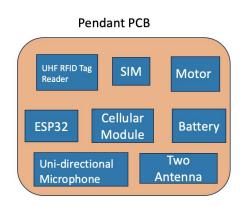
### Use Case:

Our Goal: Discreet safety device for immediate response in threatening situations, independent of mobile device availability.

- Discretion (phone access unsafe or hindered)
- One-Hand Activation: Pendant-ring design with additional trigger options.
- Emergency Alerts: Direct communication to services via app or standalone.
- Smart Features: GPS, voice detection, and separation alerts.
- Target Age Group: Young Adults (particularly MS/HS/Uni students)
- ECE Core Areas: Software Systems and Circuits

# Use Case Requirements

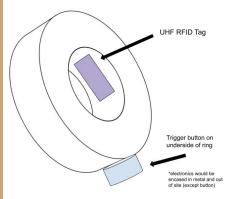

| Feature<br>Category    | Ring                                                    | Pendant                                                | App/Cellular<br>Services      |
|------------------------|---------------------------------------------------------|--------------------------------------------------------|-------------------------------|
| Connectivity           | RFID, 2m range, 99.5% reliability                       | Bluetooth, up to 30m range                             | 3G LTE, low-signal capability |
| Physical<br>Attributes | <1.9mm thick, <8g,<br>size-extender, discreet<br>button | <3 x 2.5 x 1 inch, <30g                                |                               |
| Battery Life           |                                                         | 24 hrs active, 72 hrs<br>standby, 2 hrs charge<br>time |                               |
| Durability             | Water-resistant                                         | Drop-resistant up to 3-4 feet                          |                               |
| Triggers               | <2N actuation force                                     | Voice activation >90% accuracy in quiet                |                               |

# Use-Case Requirements Pt.2

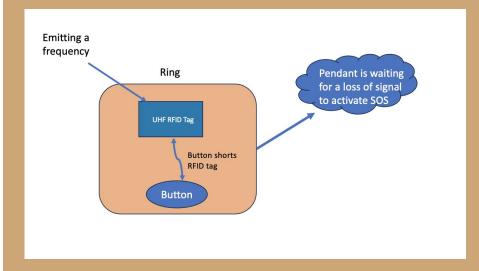
| Category            | Feature                   | Description/Specification                                          |  |
|---------------------|---------------------------|--------------------------------------------------------------------|--|
| Error<br>Prevention | False Alarm<br>Mitigation | Special trigger designs for different lifestyles                   |  |
|                     | Device Durability         | Ring: up to 10,000 presses; Pendant: up to 5,000 connection cycles |  |
|                     | Back-up Triggers          | Bluetooth to cellular switch with >99% success rate                |  |
| App Features        | Customization             | Add up to 5 contacts and 3 types of emergency services             |  |
|                     | Priority<br>Connection    | If app connection fails <5s, default to cellular                   |  |
|                     | Emergency<br>Protocol     | Sequential contact method, implements IFFUL protocols              |  |

### Pendant

- Microphone (audio trigger)
- ESP32 (MCU + mobile phone connection)
- U-Blox SARA Series Cellular (When Mobile device not accessible)
- RFID Receiver (comms between ring->pendant)
- Antenna for RFID and Cellular (<10cm)</li>
- Battery (support RFID, Cellular, Bluetooth comms)
- Vibration Motor (acknowledge SOS sent)







Goal Envisionment Of final design

# Ring

- Button (2mm), located on the outside
- RFID wrapped inside
- Battery ( if non-passive)







# Device Triggers

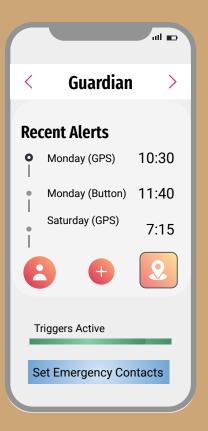
#### 1. Button

a. Located on the underside of ring for easy access

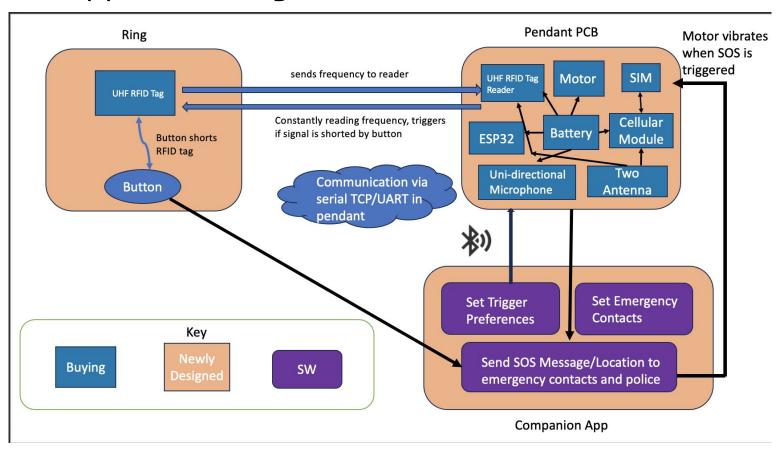
#### 2. GPS Location

a. trigger alerts when a person enters or exits a specific area.

#### 3. Audio


a. Customize a trigger word to deliver SOS messages

#### 4. Seperation


a. Ring -> Pendant Distance exceeds 2m

### Mobile App

- Set emergency contacts in situational order
- Connect other emergency services if desired
- Set Trigger preferences
  - Life-Style trigger preferences
     (Possible frequent accidental button pushes)
  - Overall Trigger Preferences



### Solution Approach Diagram:



### Testing, Verification and Metrics

- Communication Testing: >90% success rate
  - Impedance test through walls, (Ring and/or Pendant) covered by heavy clothes
    - (Ring + Pendant) > **90%** success rate
  - Speed of Communication Testing (10 seconds max for all types after receiving to send SOS)
    - <5 seconds to discover mobile device before attempting cellular (<30s)</p>
- Physical Attributes Testing:
  - Ring > **10,000 presses**, water resistant
  - Pendent drop survival at <4ft height >80%, electrical component life > 5,000 cycles


### Testing, Verification and Metrics

- SOS Customizations Testing:
  - Uniform behavior between App and cellular module in pendant:
     App-pendant sync 100%
  - Test emergency protocol simulation and lifestyle trigger preferences
    - Jobs/lifestyles that might repeatedly hit near the button... etc
- Error Prevention Testing:
  - False Alarm Real-World Scenario Testing (noisy environments, battery life)
  - **False alarm rate <5%**; Battery retains 80% efficiency after 300 cycles

### Testing, Verification and Metrics

- GPS Trigger/Separation of Ring and Pendant
  - Create a set of x radii boundaries (within a reasonable walking distance)
  - Take jewelry outside of defined radius
    - Or split ring and pendant a certain distance
  - Test if device gets triggered within 10 seconds of exiting radius
- Edge Case testing, ensuring water resistance, ....

#### **Gantt Chart**

