
Team B3: Thomas Lee, Luke Marolda, and Matt Hegi

Use-Case
- A comprehensive speaker attachment that seamlessly manages queuing,

song recommendations, and crowd engagement
- Users steer the system through a distributed web app that hosts a suite of

song request and consensus voting capabilities

Existing Solutions

- Current systems are singular - they focus on one person having full control.
We democratize the event listening experience for uniform enjoyment

Areas

- Software Systems, Machine Learning, Hardware Systems

Design Requirements

Requirement Metric Status

Mount to any speaker Bluetooth and AUX ✅
Song request formats 3 distinct request formats ✅
User requests to queue Reflected within 1 second ✅
Manage concurrent users 100-150 users ✅
Support live user feedback Vetoes and Likes ✅
Easily usable mobile website Onboarded in <1 minute ✅
Light strobing effects Transitions with song 🟧

Design Requirements (Improvements)

Requirement Metric Status

Endless queue Queue is never empty ✅
Enhanced recommendation algorithm Finer-tuned than Spotify ✅
Weighted session recommendations Weighted by user likes ✅
Support volume adjustment Button interface ✅

Ethical Considerations

Category Problem Solution Status

Health Unsafe operating volumes Easy volume adjustment
with button press

✅

Health Unsafe light strobing Max intensity: 225 (88%)
Max frequency: 65ms

✅

Safety User data security Secure storage + data
invisible to other users

✅

Welfare Vulgar music content Prohibited use of certain
words when queueing

🟧

Public Demonstration Solution
1. System boot-up 🔁
2. Simple queueing functionality by song name + artist
3. Queue scheduler mechanism + endless queue
4. Light strobing and effects ⚡
5. Song similarity recommendations
6. Likes and dislikes ➡ veto functionality
7. User keep-alive functionality
8. Weighted session recommendations
9. Open up to the public!

 🚨 Full functionality with concurrent users 🚨

https://docs.google.com/file/d/185JWMoEVyIuVBYdPCgCrB5XxCDd4E210/preview

Testing, Verification, and Validation
Latency Web App to System: measure latency for a single time-stamped Play Song request to

be reflected on queue (< 1 sec)

Capacity Queue: verify that all Main RPi queue can maintain 100+ songs without running out of
memory, and perform operations under max latency
User Network: verify that Main RPi can accept ambiguously timed requests from
100-150 concurrently online users and maintain ordering

System Latency ✅
- Measured (with timestamps) direct queue request latency = 102 msec (20 trials)
- Recommendation request latency = 6.349 sec (20 trials)

Queue ✅
- Manually constructed queue session with 100 songs (direct + recommendations) and

maintained performance without running out of memory (1 trial)
User Network 🟧

- Developed a test to test 150 concurrent users. Have yet to test.

Testing, Verification, and Validation

Accuracy Queue: use script / live tests to issue song requests in a certain order, verify that they
appear in that same order on system (and then back on web app)
Resources: 80% accuracy in match between user input and Spotify resource
Lighting: use hard coded light script to verify that we can control each light channel
independently and to do the intended color & strobing

Queue ✅
- Conducted 2 live tests with 20-30 concurrent users scattered across campus, to test

robustness of concurrency handling and queue ordering
Semantic Match ✅

- Expected Matches: Avg Similarity = 83.6%, Max Similarity = 100%, Min Similarity = 67.1%
- Expected Failures: Avg Similarity = 46.2%, Max Similarity = 57.3%, Min Similarity = 18.0%

Lighting 🟧
- Stress tests for transmitting DMX data frames: system capable of <100ms response time

intervals to new control signals for all 10 channels on SlimPAR PRO Q USB

Testing, Verification, and Validation

User
Experience

Web App: measure average time to onboard new users, poll on 1-5 scale for ease of
use and input responsiveness
Recommendations: generate recommendations based on our compound model, poll
users on 1-5 scale for quality of recommendations and compare to their ratings for
generic Spotify recommendations

Web App ✅
- Onboarding time: interviewed 10 participants: Average onboard time = 48.4 seconds

- Minimum onboard time = 21 seconds, Maximum onboard time = 83 seconds
- Average ease of use rating = 4.5/5

Recommendations 🟧
- In the process of surveying users on the quality of song recommendations

- Primarily concerned with single song recommendations, and comparing our enhanced
recommendations with the bare Spotify endpoint recommendations

Engineering Tradeoffs

Recommendation Generation Chose a simpler/more efficient models
that fit our use case

Semantic Match Prioritized whole word accuracy over user
typos

Complexity vs Usability Enhance features while maintaining a
simple, intuitive user interface

Lighting System Light intensity & strobing frequency limit
for user health

