system. Thus, the compute node shouldn’t have
too onerous power requirements to maintain our run time
and portability requirements

EyeSpy Final Report - 1 May 2024 Page 4 of 16

The platform must also have built-in Wi-Fi connectiv-
ity. Having Wi-Fi built into the compute module means
that it will be significantly easier to implement the needed
functionality and save on BOM cost since we won’t need to
purchase a separate chip.

Cost is the final factor that was considered. Consid-
eration of cost is primarily driven by the requirement to
minimize cost and stay below $50. Thus, the node that we
choose should reflect this requirement.

5.1.1 CC3200

The CC3200 is a ARM M4 based Wi-Fi MCU that is
made by Texas Instruments (TI). The power consumption
figures are very respectable at 720mW at full transmit
power and the CPU at full utilization. However, the deal
breaker for our purposes was the chip’s unit cost. TI is
asking for $50 for just a single chip if not bought in bulk.
The remote node being below $50 is a requirement and us-
ing this chip would immediately mean that we would be
unable to meet the target. Other unattractive properties
include a slow CPU that can only be clocked as high as 80
MHz.

5.1.2 Raspberry Pi Zero W

The Raspberry Pi Zero W (RPi Zero W) is a single
board computer that runs a full Linux installation with
built-in Wi-Fi capability. The RPi Zero W is compara-
tively extremely cost-effective compared to the CC3200, at
a retail price of only $15. Furthermore, it has a power-
ful CPU that is clocked at a whopping 1 GHz. The CPU
is also coupled with an extremely strong memory subsys-
tem with a capacity of 512 MB. Of note, is that since the
RPi Zero W runs a full Linux operating system, some of
the compute and memory will be unavailable to us due
to the overhead of Linux. The biggest issue stopping us
from using the RPi Zero W is its unacceptably high power
consumption of 2.5W. This level of power consumption is
fundamentally incompatible with our requirements to be
portable and lightweight. Therefore, we decided not to
proceed with using the RPi Zero W

5.1.3 ESP8266

The ESP8266 is a Wi-Fi microcontroller designed by
Espressif Systems that integrates a Tensilica L106 CPU
running at 160 MHz. A clock rate of 160 MHz is suffi-
cient for our needs of running the compression algorithm at
10fps. The unit cost is also acceptable for our requirements
at only $8 per chip. Power consumption is also acceptable
at 600mW. However, the issue with the ESP8266 is its
minuscule amount of memory. The ESP8266 has only 80
Kb of user accessible memory. A full frame buffer of 240p
requires at least 230 Kb. Without the ability to store a full
frame, it becomes very difficult to implement the compres-
sion and transmission code. To avoid making the system
needlessly complicated, bug prone, and to leave room for

expandability it was decided against using the ESP8266 as
the compute for the remote node

5.1.4 ESP32

The ESP32 is the successor to the ESP8266 that fur-
ther builds on where the ESP8266 left off. The ESP32 has a
dual core Tensilica LX6 running at 240 MHz. Compared to
the ESP8266, the ESP32’s CPU improves both on the clock
speed and adds a second parallel processing core, giving us
a 3x improvement in the number of clock cycles available to
use. Furthermore, the ESP32 also dramatically improves
on the weak memory system of the ESP8266. The ESP32
contains 520 kB of on board SRAM and up to 4 MB of
offboard PSRAM. The greatly strengthened memory and
compute system also serves as a good foundation for future
expansion should we want a higher resolution or frame rate.
The ESP32 is also extremely cost effective at only around
$2.24 each at retail pricing. Such a low price gives us a
lot of margins to hit our needed budget of $50. The fi-
nal factor that made the ESP32 very attractive to us was
its power efficiency. Even at full CPU load and transmit-
ting over Wi-Fi, the ESP32 draws less than 800mW. Most
of that power consumption is a result of the Wi-Fi trans-
mitter transmitting. With just the CPU running at the
maximum clock speed of 240 MHz, it draws only around
130 mW, as a result of it being fabricated on a TSMC 40
nm processes.[4]

5.2 Compression Algorithm Selection and
Modifications

5.2.1 Delta Compression

The idea behind delta compression is to only transmit
the difference between frames instead of transmitting the
complete frame. This relies on the fact that during most
of the time, there will be no significant differences in sub-
sequent frames since the camera is just looking at a static
scene. In theory, if no pixel changed then only a no change
message needs to be send yielding extremely high compres-
sion ratios. The algorithm is also trivial to implement and
run since it just needs to compare the pixels without the
need to do any complicated steps. As good as these proper-
ties are, the issue of this algorithm is that each frame builds
on the next one. Therefore, if a message was dropped then
following frames will start having artifacts. This is still a
problem even if we use a reliable transport protocol such
as TCP since it is possible that the camera loses commu-
nication with the central node and will result in a TCP
timeout. Further compounding the issue is that if there
is a major change, such as an animal entering the frame,
there will be a spike in the bandwidth demanded since now
every single pixel that was updated needs to now be sent
over. Therefore, to ensure that we meet the requirement
of 10fps even when there are large changes, we will need to
design the system to handle transmitting a complete un-
compressed frame in less than 100ms, even though most of

EyeSpy Final Report - 1 May 2024 Page 5 of 16

the time we will not be using all that bandwidth.

5.2.2 H.264 & MPEG-2

H.264 and MPEG-2 are two very commonly used video
compression algorithms. Unlike delta compression, H.264
and MPEG-2 are tolerant to packet loss since they don’t
depend on the previous frames. Also unlike deltas, H.264 is
able to reliably achieve 2000:1 compression ratio. However,
the issue with these two algorithms are their very high im-
plementation and runtime complexity. H.264 encoding is
particularly taxing with desktop level hardware being able
to only achieve 10fps or so. This makes it immediately
not viable for our platform of a low-power microcontroller
unless we include a dedicated co-processor. Including a
co-processor would drive up the cost and also increase the
power consumption, negatively impacting our requirements

5.2.3 JPEG

JPEG encoding is most commonly used for compress-
ing pictures but nothing stop this from being used to com-
press a stream of pictures that form part of a video stream.
JPEG has reasonable implementation and runtime com-
plexity. The only heavy step in the pipeline is the discrete
cosine transform and the inverse discrete cosine transform.
Even these are not too bad since many methods exist to
speed up the computation. JPEG is able to achieve a 10:1
compression ratio depending on image data. Even though
this is nowhere close to the 2000:1 of H.264, it is sufficient
for our needs of compressing a 240p image. The 10:1 ra-
tio is also only a general case with JPEG steps allowing
the compression quality to be adjusted so that we can hit
the needed ratio. Another attractive property of JPEG
compression is that it splits the image into minimum cod-
ing blocks (MCU) before running the compression on the
MCUs.[5]. Therefore, if for some reason a MCU is cor-
rupted or dropped during transmission, only that MCU will
be affected. Since there is also no inter-frame dependency,
the MCU data is completely refreshed when the next frame
is received. If an MCU does get corrupted or lost then it
will only last for a single frame and the next frame’s data
will fix it. MCUs are also typically very small, only around
8x8 pixels. Any damaged data will be limited to a 8x8
MCU which at 720p will be almost invisible

5.2.4 JPEG No Change Control Message

Drawing from the ideas of delta and looking into the
actual use case of the camera, we decided to incorporate a
no-change data message. If there is not a significant change
in the image, then we will only send a no change message
and skip the JPEG encoding. Only when there is a large
change will JPEG encoding be used. What is deemed sig-
nificant will be up to the user to select according to the
specific situation and battery life requirement. Regardless
of what sensitivity level is set by the user we expect this
will contribute significantly to extending the system bat-
tery life. We used the following equations to produce an

estimate of energy savings. The calculations assume a Wi-
Fi data rate of 11 Mbps, 4 bytes for no change message,
0.8W during TX, 6:1 compression ratio for JPEG

SJPEG = 240 ∗ 320 ∗ 3/6 = 38400bytes

TNochange = 4bytes/11Mbps = 0.36µs

TJPEG = 38400/11Mbps = 3490µs

ENochange = 0.8W ∗ 0.36µs = 2.9µJ

EJPEG = 0.8W ∗ 3490µS = 2792µJ

The following Table 1 shows the total energy consump-
tion over 100 frames, or 10 seconds with varying percent-
ages of time when there is no significant change

It is clearly evident that incorporating this in our de-
sign could save a lot of energy, up to almost 10x in the case
where 90% of the frames don’t have any change

5.3 Central Node Compute Selection

The central node will be responsible for handling the
input of the 6 (or more) camera streams that are being
fed in by the remote nodes. This main requirement sets
out a few considerations in place for what we select for the
central node compute.

One of the most obvious requirements is that the cen-
tral compute needs to be powerful enough to decompress
the incoming video streams. Beyond raw processing power,
this requires us to have enough memory on our compute to
store the decoded frames into the main frame buffer that
will be eventually displayed.

Next there needs to be a way to actually drive a display.
One of our design requirements is that the display driven
needs to be at least 720p. Because of this, we cannot use
VGA which caps out at 480p. We need to find a node that
supports protocols like DisplayPort, HDMI, or DVI.

The next requirement is that the compute has to be
power efficient. Since this central node is battery powered
and is meant to be a part of a portable system, we would
like the compute to consume as little power as possible.

The compute must also have built-in Wi-Fi connectiv-
ity. Having Wi-Fi built into the compute means that it will
be significantly easier to implement the needed functional-
ity and save on BOM cost since we won’t have to purchase a
separate Wi-Fi module and integrated that into our design.

Another requirement is to have an open-source
toolchain for these computes so that the design is exten-
sible in the future.

Finally, the last main requirement is for the compute to
be relatively inexpensive. One of our requirements is that
the central node costs less than $150, which means that the
actual compute shouldn’t exceed $100.

These driving factors led us to look into three main
classes of products, microcontrollers, System-on-Chips, and
FPGAs. To summarize the tradeoff study completed, Ta-
ble 2 is provided at the end of this section.

EyeSpy Final Report - 1 May 2024 Page 6 of 16

Table 1: Energy Usage Comparison

Percent of No Change JPEG JPEG + No Change
50% 279200 139745
75% 279200 70017.5
90% 279200 28181

5.3.1 Microcontrollers

Of the three main classes of products explored, micro-
controllers are typically the lowest powered and cheapest
product, but that comes with the caveat that they are lack-
ing in features and lacking in raw compute horsepower.

The main microcontroller explored here was the ESP32.
This was explored because it was chosen for the remote
node and would make the integration between the two plat-
forms extremely simple. This product does satisfy some of
our requirements however it does lack into main areas. The
first of which is that there’s no easy way to interface the
ESP32 with a high resolution display. The second issue
is that given the ESP32s 240MHz cores, it will not suffice
to be able to run decompression on the 6 incoming video
streams.

Due to these reasons we continue our exploration into
other options.

5.3.2 System-on-Chips

System-on-Chips are typically processors that run full
blown operating systems on them. Common examples of
these are the Raspberry Pi family of products. We take a
look at two of the Raspberry Pi’s that seem appropriate for
our use case: the RPI 4 W and the RPI 0 W.

The Raspberry Pis are attractive due to their high com-
pute capabilities. The RPI 4 W has a four cores clocked
at 1.5GHz with 4GB of RAM which is more than sufficient
for running the decompression algorithms. It also supports
display out over HDMI. The main issue however with this
is that the power consumption of the product is too high.

Likewise, a similar story can be said of the RPI 0 W.
The single core of the RPI 0 runs at 1.0GHz with 512MB
of RAM which is also more than sufficient for running the
decompression algorithm. It also supports display out over
HDMI. The main issue again is the power consumption.

5.3.3 FPGA

FPGAs are usually extremely energy efficient compared
to their microcontroller/System-on-Chip counterparts. To
be consistent with the goal of using open-source toolchains,
we chose the Lattice ECP5 FPGA with the ULX3S carrier
board.

This FPGA is an attractive choice because of its fast
400MHz clock speed. Even though this lower than the clock
speed of the other System-On-Chips, the main benefit is
that every single clock cycle is significantly more powerful
since it’s an FPGA. Similarly, it has a 32MB DRAM chip

on board which is large enough to store the frame buffer
for the display.

Another benefit of this choice if that it contains an on-
board GPDI connector, this is essentially an HDMI connec-
tor without the licensing attached with HDMI. The FPGA
supports driving a DVI signal over the GPDI connector
for an external monitor. Finally, the power consumption
of this FPGA is very reasonable for the amount of perfor-
mance it offers.

Finally, the choice of this specific FPGA is powerful be-
cause onboard the carrier board is a Wi-Fi enabled ESP32
which makes it very simple to setup a Wi-Fi access point
for the remote nodes.

5.4 Communication Protocol Selection

The main driving design requirements for the selection
of communication protocol are the requirements of having
at least 50m+ range, having enough throughput to support
video streaming, and to be an extensible platform in terms
of current and future availability.

There were four main protocols that were considered
for this. Bluetooth Low Energy, LoRa, ESPNow, 2.4 GHz
Wi-Fi.

5.4.1 Bluetooth Low Energy

Starting with Bluetooth low energy, this protocol does a
few things well. It is an extensible platform as it is widely
available and supported by multiple devices, and it can
also support the necessary 50m range required, however
the main drawback is that it does not support the neces-
sary throughput. Bluetooth LE is only capable of up to 2
Mbps.

5.4.2 LoRa

Next we looked at LoRa, this protocol does a few things
well. It is an extensible platform as it is widely available
and supported by multiple devices. It has a range signifi-
cantly greater than the 50m required for this product, how-
ever the main drawback, similar to that of Bluetooth Low
Energy, is that it does not support the necessary through-
put. LoRa is rated up to only 250 kbps.

5.4.3 ESPNow

Next we looked at ESPNow. This protocol is well suited
for the task of streaming video. It can support the 50m
range required as well as has sufficient throughput of 54
Mbps to support video streaming. However, the main

EyeSpy Final Report - 1 May 2024 Page 7 of 16

Table 2: Central Compute Tradeoff

ESP32 RPI 4 W RPI 0 W ECP5
Clock Speed 240MHz x2 1.5GHz x4 1GHz x1 400MHz x1

RAM 4 GB 512 MB 536 kB 32 MB
Cost $55 $15 $3 $60
Power 8000 mW 2500 mW 660 mW 600 mW

drawback is that it is not an extensible platform for fu-
ture development which could potentially drive up costs in
the future. This protocol is tied to the ESP family of prod-
ucts and there is no gaurantee that it will be supported in
the future.

5.4.4 2.4 GHz Wi-Fi

Finally, we looked at 2.4 GHz Wi-Fi. This protocol
seems to check all the boxes laid out in our design require-
ments. It can support the 50m range required as well as can
support up to 150 Mbps of throughput which is well com-
patible for video streaming. Finally, Wi-Fi is also an ex-
tensible protocol and is extremely available currently, and
there are no plans in the future for the world to switch
away from Wi-Fi.

6 SYSTEM IMPLEMENTATION

A detailed visual of the system implementation is dis-
played in Figure 2.

6.1 Remote Node Implementation

6.1.1 Color Space Conversion and Change Detec-
tion

Once the camera finishes capturing a full frame the
first step that will be undertaken is the conversion of the
RGB565 that is returned by the OV2640 into YCrCb color
space. Not only is this critical to following JPEG compres-
sion steps but this also makes detecting changes in the field
of view easy. The color space we will be using is the one
specified in JFIF which itself is a modification of the color
conversions used in Rec. 601. The follow equations are
used to perform the conversion[2]

Y = (0.299 ∗R) + (0.587 ∗G) + (0.114 ∗B)

Cb = (−0.1687 ∗R)− (0.3313 ∗G) + (0.5 ∗B)

Cr = (0.5 ∗R)− (0.4187 ∗G)− (0.0813 ∗B)

Detecting changes in the RGB is much harder due to the
fact that the three channels of RGB only encode color. It is
very possible for the color of a pixel to change slightly due
to noise and natural variances. So if one were to implement
a change detector in RGB then it would have to somehow
account for all 3 channels as once. But in YCrCb space
this becomes much easier. If there is a significant change

such as an animal entering the frame, we expect that there
will be high luminance changes. Therefore, in YCrCb, the
change detection only needs to work on the Y change and
doesn’t have to account for slight color changes. Other
benefits include easier computation due to only needing to
account for 1 channel and lower memory requirements from
only having to keep around 1 channel The change detector
will be implemented as follows where MCHANGE being
the maximum number of pixels allowed to change before
declaring it a significant change and THRESHOLD be-
ing the value difference tolerated before saying that pixel
has changed

c(i, j) =

{
1 ∥Y ′[i][j]− Y [i][j]∥ ≥ THRESHOLD

0 else

s() =

{
CHANGE

∑239
i=0

∑319
j=0 c(i, j) ≥ MCHANGE

NO CHANGE else

Should s() return no change then the JPEG steps will
be skipped and the remote camera will instead send a
NO CHANGE message to the central node. Only if a
change will detected will the JPEG encoding steps proceed.
Such a design was chosen since most of the time there will
be no change in the camera’s picture and it is much more
efficient to just not update the image than going though
the expensive process to encode then send the same data
over

6.1.2 JPEG Encoding

Should a frame be JPEG encoded, the remote camera
node will first perform a discrete cosine transform (DCT)
on a 8x8 submatrix of the picture, which is more formally
called a minimum coding unit (MCU)[5]. Within each
MCU, a type-II DCT transformation is performed to trans-
form the 8x8 matrix into a matrix of coefficients that cor-
respond to certain frequencies. Once the matrix is trans-
formed in a series of coefficients of frequencies, the amount
compression can be easily adjusted by including or omit-
ting certain coeffienets. The type-II DCT also conveniently
places the lower frequencies towards to top left corner of
the matrix, making it easy to decide how much data to
include[3]. The type-II DCT is governed by the following
equations:

EyeSpy Final Report - 1 May 2024 Page 8 of 16

Figure 2: A detailed look into both the remote camera node and the central node with a legend detailing what parts of
the stack come from where.

α(u) =

{
1/
√
2 u = 0

1 u ̸= 0

coeffij = valueijcos(
(2x+ 1)uπ

16
)cos(

(2y + 1)vπ

16
)

mcuij = 0.25α(u)α(v)
7∑

u=0

7∑
v=0

coeffij

Of note, is that the DCT is the first step that is not
fully reversible[5]. In extreme situations, the frequency of
the changes might be so big no frequency component within
the 8x8 matrix is able to cover it. However, this is very un-
likely given that the coding unit is only 8x8.

6.1.3 Quantization

After DCT encoding, the next step is quantization. The
quantization matrix exploits the DCT property that most
of the substance of a image will still be present if the higher
frequency components are removed[3]. Therefore, what
happens in the quantization step is that each coefficient
in the coefficient matrix is divided by a value. The value
that it is divided by depends on the coeffiecent’s location.
Coefficients located closer to the top left are divided by a
smaller value and coefficients located closer to bottom right
are divided by higher values. The results are then rounded
to the closest integer number. If the coefficient is deemed

not significant given its original value and the dividing fac-
tor the end result will be 0. This property is then used by
the run length encoder to achieve the compression of data

Like the DCT step, the quantization step is irreversible
given that is rounds and is a major source of error in the
final image. But given that this loss is concentrated on the
higher frequency components, its effect on the quality of
the final image is not significant

6.1.4 Run Length Encoder

Drawing from the property introduced by the quantiza-
tion step where insignificant components are zero-ed out,
the run length encoder uses this to finally compress the
data. Instead of explicitly encoding each and every single
zero, the number of zeros before a non-zero value is en-
coded. This way a single byte can potentially cover many
bytes of zero. To even further increase the compression ra-
tio, the run length encoder traverse the array such that it
goes from coefficients of lower frequency to coefficients of
high frequency. Such a traversal maximizes that chances to
encounter a chain of all zeros since high frequency compo-
nents are likely to have been zero’ed out by the quantization
step. The traversal method used is called zigzag and the
following graphic illustrates the method [5]

EyeSpy Final Report - 1 May 2024 Page 9 of 16

Logically, the run length encoder outputs a data stream
of tuples. The first element of the tuple is the non-zero
value and the second element is the number of 0s the go
before this non-zero value. After encoding a full MCU, the
run length encoder will terminate by appending a special
block of (0,0).

By having the special (0,0) block, the FPGA and use
this block to delimit where each thread should start and
end therefore making it easy to decode MCUs in paral-
lel. Other methods would force the FPGA to perform the
MCU decoding in series, negating a lot of the behinds of a
FPGA-based solution.

In code, the following C-structure is used to represent
the tuple

typede f s t r u c t {
i n t 8 t va l ;
u i n t 8 t zeroLen ;

} r l e t ;

The run length encoder encodes the channels in order
of Y, Cr, Cb. Within each channel it traverses the MCUs
in row-major order. Within each MCU the encoder fol-
lows the aforementioned zigzag method. For each tuple
produced, including the special (0,0), it is appended to the
end of the result array.

6.2 Central Node Implementation

6.2.1 ESP32 Transciever

The purpose of the ESP32 transceiver is twofold. It will
be the access point to which all of the remote nodes will
connect to and it will be the communication bridge to the
FPGA over which this data will be transmitted.

We will be using ESP32 with builtin Wi-Fi capabilities
and so the wireless functionality is provided as off-the-shelf
code and we will be using this to setup the access point.
The remote nodes will transmit their frames over this wire-
less connection. The ESP32 will be responsible for buffer-
ing the incoming data until it receives all the information

required for one MCU.
Once the ESP32 has received the data for this frame,

it will transmit it along with addressing information, over
a SPI interface to the FPGA. The SPI interface is selected
as an easy way of having a high bandwidth connection be-
tween the ESP32 and the FPGA. The addressing informa-
tion is needed to tell the FPGA where to draw this partic-
ular frame in the grid

6.2.2 JPEG Decompression

JPEG decompression happens in the reverse order of
the JPEG compression steps. The first step is to imple-
ment Hoffman decoding which is responsible for losslessly
decompressing the image data. Then we quantize the ma-
trix which involves multiplying each value in the decoded
MCU by the quantization matrix values in a element by
element order. The dequantization step is responsible for
scaling back up the frequency data. The pseudo code for
this is as:

f o r i in range (8) :
f o r j in range (8) :

mcu [i] [j] ∗= quant izeMatr ix [i] [j]

After the quantization is completed, the matrix then
has the inverse discrete Fourier Cosine Transform (iDCT)
applied to it. More concretely, the iDCT step transforms
the matrix from a series of cosine frequencies with varying
weighting factors to a 8x8 matrix of regular scalar values
and not a matrix of cosine weight.[3] The following equation
governs the iDCT step

α(u) =

{
1/
√
2 u = 0

1 u ̸= 0

dctij = DctCoeffijcos(
(2x+ 1)uπ

16
)cos(

(2y + 1)vπ

16
)

mcuij = 0.25

7∑
u=0

7∑
v=0

α(u)α(v)dctij

Following the iDCT steps, the MCU have now been
transformed into matrices that hold a non-normalized im-
age data of either Y, Cr, or Cb. The last remaining step
is to then normalize the YCrCb data and then convert the
colors into RGB values before being written in to the frame
buffer. The following constant are used in our program[2]

R = Y + (1.402 ∗ Cr)

G = Y − (0.344136 ∗ Cb)− (0.714136 ∗ Cr)

B = Y + (1.772 ∗ Cb)

6.2.3 Memory Subsystem

Once an MCU has been decompressed, there needs to
be a way of storing that data so that it can be displayed.

EyeSpy Final Report - 1 May 2024 Page 10 of 16

At a high level, multiple MCUs get buffered in BRAM and
then when enough of them have been accumulated, they
get written to DRAM.

Typically, the DRAM chip (W9825G6KH-6) lets you
perform reads and writes with a word size of 2 bytes. How-
ever, with any DRAM, there is a CAS latency associated
with it. The CAS latency of this chip is 2 clock cycles. We
can calculate the theoretical max data rate as:

f w/(CAS + 1) (1)

where f is the clock frequency, w is the word size, and
CAS is the CAS latency. The clock speed of the DRAM
is at most 165MHz, the word size is 2 bytes, and the CAS
latency is 2 clock cycles, thus the theoretical max data rate
is 110 MBps.

Now we can calculate what the necessary data rate is
to support a 720p display with

h v p f (2)

where h is the number of horizontal pixels, v is the num-
ber of vertical pixels, p is the number of bytes per pixel,
and f is the frequency at which the display is updated. For
a 720p display, h is 1280, v is 720, p is 2 bytes, f is 60 Hz.
This yields a minimum data rate of just over 110 MBps.

As we can see here the theoretical max data rate is sim-
ilar to that of the required data rate for the display. This
is clearly not feasible for two reasons. The first is that the
theoretical max data rate will never actually be achieved
because DRAM has to spend time refreshing the memory
banks so the actual data rate will be less. The second
is that if we spend all of our time reading from DRAM,
there’s no time to actually write into DRAM updating the
displayed image.

To get around this with opt to using something called
page writes and page reads which changes the transaction
to look like 512 consecutive 2 byte writes. This increases
our theoretical data rate to 328 MBps. This is now more
than enough to support reading and writing from DRAM
for the display.

To support the page writes we have to add the afore-
mentioned buffering to the MCU data. Every MCU is 8x8
with 2 bytes per pixel. We buffer 40 of these MCUs into
a 320x8 pixel array. We opt to use 320x8 as this evenly
fits into a 1280x720 display. Then once the buffer of MCU
data is full, we then utilize page writes to write each row
of the 320x8 array to DRAM. This means that each page
write writes 320 pixels per write.

6.2.4 GPDI Driver

Due to the requirement of not wanting to license the
HDMI specification, we opt to use the GPDI connector on
board the ULX3S. We drive this with a DVI style signal
which is compatible with the HDMI specification. There
are three main parts with the GPDI driver. The first is a
VGA style display driver, then a TMDS encoder, and then
a DDR clock out of the data.

First we begin with the VGA style display driver. The
basis for this DVI style signal is an VGA style display sig-
nal. The general format of this signal is that row-by-row the
data for each pixel is driven out. Then there are blanking
periods following each row, and then following each frame
to allow for the display to synchronize on the frames.[1]

Figure 3: A diagram of the VGA timing specification

For the standard CVT VGA timing for 720p displays,
we would need to run our pixel clock at 372.5 MHz. This
is extremely close to the maximum frequency of the FPGA
at 400 MHz. This makes it difficult to synthesize a design
that will actually meet timing. Instead we opt to use some-
thing called CVT-RB. The RB stands for reduced blanking
which means that the VGA driver spends less time in the
horizontal/vertical porches. This lets us run our design at
320 MHz instead which is much easier to meet timing for.

Specifically this means that in the CVT mode, we spend
384 pixels blanking in the horizontal direction and 28 lines
blanking in the vertical direction. In the CVT-RB mode,
we spend only 160 pixels blanking in the horizontal direc-
tion and 21 lines blanking in the vertical direction.

The next part of the protocol is called TMDS encoding
the signal. TMDS is an 8 bit to 10 bit conversion protocol
that aims to minimize the number of bit changes in the
signal. This minimizes the amount of interference and the
decreases the likelihood of having bit errors in the signal.

TMDS operates by computing two representations of a
byte. They both start with the first bit but then either
applies the XOR or XNOR operator on each successive bit
pair. Then, the TMDS encoder looks at which of these rep-
resentations has the least number of bit flips and transmits
that message. This gives us 8 bits of the 10 bit TMDS
message. The next 9th bit is used to represent whether
the XOR or the XNOR operator was used. The 10th bit
determines whether the output byte will be inverter or not
inverted. This is used to ensure that the DC offset of the
byte (essentially the average voltage of the line) is as con-
stant as possible.

EyeSpy Final Report - 1 May 2024 Page 11 of 16

7 TEST & VALIDATION

Outlined below the tests we plan on conducting to en-
sure effectiveness of our design and implementation while
being able to hit all the requirements set in the use-case
and desgin parts.

7.1 Battery Life Testing

One of the major requirements set in both the use-case
and design sections was to ensure that the entire system
runs for at least 24 hours, to allow for 3 days of adequate
streaming for a camping weekend. To ensure that our sys-
tem is able to provide sufficient battery life regardless of
outside conditions, we tested the system in the worse pos-
sible case. The conditions of the test had the change detec-
tion module modified so that it always outputted change
detected. With this change, it meant that the system was
continuously streaming at 10 fps regardless of if there was
actually a significant change. The reason we did this was
to simulate a worse case battery consumption situation for
the system. Therefore if we could pass under these situa-
tions, we will be confident that the system can achieve the
advertised run time no matter what.

7.1.1 Remote Node Battery Life

To test the remote node’s battery life, the 5V supply
line to the ESP32 was intercepted and redirected to an mul-
timeter. The multimeter was set to the current measuring
setting. The ESP32-CAM has internal voltage regulators
the step this 5V supply into the different voltages that is
needs (3.3V, 1.8V, 1.1V). By measuring the input current
stream into the voltage regulators, this setup allowed to
measure the end to end system current draw including all
the losses introduced by power regulating components.

The passing criteria for our test was a current draw
of lower than 266mA at 5V. The number was calculated
against our 32Wh battery bank that would be powering
the remote node with out 24 hour runtime requirement.

From the tests, we found out the maximum instanta-
neous current draw of the remote node at 5V was 220mA.
The average current draw was around 180mA. At 180mA
we still significantly over-perform than out passing met-
ric of 266mA. We still exceed the passing metric even if
we use the maximum instantaneous current draw number.
This doesn’t even account for the fact that the camera
was streaming all the time, should the change detection
algorithm not been bypassed, this number would be signif-
icantly lower.

7.1.2 Remote Node Battery Life

In a similar idea to testing the remote node’s battery
life, the central node’s 5V supply line was redirected into a

multimeter to measure the current draw. Thus, the figure
we measured will have accounted for all losses from voltage
regulation. For this test, we also wanted to simulate a
worse possible case for power draw. Thus, all 6 remote
camera nodes were connected with their change detection
module modified to continuously output that a change was
detected.

The passing criteria for this test was a current draw of
less than 1000mA at 5V.

The tests revealed that our maximum instantaneous
current draw of the central node was 640mA. The average
current draw was about 550mA. These numbers again well
exceeded our passing metric. This again doesn’t account
that all 6 remote nodes were continuously sending images.
In real life these numbers are likely to be lower since most
of the time the FPGA and ESP will be idle and waiting for
a change detected message to come from the remote ESP.

7.2 Wireless Range Test

As specified in our requirements, the system should be
able to stream images from a range of up to 50m in an
outdoor environment. This was tested by bring the system
to the top of flagstaff hill in Schenley park. Testing outside
would allow us to see how well the system would handle
situations such as trees in the way and elevation changes.
For this test, the change detection system was modified so
that it always outputted that change we detected. This is
to ensure that the range numbers that we got from the test
was of the worst case operating situation.

The central node was hung up on tree branch about 5ft
in the air. We slowly walked away from the central node
with a remote node in our hands. The output stream on
the central node was monitored to ensure that the correct
frame pacing was maintained and that none of the afore-
mentioned requirements were violated.

EyeSpy Final Report - 1 May 2024 Page 12 of 16

Figure 4: Testing Setup on Google Maps

Figure 5: Example Image From Range Testing

According to google maps, we stopped meeting the re-
quired metrics at a range of about 53 meters. This exceeds
the passing criteria of 50m that was specified in the require-
ments. We actually experienced a slight elevation drop as
we walked away from the central node, making it harder
for the system to transmit data.

7.3 Tests for Central Receiver Display

The Display on the Central Receiver needs to be able
to receive all the frames with sub 10% drops and ensure
adequate display driving for 24 hours. This will involve
sending frames from the 6 remote nodes and then receiv-
ing them on the central receiver, then displaying all the 6
streams concurrently on the screen, without excessive lags
and glitches in the display. We will be measuring the frame
rate and display diagnostics including streaming capability

and quality. This tests stems from our use case require-
ment of being able to display 6 streams at the same time,
allowing for continuous observation of all surroundings to
complement our campsite security purpose.

7.4 Frame Interval Testing

Any security systems needs to provide a sufficient frame
rate so that the user can see what is going with fluidity.
Our requirements are to hit 10fps or 100ms frame interval.

To test this, we used a Saleae Logic Pro 16 logic an-
alyzer that was tapped into the SPI bus going from the
central ESP to the the JPEG decoding FPGA. Using this
setup, we are able to tell how often the central ESP sends
data to the FPGA for decoding and thus the frame inter-
vals. Due to equipment limitations, this SPI bus is the last
place in the frame pipeline where we can tap into the frame
data. We are able to tell different frames from different
cameras by looking at the frame ID number that included
along with the compressed data. Form this we are then
able to then determine frame intervals. The test was run
for 10 seconds which correspond to a frame count of about
600 frames. The time for that frame was recorded on the
CS being asserted. For this test, we again simulated the
worse case situation. All 6 remote nodes were connected
and their change detection code was modified to only re-
turn that a change had been detected, meaning that the
cameras would be sending data all the time. This would
stress the Wi-Fi link to the greatest extend which is the
greatest source where frame interval variances can be in-
troduced.

Figure 6: Histogram of Frame Intervals

Overall, we found that frame interval was remarkable
consistent around 100ms. There were only a few that fell
outside the range of ± 5ms. The average frame interval
was 100.38ms, almost exactly the 100ms that we originally
targeted

EyeSpy Final Report - 1 May 2024 Page 13 of 16

7.5 HDMI Driver Display Stability Test

We conducted the display stability test to ensure that
we are able to drive the video stream decompressed by the
FPGA to the HD Display consistently at 60 Hz for longer
duration without dealing with high instability or glitches
in the streaming. This test involved connecting the FPGA
with a monitor to act as the display, and stream captured
data continuously from the FPGA to the monitor.

In our test, we streamed the data for 1 hour and mea-
sured the amount of frames sent vs the amount of frames
displayed correctly. To do this, we first ran some prelim-
inary calculations and figured that we needed to ensure
that at least (60*1440*0.9) 194400 frames are displayed.
We got this number by the following calculation logic : 60
(minutes in hour) * 60 (seconds in minutes) * 60 (fps) *
0.9 (10% drop). Upon calculation of frames captured and
displayed, we got 194380 frames, thus achieving a 99.99%
frame display rate, thus passing the test.

Figure 7: Monitor during the display test

7.6 Pareto Frontier Search

To better understand the system’s limitations and un-
derstand where the bottlenecks exist we started a series of
test to find out the system’s performance frontier. We ran a
sweep where for a given number of camera nodes, we slowly
increased the fps till the frame interval recorded by the logic
analyzer that was tapped into the SPI line was indicat-
ing that frames were being dropped. Having frames being
dropped meant that somewhere in the system, there was
a bottleneck preventing it from pushing out more frames.
Additionally, we also looked at the display output to check
that there were no excessive glitches in the decoded JPEG
frame. Like above the change detection code was modified
to make the nodes always transmit. This is both the stress
the system and provide a consistent test input. The inten-
tionally conservative frontier definition given that this is a
safety system designed to warn people of incoming danger.

Figure 8: Pareto Frontier of the System

At low remote node numbers, what we found was that
in the low remote node count situations, we were limited
by the number of fps that that the remote camera nodes
can push out (Red Region). Even though the delay times
were set for a higher fpgs, when we looked at the actual
data being send on Wi-Fi via wireshark, we found out that
it actually was not able to push data out at the requested
rate. We think that this is down to a combination of the
compression and LWIP stack not being able to handle the
amount of data at the required rate.

As the number of nodes increases, what we start find-
ing is that the remote nodes are now able to push the data
out at the requested rate but the FPGA is not having
trouble decoding the frames fast enough (Yellow Region).
The FPGA has no flow control mechanism with the cen-
tral ESP; so if it is has not done decoding a frame by the
time the next frame arrives corruption will happen as the
new frame overwrites the old frame. The decode time of
the FPGA is dictated by the fact that the decoder is not
pipelined and that fact that due to logic element limita-
tions we are not able to parallelize the MCU decoding.
Therefore, the entire system ends up waiting for the the
JPEG decoding before it can move on.

As the number of nodes continues to grow, we end up
running into issues with the central ESP (Green Region).
the central ESP has to both serve as an access point to
all the remote ESPs and also accept all the incoming data
from them. As number of nodes increases, it puts more
and more strain on the Wi-Fi stack. At 9 nodes, we find
that remote nodes end up disassociating due to protocol vi-
olations caused by the central node buckling under strain.
The FPGA is not the limitation here since we have provi-
sioned for 12 streams and in normal operation we actually
do use all 12 slots. The first 6 are used for regular image
data and the other 6 are used during initialization by the
central ESP to over write whatever data was in DRAM to
be all black for a nicer appearance.

EyeSpy Final Report - 1 May 2024 Page 14 of 16

8 PROJECT MANAGEMENT

8.1 Schedule

We were on track the entire semester and managed the
workload accordingly as per our schedule. We started work
on almost all components at the right stage and finishing
them in due time. The schedule via a gantt chart is shown
in Fig. 10.

8.2 Team Member Responsibilities

We had divided team member tasks and responsibili-
ties based on each member’s past experience in each field
and interests. Varun Rajesh worked mainly on the FPGA
on the receiver node which performs the decompression
of the incoming frames from the camera nodes and then
drives them to the display for concurrent viewing. Nee-
lansh Kaabra worked on developing the software stack for
the decompression, and implemented the receiver ESP32
architecture on the receiver node to adequately receive all
the incoming frames from multiple data points. Michael
Lang worked on developing the remote camera nodes, the
compression algorithm and the transmission from the re-
mote camera nodes to he central receiver node. The testing
and verification of all the components was done together
involving everyone. All of us worked to a certain extent
on each part of the system and maintained a constructive
environment throughout the project.

8.3 Risk Mitigation

Throughout the semester, our project faced multiple
challenges related to design, scheduling, and resource allo-
cation. We addressed these challenges effectively through
strategic planning, innovative solutions, and proactive risk
management, ensuring the successful completion of our
wireless data transmission system. Some of the major risks
we had identified earlier and how we mitigated them are as
follows:

8.3.1 Computing Frame Compression Fast
Enough

To handle the continuous streaming and compression
demands of our camera feeds, we initially faced challenges
with the limited compute capabilities of the ESP32 mod-
ules. We successfully mitigated this risk by optimizing our
compression algorithms and effectively utilizing the hard-
ware accelerators available on the ESP32s. This allowed
us to maintain high performance while keeping costs low.
Additionally, our implementation of the Delta compression
technique significantly reduced the data transmission re-
quirements by focusing on transmitting only the changes
in the scene, further enhancing efficiency.

8.4 Ensuring Adequate Wireless Data
Transmission

Our design involved streaming data from six camera
nodes, posing a significant risk of network congestion. We
proactively addressed this by integrating additional data
access points on the receiving ESP32, which distributed
the data load more evenly and prevented bottlenecks. This
setup ensured a smooth and continuous data flow across
the network, maintaining the integrity and timeliness of
the video streams. We also added functionalities to send
data only when object movement is detected, with a change
detection algorithm, thus allowing us to save Wi-fi band-
width and battery too.

8.4.1 Decompressing Incoming Frames Efficiently

The initial concern was whether our chosen FPGA could
decompress incoming frames swiftly from all camera nodes.
By fine-tuning our decompression algorithms, we enhanced
processing efficiency. Moreover, our contingency plan in-
cluded the option to upgrade to a more powerful FPGA,
but this was ultimately unnecessary due to the successful
optimizations. We did however end up using 2 FPGAs
stacked on top of each other, allowing us to distribute dif-
ferent parts of the workload and allow for efficient usage of
the compute capabilities.

8.4.2 Minimizing Power Consumption

Given the requirement for at least 24 hours of continu-
ous operation, power efficiency was critical. We conducted
thorough analyses to identify and optimize the most power-
intensive components of our system. This approach, cou-
pled with effective power management strategies such as
the change detection optimization and choosing the right
devices and battery packs allowed us to be able to get the
system working well without the need to resort to larger
battery packs.

9 ETHICAL ISSUES

There are two main ethical issues that can arise from
our product. The first of which is that we don’t want to give
the user a false sense of security. Given that there are many
situations in the wilderness in which the scene is static, it’s
very difficult to know if the camera was disconnected or if
there is just no change in the image.

This edge case can truly affect anyone as this is a fun-
damental feature of our design. To alleviate this issue, we
implemented a feature that if the camera does not send an
image within a certain timeout, the monitor displays an
error image.

The next issue that could arise is that the wireless
stream of camera data could be snooped on. To alleviate
this issue, we implement our wireless protocol using WPA2
which ensures that without the appropriate password, it is

EyeSpy Final Report - 1 May 2024 Page 15 of 16

Table 3: Bill of materials

Description Model # Manufacturer Quantity Cost / Unit Total
ESP32 Microcontroller ESP32-CAM Espressif 6 $3 $18
Open Source FPGA ULX3S Radiona 2 $60 $120
Camera OV2640 OmniVision 6 $1.68 $10.08
Patch Antenna 1461531200 Molex 6 $3.38 $20.28
3D Printing Cost PLA TechSpark 150g $76.5 $76.5
Portable Monitor 1366x768 11.6” wanlusiri 1 $54 $54
100Wh Power Bank 27W 100Wh Talentcell 1 $48 $48
16Wh Power Bank 354 YIBYTE 6 $7.99 $47.94

Total $395.49

not possible for an external third party to extract usable
from our camera streams.

In terms of future risk mitigation, the main concern that
arises with this project is with regards to privacy.

One potential risk is that if someone knows the pass-
word to the WiFi access point on the Receiver node, it is
still possible to snoop on the camera streams that are com-
ing in. A way to remedy this would be to add a layer of
protection by encrypting the JPEG streams.

10 RELATED WORK

The following related works provide valuable insights
for our product:

1. Arlo Pro Series (Arlo Technologies): Arlo’s line of
wireless security cameras is renowned for its ease of instal-
lation, high-quality video, and efficient battery use. The
Arlo Pro series offers motion detection, similar to our focus
on change detection. However, we differentiate ourselves
with the JPEG no-change control mechanism, designed to
optimize data transmission efficiency and extend battery
life further.

2. Wyze Cam Outdoor (Wyze Labs): This product
is designed for outdoor surveillance with features such
as wireless operation, weather resistance, and low-power
consumption modes. Wyze Cam Outdoor’s approach to
energy efficiency and its use of Wi-Fi for communication
are paralleled in our design. Nonetheless, we advance be-
yond by integrating FPGA-based processing for enhanced
video decompression and display capabilities.

3. ESP-EYE (Espressif Systems): The ESP-EYE devel-
opment board from Espressif Systems features an ESP32
chip and supports image recognition and audio process-
ing. While primarily a development tool, its use of the
ESP32 for low-power, high-performance processing is mir-
rored in our remote node design. We extend this concept
by focusing on outdoor surveillance and incorporating a
system-wide approach to energy efficiency and data man-
agement.

4. LoRa-based Surveillance Systems: Various projects
have explored the use of Long Range (LoRa) technology for
remote surveillance, capitalizing on its long-range commu-
nication capabilities and low power consumption. While
LoRa excels in range and power efficiency, its limited data
throughput makes it less suitable for high-definition video
streaming. Our choice of 2.4 GHzWi-Fi addresses this limi-
tation, providing a balance between range, throughput, and
energy efficiency.

11 SUMMARY

The Final Report details our innovative surveillance
system designed for outdoor and remote monitoring. The
report emphasizes energy efficiency, particularly through
a novel JPEG no-change control mechanism that signifi-
cantly extends battery life by avoiding unnecessary data
transmission. The central node, powered by an FPGA,
offers an optimal balance of processing power and energy
efficiency, crucial for handling multiple video streams. The
system employs 2.4 GHz Wi-Fi for reliable communication,
ensuring efficient video streaming across the network.

Key components include JPEG compression for efficient
data handling, sophisticated remote node implementation
for capturing and processing video, and a central node
design focused on minimal power consumption and high
performance. The selection of an FPGA-based solution
underscores the project’s commitment to cost-effectiveness
and performance.

Challenges ahead include optimizing energy use, ensur-
ing dependable Wi-Fi transmission outdoors, and manag-
ing the computational demands of real-time video process-
ing. Overcoming these obstacles is crucial for our system
to meet its goal of enhancing outdoor campsite security
monitoring effectively.

11.1 Future Extensions

Future work on the system can focus on getting expand-
ing the number of remote camera nodes that are supported.
While 6 camera nodes are more than enough to cover a 360

EyeSpy Final Report - 1 May 2024 Page 16 of 16

degree area, having more views is never a bad thing. Work
can also be put towards combining the current two FPGA
system into a single FPGA. This would further enhance the
already stellar battery life of the system.

11.2 Lessons Learned

We learned a lot from this project regarding how to
work with systems that have many moving pieces. For most
of the semester there was parallel development happening
for all three nodes and there had to be a lot of coordination
between members to verify that all the assumptions were
true. This is especially true for interfaces between the two
devices where both sides had to agree on a format, endi-
anness, and transmission rate. Should we do this project
again, we would have written detailed interface control doc-
uments that laid out in writing what the expected inputs
and outpus were for each module.

Glossary of Acronyms

• BRAM - Block Random Access Memory

• CAS - Column Address Strobe

• CVT - Coordinated Video Timiming

• DCT - Discrete Cosine Transform

• DRAM - Dynamic Random Access Memory

• FPGA - Field Programmable Gate Array

• FPS - Frames Per Second

• GPDI - General Purpose Differential interface

• iDCT - Inverse Discrete Cosine Transform

• JFIF - JEPG File Interchange Format

• JPEG - Joint Photographic Experts Group

• LoRa - Long Range

• MCU - Minimum Coding Unit

• MPEG-2 - Moving Picture Experts Group-2 Stan-
dard

• PSRAM - Puesdo Static Random Access Memory

• Rec. 601 - International Telecommunications Union
Recommendation 601

• RGB - Red Green Blue

• RPi - Raspberry Pi

• TCP - Transmission Control Protocol

• TMDS - Transition Minimized Differential Signaling

• TSMC - Taiwan Semiconductor Manufacturing Co-
operation

• VGA - Video Graphics Array

• YCrCb - Luminance, Chrominance Red, Chromi-
nance Blue

References

[1] Digital Display Working Group. Digital Visual Inter-
face. Tech. rep. 1999.

[2] Eric Hamilton. JPEG File Interchange Format. Tech.
rep. C-Cube Microsystems, 1992.

[3] David Marshall. The Discrete Cosine Transform
(DCT). url: https://users.cs.cf.ac.uk/dave/
Multimedia/node231.html.

[4] Espressif Systems. ESP32 series datasheet. Tech. rep.
url: https://www.espressif.com/sites/default/
files/documentation/esp32_datasheet_en.pdf.

[5] International Telecommunication Union. INFORMA-
TION TECHNOLOGY – DIGITAL COMPRESSION
AND CODING OF CONTINUOUS-TONE STILL
IMAGES – REQUIREMENTS AND GUIDELINES.
Tech. rep. International Telecommunication Union,
1992.

EyeSpy Final Report - 1 May 2024 Page 17 of 16

F
ig
u
re

9:
A

fu
ll
-p
ag

e
v
er
si
on

of
th
e
sa
m
e
sy
st
em

b
lo
ck

d
ia
gr
am

as
d
ep

ic
te
d
ea
rl
ie
r.

EyeSpy Final Report - 1 May 2024 Page 18 of 16

F
ig
u
re

10
:
G
an

tt
C
h
ar
t

