
 1
 18-500 Final Report: B3: Music Mirror 5/3/2024

 Music Mirror
 Luke Marolda, Matt Hegi, and Thomas Lee

 Department of Electrical and Computer Engineering, Carnegie Mellon University

 Abstract —Music Mirror is a comprehensive speaker attachment
 that seamlessly manages song queueing, recommendations, and
 crowd engagement. Users are able to steer the system through a
 distributed web app that hosts a suite of song request and
 consensus voting capabilities. Using our expertise in software
 systems, machine learning, and hardware systems we were able
 to develop a final product that can mount to any speaker to
 provide a maximum of 200 concurrent users with 3 distinct song
 request formats, as well as the ability to provide live user
 feedback to alter the queue through vetoes and likes. Two of the
 three song request formats include song recommendation
 capabilities that are preferred to Spotify’s recommendations by
 73.3% of users. Further, we prioritized an easily usable mobile
 website with an average user onboarding time of 48.4 seconds, as
 well as user engagement through a light strobing system that
 transitions with songs in <100ms response time intervals. Finally,
 we also support an endless queue via automated song
 recommendations, volume adjustment through a button
 interface, as well as safety mechanisms to prevent unsafe usage of
 the light system and to avoid overly vulgar music content.

 Index Terms —DJ, song, queue, DMX capable light fixture,
 Audio Speaker, Raspberry Pi, web application

 I. I NTRODUCTION

 T HIS project aims to create an all-in-one music platform

 for events. We replace a costly, difficult to locate &
 coordinate, and not custom tailored human DJ for social
 events such as weddings, house parties, and reunions with a
 comprehensive smart jukebox system that handles song
 queueing, crowd engagement, and accurately represents users
 music tastes. Music is the centerpiece of such events and
 similar gatherings: it is responsible for setting the atmosphere
 of the event space, which dictates the mood of its guests and
 allows them to get out of their shells and enjoy themselves
 (and each other). Thus it is crucial that hosts employ a
 competent music system, whether a DJ or a jukebox, that will
 continuously be playing new songs, without allowing for a
 silent (or even worse, a dull) moment that could derail the
 entire momentum of the party. It is the system’s responsibility
 to cultivate an exciting environment by playing crowd favorite
 song requests and the best songs from their personal collection
 that the guests will actually want to dance and sing along to.

 Traditional DJs can only accomplish this well with years
 and years of experience mixing, listening to large collections
 of different song genres, and reading diverse crowds, and so
 there is a shortage of good DJ talent, especially in places
 outside of major cities with bustling young adult populations.
 Additionally, even the best DJs will be of no use in a crowd
 that does not match their target demographic, and to complete

 the dance floor of the event another professional must be
 hired, as a lighting designer must create the lighting rig to
 sync with the music and illuminate the space. Therefore, for
 most events, which are restricted by a combination of money,
 time, compatibility, and availability, having a high quality
 human DJ which garners a sufficient level of satisfaction from
 its guests is infeasible.

 In regards to jukeboxes currently available on the market,
 they require users to be physically centralized at the device,
 leading to inefficiencies in contention and the lack of the
 ability to express opinions on songs other people queued.
 Additionally, these jukeboxes require the guests to pay money
 to queue songs, discouraging user engagement and acting to
 generate revenue for the jukebox company at the cost of a
 diminished listening experience for users.

 The Music Mirror system addresses these problems by
 providing a custom tailored suite of services at a
 comparatively low cost, more efficiently, and with a much
 greater degree of convenience. As a self contained package, it
 is readily available, and with a flat component cost it is much
 cheaper than the exorbitant hourly rate of a popular DJ or an
 alternative solution such as an expensive jukebox, which has
 significantly less functionality than our system.

 The guests of the event will interact with the system through
 our web application (in most cases on mobile platforms, which
 are ubiquitous) on which they will be able to queue their
 favorite songs, request more songs similar to ones that have
 been played already, generate session song recommendations,
 downvote songs to remove them from the queue (if it is vetoed
 by the majority of active users), and provide live feedback on
 the songs that have been played. As a result the guests will
 feel more satisfied as they will feel as if their voice is being
 heard, and be more likely to dance, sing, and enjoy the event
 as the songs they actually want to hear are being played. This
 democratization of the song queue will custom tailor the
 experience for the guests, as it reflects the crowd’s tastes better
 than a single human operator can.

 Music Mirror will also use the tracklist of songs queued by
 the users, their inputs (Upvotes and Downvotes to manually
 indicate to the system what songs in the queue they liked or
 didn’t like) to insert songs of its own to the collective queue
 through the mentioned session recommendation feature. The
 system will blend these characteristics to create
 comprehensive music choices that not only support the
 interests of the audience, but are novel and potentially new
 songs for the users. This will be accomplished using a two-tier
 recommendation system, pairing Spotify’s API
 recommendation endpoint with a clever seed sampling model
 that utilizes the live user feedback.

 Finally, Music Mirror will operate its own lighting fixtures

 2
 18-500 Final Report: B3: Music Mirror 5/3/2024

 via the DMX protocol automatically, manipulating the
 warmth, colors, strobing, intensity, and overall pattern of the
 lights to suit the atmosphere and the characteristics of the
 music currently playing. This will add the final dimension of
 engagement to our comprehensive system that does not come
 standard with a regular DJ.

 Full-scope physical automated music systems similar to
 Music Mirror are not publicly available, and the archetype is a
 novel concept in the general market. However, there are other
 computer DJs that generate song recommendations (like the
 Spotify DJ) which exist as pure software, applications that
 allow human DJs to remotely collect song requests from the
 crowd and then make a decision on them, and jukeboxes that
 allow guests to walk up and directly queue songs from the
 central device itself (and thus, is not much different from a
 music player app just being open on a tablet that anyone can
 touch). Music Mirror is the first to combine these services into
 a single, comprehensive, automated platform, allowing for
 remote song requests concurrently to be added directly to the
 music queue, to inject its own novel song choices, and to
 operate its own lighting fixtures to provide a holistic listening
 experience.

 II. U SE -C ASE R EQUIREMENTS

 The target users of the Music Mirror system are hosts of
 social events like weddings, bar gatherings, high school
 reunions, corporate socials, and house parties, where music is
 a key factor in the overall enjoyment of guests. In such events,
 it is critical for the music being played to be enjoyed by the
 event participants, but also to be representative of what the
 majority of people want to hear. This multifaceted use-case
 environment guided us in developing our system
 requirements.

 Music Mirror is a much more convenient, cost-effective,
 and intelligent solution than a traditional human DJ or
 electronic jukebox. We combine a set of features that allows
 our system to be incredibly reflective of the event guest’s
 music preferences. Event hosts will be able to simply pay a
 low flat rate for the physical device instead of spending hours
 and hundreds (or thousands) of dollars negotiating a time and
 rate with a real DJ, buying an overpriced jukebox, or settling
 for an alternative sub-par solution. To accomplish this, we
 settled on a set of core use-case requirements to guide our
 development process. The companion web app will be
 intuitive and quick to acquire and learn to use, and guests will

 be able to queue songs on their own without external guidance
 in under a minute. We will support 3 distinct song request
 formats, as well as the ability to provide live user feedback to
 alter the queue through vetoes and likes. Two of the three song
 request formats include song recommendation capabilities that
 we aim to be preferred to Spotify’s recommendations by users.
 Further, we prioritized user engagement through our light
 strobing system that transitions with songs and matches the
 tempo and emotion of the corresponding songs. Finally, we
 also support an endless queue via automated song additions,
 volume adjustment through a button interface, as well as
 safety mechanisms to prevent unsafe usage of the light system
 and to avoid overly vulgar music content.

 III. A RCHITECTURE AND / OR P RINCIPLE OF O PERATION

 The complete physical system of Music Mirror is depicted
 in Fig. 1. Event hosts will turn on and power the system, and
 potentially swap out the speaker or the lighting fixture for
 their own if they have a pre-existing device setup. Event
 guests, which are the users of our system, interact with it by
 accessing our web application. These users will type in any
 songs they want to add to the queue, get song similarity or
 session recommendations, and press enter, which will forward
 the song request to Music Mirror. The songs on the centralized
 queue will be collected from all the users and be displayed on
 the web app. The rest of the functionality will be operated
 automatically by the system, without requiring user
 intervention.

 The overall system is composed of four main subsystems:
 the web application which is the user interface, the main
 Raspberry Pi 4 (“RPi”) which acts as the “brain” of the system
 receiving and managing the queue, the secondary Raspberry Pi
 which aggregates user inputs and engagement to generate
 novel recommendations (using a combination of our song
 queue data processing and the Spotify Web API),, and the

 3
 18-500 Final Report: B3: Music Mirror 5/3/2024

 physical interface, which actually plays the songs and flashes
 the lights. A user will submit a song request on the web app,
 which will communicate through a Web Socket to the main
 RPi, which will add it to the queue, forward a formatted
 request to the Spotify Web API to look for a playable song
 match, and send the updated queue view back to the web app
 client. The main RPi will query the Spotify API to receive
 song data (e.g. the song’s genre, theme, tone, tempo, etc.) as
 well as to actually play the song once it is next up in the
 queue. The secondary recommender RPi will be available to
 continuously generate new song recommendations when a
 user requests, as well as when the queue runs out of songs
 from users and inserts recommendations of its own.

 A. Web Application

 The web application (Hosted on the Core Pi) is the medium
 through which the users will be able to request and vote on
 songs as well as see the most updated version of the song
 queue. We used WebSockets to ensure the server holding the
 queue can initiate messages with the users at any point. This
 ensures the users always receive the newest version of the
 queue. The web app also has functionalities to keep track of
 users' last actions, responsive CSS, and reconnection to the
 app automatically after being away.

 Above, we see how the web app looks for users of Music
 Mirror. The system participants can both add a song to the
 queue and vote for/against others in a user-friendly way.

 B. Main Raspberry Pi Core

 The main Raspberry Pi (RPi) contains modules responsible
 for transferring the user song requests onto the queue, pruning
 the queue for vetoed songs, keeping track of user actions,
 issuing calls to the Spotify Web API to match requests to
 playable songs, retrieve metadata about the songs, and playing
 them on the audio speaker system. Additionally, this RPi core
 is responsible for semantically matching user song requests to
 queried resources from the Spotify Web API, to ensure the
 correct song is being played. Further, this core will house an

 authorization driver that utilizes Selenium and ChromeDriver
 to automate user authentication with the Spotify Web API. The
 main RPi core maintains these microservices using persistent
 Java processes that are spun up on boot, through Maven
 applications hosted on them.

 C. Recommender Raspberry Pi Core

 The second core is responsible for generating song
 recommendations when queried by the main core. Whenever
 the queue needs a song recommendation (from either a user
 request, insertion between user requests, etc.), it will
 communicate with the second RPi which will build a seed
 query to send to the Spotify Recommendation endpoint, using
 our custom sampling and seed generation methodology, which
 then applies a refined ranking on the returned results from
 Spotify to provide enhanced recommendations. This will also
 involve housing an in-memory data structure to hold
 characteristics of songs that have been played, as well as those
 that have been recommended by our model. Additionally the
 core transmits the song to our DMX lighting control program
 hosted on this pi (Reccomender). After receiving the song in a
 similar fashion to the recommending program, it sends
 lighting signals to our physical lights [Described more in
 Physical Interface (Audio & Lights)]

 D. Physical Interface (Audio & Lights)

 The system is highly modular and can connect to any
 external bluetooth or AUX speaker. This is accomplished via
 the Spotify Connect functionality, which allows us to control a
 wifi-connected speaker via the Web API. To further increase
 our modularity, we will be connecting with Spotify via a
 wifi-based audio streamer, which will then allow us to route
 the streamed audio to a bluetooth or directly-wired speaker.
 This essentially allows us to widen our possible speaker
 choices from just wifi-based speakers, which are expensive
 and more difficult to find, to virtually any external speaker, as
 the dominant speaker connection methods are bluetooth and
 physically wired.

 The system’s lighting controller operates the lighting
 fixtures included in the system via DMX signals generated by
 a long-running Java process propagated through an ENTTEC
 DMX USB Pro converter. The lighting controller selects from
 different sets of colors based on the characteristics of the
 current song (acousticness, danceability, valence, energy)
 pulled from the Spotify Web API, and modulates the strobing
 frequency of the lights in real-time with tempo changes
 throughout the song. Additionally, the ENTTEC DMX USB
 Pro translates between the USB standard from the Raspberry
 Pi to generic DMX signals, allowing Music Mirror to be
 connected to any DMX-capable lighting fixtures that our users
 may already have.

 IV. D ESIGN R EQUIREMENTS

 To satisfy the use-case requirements there are several design

 4
 18-500 Final Report: B3: Music Mirror 5/3/2024

 requirements covering both the hardware and software (as
 well as the distributed system networking) aspects of the
 Music Mirror system.

 The primary method of interaction between the users and
 the system is the web app, therefore it must be responsive as
 well as easy to understand and use. Hence the latency from
 placing a song request on the web app to the centralized
 collective queue, and then pushing the updated view of the
 queue back to the web app client must be under 1 second to be
 quick and to prevent users from being frustrated using the app.
 Additionally, it must take new users to take less than 1 minute
 on average to learn how to use the web app on their own. This
 will lower the barrier of entry and ensure that as many guests
 as possible are accommodated by the system.

 The system must have a sufficient capacity to fulfill the
 use-case of an average sized social event. Primarily these
 consist of gatherings such as weddings, reunions, and parties.
 As a result our system needs to support a network of 100+
 concurrently online users (interfacing through instances of the
 web app), as the average size of an American wedding is
 75-150 guests. Furthermore, the queue must hold at least 100
 songs, to reach the target of a 6 hour average reception at 3.5
 minutes per song. We also need to ensure that the songs users
 request are actually the ones being played, so we require an
 80% accuracy in semantic matches between the user requests
 and the actually queried Spotify resources.

 User satisfaction is also a critical consideration, hence our
 system must ensure that the novel song recommendations it
 produces are high quality. Therefore our target user approval
 of the generated recommendations is that 75% of users prefer
 our recommendations to Spotify’s naive recommendations.
 This will assure event hosts that their guests will be enjoying
 the songs that they are surprised with, with a small margin of
 error, and shows that our models introduce novelty to existing
 solutions.

 The lighting must always be in sync with the music that the
 system is playing at the moment. This serves to make the
 guest experience feel immersive and coherent, and impress
 users with a more complete event. Hence our target is to have
 a <1 sec response time between our generated light signals and
 resulting light effects, in order to ensure that the lighting
 always tracks the currently playing song accurately.

 Additionally, we require some new updated features since
 our last report at mid semester, which is that our system
 supports an endless queue, meaning that music will always be
 playing regardless of the number of users currently in our
 system. We also aim to support safe volume adjustment
 through a button interface.

 Summary of quantitative requirements:

 Specification Target Value

 Web App to Queue Latency < 1 sec

 User Web App Onboarding < 1 min

 User Network Capacity > 100 users

 Song Queue Capacity > 100 songs

 Semantic Match Accuracy > 80%

 Song Recommendations 75% Preference

 LED Behavior music match < 1 sec response time
 Accurate song classification

 V. D ESIGN T RADE S TUDIES

 A. Using WebSockets rather than HTTP
 We decided to go with WebSockets over HTTP for two

 reasons. The first is that we want for both the clients and
 server (Raspberry Pi) to have the ability to initiate
 communication. The client needs to be able to request songs
 and the server needs to be able to update the client queue
 sometimes independently of client requests. An example of the
 server needing to update on its own is when it recommends
 songs to the clients. We understand that the server can still do
 that in the HTTP protocol, but that brings us to our second
 reason: we want real-time communication between the client
 and server. Our app maintains a real-time queue for songs to
 be played and songs to be removed from the queue. So users
 must be looking at an accurate representation of what the
 current state of the server is. So if one user queues a song or
 puts the final dislike vote to remove a song from the queue, we
 want it to be immediately updated for everyone. The best way
 to support all of this functionality is through WebSockets [1].
 So even though WebSockets are harder to implement than
 HTTP requests, it allows us to have real-time updates to all
 users.

 B. Choosing the veto consensus protocol
 When choosing the consensus protocol we thought about

 who should have a say and how we could make that happen.
 Here are a few possibilities we thought of: everyone with
 access to the website, everyone who was ever at the event,
 everyone who is currently at the event, and everyone who is
 currently at the event and interacting with the app. We decided
 that we wanted only people who are currently at the event
 (since they are the only ones hearing the music) and only the
 people interacting with the app (since they are the ones who
 are actively voting). So to accomplish both of these we
 decided to:

 1. only host the website on a local host for the wifi so
 only people on the wifi can access the website.

 2. Implement a heartbeat system to check what users
 have interacted with the app in a certain period of time. So
 user’s votes will not count if they have not interacted with the
 app. Once they are again active their actions will be re-added.
 The way they can be active is any interaction with the page
 more than just being on the screen.

 5
 18-500 Final Report: B3: Music Mirror 5/3/2024

 We chose 30 minutes (about 10 songs) because people won’t
 constantly be on their phones during Events. Also every 30
 minutes our Spotify token updates so this is also a convenient
 spot to mark users inactive to keep our async timing functions
 to a minimum. If people cared what songs were playing next,
 they would check at least once for every few songs playing.
 We also have to consider what percentage of votes are needed
 to remove a song from the queue. Since we already have
 narrowed down the votes that count to only users that have
 interacted with the app for the last 30 minutes we know that
 they have had the chance to look at the soon-to-be-played
 songs, so we think that a majority rule would work best. If
 there are more dislikes than likes for a song then it will be
 permanently removed from the queue.

 C. Using a custom recommendation system
 As mentioned, the Music Mirror system will incorporate a

 model to generate novel song recommendations for the users.
 A naive vanilla solution is to simply use Spotify’s
 recommendation endpoint. However, we took this a step
 further due to one core concept: the lack of real time user
 feedback that goes into the Spotify model. In our system, as
 more songs are played by the user, and more upvotes and
 downvotes are provided for the songs that have been played,
 our system gains critical context and insight into the music
 taste of our users as well as the broader opinions of the
 collective audience. We also have live sensor data such as our
 loudness measure that can be utilized. This real time feedback
 is something that would not be included into a naive API call
 to Spotify’s model, which takes in an input seed of songs,
 artists, albums, and other song characteristics such as BPM,
 tone, acousticness, and a dozen other parameters. Therefore,
 we have decided to build a second component of the model,
 which incorporates this real-time feedback to generate more
 effective seeds to be passed into this model. For example, if a
 user specifies that they want to hear a song that is similar to
 the last 5 songs played, how do we accomplish this? There is
 no input to the Spotify model that would allow us to
 distinguish between which of these 5 songs resonated the most
 effectively with the audience. So, we implement a custom
 sampling mechanism that takes a weighted sample of the song
 characteristics that is directly correlated to the approval of the
 songs (ie. the number of upvotes or downvotes each song has).
 Further, we will include our physical measures (ie. the noise
 sensor) into this seed generation as well, adding another
 dimension of live feedback. This initial filtering provides
 much better input data to the Spotify model, in turn generating
 better song recommendations that are more representative of
 the collective event opinion.

 D. Choosing the semantic matching algorithm
 A core tradeoff that we identified was the differences

 between different semantic matching algorithms. We tested
 with three different techniques, a simplistic string comparison,
 a 1-gram character model, and using an embedding
 transformer model. To analyze the performance of each, we
 considered system performance in terms of latency and

 memory usage, as well as matching accuracy between
 expected matches and expected failures. We found that the
 simplistic string comparison was too inefficient, but the
 1-gram character model and the transformer model met our
 accuracy requirements. However, it was noted that the
 transformer approach utilized a lot of system memory and had
 a slower latency, which meant the system performance was
 worse than the 1-gram approach. But with the 1-gram model,
 our accuracy wasn’t quite as good as the transformer, despite
 the requirements being met. Therefore, we ended up choosing
 the 1-gram character model for the default setting, but allow
 users to still utilize the embedding model technique if they
 prefer higher accuracy versus more user capacity and better
 system performance.

 Now on to the actual way we chose to do the veto. At the start
 of the second 30-minute period, every 30 minutes the backend
 will remove likes for users that have not been removed from
 an inactive list, making sure we only remove likes/dislikes
 once. We then add all users to the inactive dictionary for the
 next 30-minute period. Users are taken off this hashmap when
 they perform a page interaction on the front end which gets
 sent over. We realize this is not a true 30-minute timeout. If a
 user interacted with the page at the start of the first 30-minute
 period and then did not interact until 59 minutes later their
 likes would not get removed. We chose to do it this way after
 considering things like JavaScripttiming functions and
 keeping every single last user action on the backend and
 somehow checking those every 30 minutes. The second one
 would have put too much unnecessary stress on the backend
 application. The issue with the first problem is that when users
 go away from their screen on some phones (either locking
 their phone or even just going to a different app) the
 JavaScriptcode stops leaving the timing function useless.
 Having the backend check user interactions in 30 minute
 buckets gives us the best of both worlds (simplicity and
 reliability).

 E. Choosing the DMX signal generation library
 Multiple different DMX signal generation software packages

 were considered when building our real-time adaptive lighting
 controller. These included the Open Light Architecture
 framework, PyDMX, and native DmxPy, in addition to the
 Java ported DmxPy version we ended up using. While all of
 these libraries were capable of interfacing with our ENTTEC
 DMX USB Pro converter and propagating control signals, we
 found the Java version of DmxPy to be best suited for our
 needs. While the other packages boasted more powerful
 features that could potentially allow for more complex lighting
 orchestration, they required more dependencies and were
 much harder to learn how to use and set up. As our lighting
 controller would be manipulating the DMX signals itself, we
 found that the fine-grained and direct channel controls
 provided by the DmxPy library were sufficient. Additionally,
 as we made the lights match the tempo of the music at the beat
 level, we found the more lightweight & quicker DmxPy to
 work best. Finally, as the rest of our code base and Raspberry
 Pi communication protocols we had implemented were in

 6
 18-500 Final Report: B3: Music Mirror 5/3/2024

 Java, we found the Java port of DmxPy to integrate the most
 seamlessly with our system.

 VI. S YSTEM I MPLEMENTATION

 Below, we discuss the system implementation, all of
 which is housed nicely in a 3D-printed casing that can be seen
 below. We split our discussion into the core subsystems of
 Music Mirror.

 A. Web App (Frontend)
 As shown in Fig. 7. the web app will be hosted on the

 Raspberry Pi. We are using the Spring Boot chat app [2] to
 serve as a starting point for the web application because it has
 a working implementation of Web Sockets using Java
 Springboot. It starts the WebSocket in the Java backend and
 can listen for events and messages that happen through the
 connected JavaScript that the users will be able to interact
 with through the HTML. The frontend has these
 functionalities:

 ● Web Socket communication with the backend. The
 front end uses Java Springboot’s Web Socket by
 initializing with SockJS and using that socket
 connection to subscribe to a bunch of actions the
 backend can make to send messages to the front end.
 These are actions like song removal and queue
 updates which will then call specific functions on the
 front end to update the queue that all users see. This
 communication also works the other way in that the
 JavaScriptfunctions can send messages over this
 socket connection to invoke specific functions in the
 backend Java code. Examples of this would be liking,
 queueing, and sending user activity updates.

 ● Web socket reconnection when users are away and
 Web Socket gets disconnected. Of course, we want
 users to be able to go on different apps and close their
 phones to go dancing, but during that time their
 WebSocket could lose connection because of the
 JavaScriptcode stopping execution. To combat this,
 once the user comes back on to the screen we

 reconnect the socket and load all user progress back +
 what song queuing they missed.

 ● Responsive and colorful UI components. By
 comprising most of our CSS with flex containers, we
 are able to fit our app to any width/height screen
 within reason. Also when the screen width is too
 small for the text queued, our app uses an animation
 to have the song scroll for users to see the whole song
 name rather than making the text very small. For
 colorfulness, users are assigned one of 15 diverse
 colors (not blue since that is for the music mirror
 queue) randomly which will be the color of the song
 element that is queued. The Music Mirror
 recommendations will always be blue so they stick
 out amongst other queues.

 B. Main Raspberry Pi Core
 1. Queue Controller

 This is our backend for the web application that uses
 all the other modules seen in Fig. 4 (besides Web App
 Controller) to provide our backend functionality which is:

 1. Keep the queue in a ConcurrentLinkedQueue data
 structure since multiple requests will be added at the
 same time. This will hold the songs as well as votes
 for and against them which will be held in a
 concurrent list

 2. Interact with this song queue to mark the current song
 that is playing so it can queue it on the Spotify API
 and send it to the lighting system. Also gets the song
 requests and song resources from Spotify to update
 the queue and show users immediately after.

 7
 18-500 Final Report: B3: Music Mirror 5/3/2024

 3. Keep track of users in ConcurrentHashMap that has a
 key of user_id and a value list that holds votes
 against specific songs

 4. Use another Concurrent dictionary to map queue_id
 to the song object inorder to have O(1) queue
 removal on the backend. All data structures will be
 sharing the same song objects, not copies, to ensure
 correctness and space efficiency

 5. Keep track of users that have yet to send a heartbeat
 for this 30 minute period. If a user's heartbeat times
 out it will mark all of their votes as not counting and
 adjust each song accordingly. Right when they
 interact with the page again, their votes will be added
 back to the songs still on the queue

 6. Continuously listen for new users through Web
 Sockets controlled in the User Request receiver to
 add them to the dictionary and let them start to
 vote/queue. This works because once the user joins
 the web page it will send a connection request to the
 backend to initialize another socket connection and
 all other user functionalities

 7. Any change in the queue it updates the frontend
 accordingly

 8. Use the Authorization model to make sure our
 Spotify API connection always works by periodically
 (30 min) refreshing our API key.

 2. Semantic Matching & API Request Generator
 Although it may seem trivial to find a song on Spotify that a

 user requests, this is in fact not the case. The Spotify database
 maintains song data in a very particular manner, and any
 discrepancies in the way songs, artists, and albums are named

 may cause unintended difficulty when querying for song
 resources. For example, say a user requests “Yesterday” by
 “The Beatles”. Well, this song may be directly stored on
 Spotify as “Yesterday”, or perhaps it contains extra
 information such as “Yesterday (Remastered)”, or even
 “Yesterday (10th Anniversary Edition)”. Even further,
 Spotify’s search mechanism is imperfect. There could be many
 different search results that are close matches, such as
 “Yesterday - Remastered” by J Dilla or “Lost in Yesterday” by
 Tame Impala. Obviously, a naive string matching algorithm
 will not give us a high success rate in actually choosing the
 songs that the users actually intended to play. That is why we
 have the system interaction detailed above. We need a
 semantic matching algorithm to choose between the songs that

 Spotify’s API call responded with, and then if the desired song
 is still not found, we will need to re-query the endpoint. Thus,
 we paired Cosine Similarity with a tokenization process to
 match between constructed strings of the desired and returned
 song name, artist name, and album in which the song is from.
 For the tokenization, we support the use of both an embedding
 transformer, as well as a 1-gram character model. For the
 transformer, we used the MiniLM-L6-v2 model which takes in
 an input string and embeds it in a 384 dimension vector space.
 For the 1-gram model, we simply create vectors representing
 the character frequency of the input and output strings.
 Regardless of the embedding choice, we will have a
 parameterized minimum similarity for us to choose a song,
 which sits at 85%. We essentially iterate through the Spotify
 search results, and choose the highest similarity that surpasses
 the 85% boundary in order to determine a match. Once we
 reach a successful match, the Spotify response also includes a
 unique song ID which can then be used to actually access the
 song resources via the player.

 3. Voting Module (Veto Consensus)
 As described earlier we will keep a few data structures to

 keep track of the song queue and songs that should be vetoed.
 At every user action, we will be updating votes for and against
 each song. If we find that there are more active likes than
 active dislikes of a current song then it will be removed from
 the queue.

 4. Authorization Module
 To access the Spotify Web API, proper authorization is

 needed. Essentially, we have a singular Spotify premium
 account associated with the system that needs to allow the
 system to access its resources. Typically, because this is a Web
 API, it would be implemented via some graphic interface that
 can be displayed to a user. Once you start up the system, an
 authorization request is sent to Spotify to obtain an
 authorization code that will be used to generate access tokens.
 However, Spotify’s response to the authorization request is a
 redirection to a callback URI, where the user can physically

 8
 18-500 Final Report: B3: Music Mirror 5/3/2024

 click the proper approvals and proceed. However, our device
 needs to be able to handle the auth process solely on the RPi
 core because the system itself is the ‘user’ in the context of the
 API and we don’t have a physical user interface where we
 could access the internet and follow the callback URI.
 Therefore, we accomplish this process by using Selenium web
 driver, in accompaniment with ChromeDriver to automate this
 authentication process. The driver itself attaches to the
 callback URI response, and then clicks on the necessary
 buttons to approve of the needed provisions for the system.
 Following this, the session is redirected back to our server.
 This authorization process only needs to occur once, and then
 the remainder of the system utilizes a returned refresh token to
 then regenerate access tokens.

 C. Recommender Raspberry Pi Core

 1. Song Attribute Storage
 To most effectively generate seeds for our recommendation
 model, we need readily available access to song characteristics
 and attributes that will be inputs to the model. Therefore,
 whenever we add a song from Spotify onto the queue, we will
 also send a request to gather the song’s analysis, and will store
 these attributes in an in-memory map. We do not need to
 utilize a database because the number of songs in which we
 will store will not exceed the memory capabilities of the pi.
 The actual attributes that are stored will be discussed in the
 next section, but they will be easily accessible for the input
 generator’s use.

 2. Model Input Generator
 As previously mentioned, our recommendation system utilizes
 the Spotify recommendation endpoint, as well as a clever
 sampling mechanism to generate the best possible seeds to
 input into the model. We will have access to 15 different
 parameters for the model, including: track, genre, artist,
 acousticness, danceability, energy, instrumentalness, key,
 liveness, loudness, mode, popularity, speechiness, tempo, and
 valence. To select the values we will actually feed into the
 model for a given user request, we will utilize the live user
 feedback to build an exponentially weighted combination of
 these attributes for each song being utilized in the seed. For
 example, if the user requests a song to be played that is similar
 to the last 5 songs that have been played, then to choose the
 parameters to build a seed with, we will weight them by the
 number of thumbs up / thumbs downs they have, with an
 exponential factor used to parameterize how concentrated the
 selected values are around the most highly rated of these 5.
 This is an important distinction than something as naive as a
 normal average, because this would produce very dull results.
 To see this, consider the averaging of a song’s BPM. If you
 had 5 songs, 2 with very slow BPMs and 3 with very fast, then
 the average of these would simply be a dull medium paced
 song. That is why we are interactively using context provided
 by our users’ experience to inform which of these songs we
 should place the highest weight on. In a way, it is a

 reinforcement learning approach to improving Spotify’s naive
 recommendations by introducing live feedback on the songs
 being played and the recommendations provided.

 3. Refined Song Similarity Recommendation
 One of our requirements was to ensure song recommendations
 that are more refined than Spotify’s. Therefore, to accomplish
 this we used a two-tier model that takes Spotify’s generic
 recommendations and then refines them with some
 mathematical operations. Essentially, for a song similarity
 recommendation we do similar to the above and generate a
 seed to feed into Spotify’s song recommendation endpoint.
 This will return 20-30 recommended songs, primarily based
 off of their proprietary user data as well as song
 characteristics. However, it is then our job to further refine the
 results to ensure the returned song is the most ‘similar’ to the
 input song. Thus, we developed a model that maps songs to a
 9-dimensional vector space, where each dimension represents
 one of the following characteristics: acousticness, danceability,
 energy, instrumentalness, liveness, loudness, speechiness,
 tempo, and valence. Now, our similarity problem has become
 a math problem. To find the most similar song to the input of
 the returned Spotify recommendations, we then apply a
 standard L2-norm minimization to find the song with the
 shortest distance away from the input song in this vector
 space. We used min-max normalization during this process, to
 avoid issues from the different ranges of the 9 characteristics.
 Once we find the song with the minimum distance, we deem it
 as the most ‘similar’ and return it as the refined
 recommendation.

 4. LED Controller
 The lighting fixtures attached to the recommender RPi

 were controlled via DMX signals transmitted over a DMX
 cable. These signals will be generated on board the
 recommender RPi using a Java program which controls the
 different channels (independently controllable groups of
 LEDs) of the fixture by using the DmxPy interface (ported to
 Java) to generate specific DMX outputs. The DMX channel
 signals, which control the behavior and colors of the lights,
 were determined based on the characteristics (acousticness,
 danceability, valence, energy) of currently playing songs,
 which were derived from the Spotify Web API. (Valence is

 9
 18-500 Final Report: B3: Music Mirror 5/3/2024

 defined as the level of musical positiveness conveyed by the
 song)

 Type Color Scheme Characteristics

 0 Full Range default

 1 Acoustic/Warm high acousticness

 2 Dance/Disco high danceability

 3 Positive/Upbeat high valence

 4 Sad/Moody low valence

 5 Energetic high energy

 Additionally, the lighting controller would maintain an
 internal timer throughout the duration of the song’s runtime.
 This would allow the controller to modulate the time delay in
 between color changes in real time, such that the lights would
 match the bpm as the currently playing song progresses
 throughout its different tempo sections. Below is the formula
 for the time delay in milliseconds as used by our lighting
 controller, with a 10ms offset for switching the lights off after
 the current beat:

 timeDelay = Math.round((60 / tempo) * 1000) - 10

 VII. T EST , V ERIFICATION AND V ALIDATION

 The software, hardware, and networking aspects of the

 Music Mirror system were rigorously tested to verify intended
 behavior and validate the quality of our submodules. The
 objective was to confirm that the user experience is intuitive,
 smooth, and satisfying, and that the system can stand up to the
 stressors of our target use-case scenarios. Below, we will go in
 depth in regards to each test we performed, all of which are
 summarized in the table above.

 A. Tests for Web App to Queue Latency
 Timestamped test song queue requests were issued from a

 mock web application instance to the DJ system, and were
 used to measure the time elapsed between inputting a request
 and seeing the corresponding queue update return to the web
 app. Over a set of 20 trials of direct queue song requests the
 average latency was measured to be 102 ms, significantly
 faster than our 1 second roundtrip time benchmark. Our
 latency testing verified that our system would feel responsive
 and seamless for users of our web application. This ensured
 that our user operation throughput would remain high, and that
 event guests would not be discouraged or frustrated when
 engaging with our system.

 B. Tests for User Web App Onboarding
 In order to test the intuitiveness of our web app we planned

 to collect data using real survey participants to determine how
 quickly it takes an average new user to learn how to queue
 songs and access the different functions of the app. We
 accomplished this by surveying fresh users who have never
 been exposed to our web app and measured how long it takes
 them to feel confident about their understanding of it and be
 able to make song requests and navigate the queue on their
 own. We also measured their satisfaction with the ease of use
 of the system. The target amount of time for this onboarding
 was less than 1 minute. We met these goals by interviewing 10
 participants, and found that their average onboarding time was
 48.4 seconds. More specifically, the minimum onboard time
 was 21 seconds and the maximum was 83 seconds. We found
 that the average ease of use rating was 4.5/5. This was
 fantastic to see and confirmed our use-case that our web app
 must be easy to use as well as visually appealing and
 enjoyable.

 C. Tests for User Network Capacity

 To test network capacity a barrage of stress tests were
 conducted to determine whether or not the critical user
 interaction functions of our system hold up in the presence of
 many concurrent users and a large volume of incoming
 requests. In order to accomplish this, increasing numbers of
 dummy users (up to 200) were connected to the system, and
 we verified that the system can manage these large amounts of
 websockets and accept requests from any of them at any time,

 10
 18-500 Final Report: B3: Music Mirror 5/3/2024

 without decreasing system performance or running out of
 memory. Additionally, we will send multiple concurrent
 requests to the system all within one second of each other, and
 verify that none of these requests are dropped and that the
 system produces the correct behavior manipulating the queue.
 This will ensure that our system will be able to accommodate
 our use-case, which involves large numbers of guests at an
 event issuing requests at random times. We ran this test with a
 script that simulated the tests described above, and found the
 system capable of handling 200 concurrent users. This
 exceeded our target goal of >100 concurrent users. Further, we
 found our memory consumption to be fairly independent of
 the number of users, which is due to our lightweight design as
 well as explicit garbage collection processes throughout the
 system. These memory results are described in the above
 figure.

 D. Tests for Song Queue Capacity and Veto System
 To test our song queue we used a shell script to simulate

 different loads of users performing actions that our clients
 would. Over the course of 5 trials, the entire Music Mirror
 system was rebooted, and using a set of 5 simulated users
 queuing 60 songs each the effective queue capacity was
 verified to be over 300 songs. This far exceeded our target of
 100 songs (~6 hours at 3.5 minutes per song), capable of
 maintaining over 17 hours of play time, much longer than any
 anticipated application of our system. Outperforming our song
 capacity benchmark ensured that Music Mirror’s collective
 song queue was sufficiently robust and voluminous in order to
 meet the requirements of our use case. This way event guests
 will be able to queue songs to their heart’s content and keep
 their party going late into the night.

 Music Mirror’s veto system was visually inspected by
 connecting multiple users and attempted to Dislike & veto
 songs from the queue. We verified that our users would be
 able to prune the collective queue fairly and efficiently. This
 would ensure the best overall listening experience for guests,
 as well as improve the quality of the recommendations
 generated.

 E. Tests for Song Recommendations Quality
 Because song recommendations are a subjective matter in

 nature, we tested the quality of them with user feedback
 surveys. To accomplish this, we had 5 in person interviews to
 present users with an input song, our similarity
 recommendation, and then Spotify’s naive recommendation,
 and asked users which of the recommendations they preferred.
 For each person, we had 3 trials of this process. For each of
 the 3 trials, we tested with an alternative, rock, and rap song to
 see how the recommendations performed across genres. We
 saw that 11/15 trials resulted in our recommendations being
 preferred, which is a 73.3% preferred percentage. Although
 this fell slightly short of our >75% goal, we were happy with
 these results as recommendations are very subjective, so we
 felt this metric justified our improved ranking mechanism
 sufficiently.

 F. Tests for LED Behavior Matching Music
 The lighting fixture’s LEDs were visually inspected

 (checking that the color ranges displayed match Spotify’s song
 attribute data) over a set group of songs played to verify that
 the patterns and colors they are emitting match the genre and
 tone of the songs playing. In addition, the response time of the
 DMX lighting fixture system was verified to be quicker than
 100ms, in order to support a wide range of different song
 tempos. Songs with a high level of acousticness displayed
 warm colors, songs with a low valence score (the measure of
 musical positiveness of the song) displayed cooler colors, and
 songs with a high level of danceability or energy utilized a
 wider range of the available colors. Additionally, the lights
 were synchronized to a 120 bpm and a 140 bpm metronome,
 ensuring a sufficient level of fine-grained control over the
 DMX control line. These tests confirmed that Music Mirror’s
 lighting system would be able to properly classify the genre of
 the currently playing song and match its tempo in real time,
 enhancing the user experience. This increased level of
 coherence would elevate the perceived level of
 professionalism of events using the Music Mirror system.

 VIII. P ROJECT M ANAGEMENT

 We have been maintaining efficient systems to keep track of
 our work progress and communicate our ideas, which are
 discussed below. Apart from these, we also have scheduled
 meeting times for Zoom calls every Wednesday and Friday
 evening for higher level design choices and progress. .

 A. Schedule
 The schedule is shown in Fig. 8.. We have been using this

 schedule to guide and track our work progress.

 B. Team Member Responsibilities

 Thomas
 ● Light controller
 ● Web app & internal

 data structures
 ● Queuing/voting

 functionality

 Matt ● User graphical
 interface

 ● Web app
 communication
 with backend

 ● Queuing/voting
 functionality

 ● Raspberry Pi
 communication
 between systems

 Luke ● Recommendation
 RPi
 implementation

 11
 18-500 Final Report: B3: Music Mirror 5/3/2024

 ● Authorization
 Driver

 ● Semantic matching
 ● Speaker pipeline

 connection

 All Members ● System Integration
 ● User satisfaction

 surveys
 ● Testing

 C. Bill of Materials and Budget

 The difference between the project and user Cost is that (for
 example) we were provided with the Raspberry Pi’s so they
 cost us $0 while they are 75 each to buy if a user were to
 replicate our system. So the project cost is what we spent
 while the user cost is what it will cost to build their own
 system. We labeled the lights and speakers for users as varied
 because any speaker will work and any DMX-controlled lights
 will work.

 D. Risk Management

 A few of the risks were identified through our project
 implementation. The main one was us being able to control the
 lights. The lights were the last part of our system to initially
 show up plus we could not get the lights to work at first and
 had to pivot and get extra parts as we understood how the
 lights worked more and more. We were able to manage this
 risk by looking for help online and looking for help with a
 previous team. We knew there were a lot of DMX resources
 online in Python and a little in Java so we could use those to
 try and learn more about what we were doing. Also, we knew
 certain Python scripts worked so if we could not use the Java
 code we could have pivoted to a Python script. We were also
 in contact with an old capstone project that used DMX lights
 and they also gave us debugging advice. Another risk was our
 Web Socket set up, we originally tried to have our web app
 run independently of the Raspberry Pi and just have
 JavaScriptand html for the frontend which connects to our
 Java code in the core on the backend. Despite many efforts
 and hours we were not able to get the JavaScriptto JavaWeb
 Socket set up. So we looked across the internet and found a
 project with a tutorial [2] that had already implemented
 WebSockets using Java Spring Boot. Similarly, the Pi
 communication took some time to learn. For this one we
 looked up our error codes online to find other people with
 similar issues and were able to figure it out. So overall we
 managed our risks by choosing a well-documented project so

 we knew there was always another option if something did not
 work.

 IX. E THICAL I SSUES

 We took the time to ensure our design handled serious ethical
 considerations. We will discuss our system’s ethical concerns
 in the context of public health, public safety, and public
 welfare.

 While the potential public health consequences of the Music
 Mirror project are mild at the worst, there are still some issues
 that must be taken into consideration. Primarily, since the
 system operates the lights and sounds of the venue, attendees
 may be exposed to unsafe volume levels and nauseating or
 blinding flashing lights. Therefore there is a design tradeoff in
 determining the system’s capacities for volume and light
 intensity, as louder performances and more vigorous lighting
 displays may be more entertaining for the users but potentially
 be unhealthy. Music Mirror addresses this issue by restricting
 volume to a healthy range, and its strobing frequency to
 prevent health complications such as epilepsy. Additionally,
 the energy footprint of the system can have negative effects on
 the environment. Again larger more complex systems may be
 more entertaining, but may have a higher energy cost. Music
 Mirror solves this issue by consuming comparable levels of
 power to similar music playing and sound systems.

 The Music Mirror system must ensure the public safety of
 the users it affects. The main public safety considerations are
 that of user privacy and protection from other users & abuse.
 In regards to privacy, the tradeoff balances the need to collect
 user data for satisfaction surveying, but protecting the user’s
 privacy. Music Mirror will address this issue by hiding users’
 data from each other and securely storing their information. In
 regards to protecting users from each other, Music Mirror will
 not allow direct user to user communication on the web app,
 and making song voting anonymous. Also, there is the
 potential for users to try and queue vulgar music, so we
 implemented a safety check that will kick a user out of the app
 if they try to queue a song including a preconfigured list of
 “bad” words. This ensures safety for people who do not want
 to consume vulgar content, such as children.

 The system must promote public welfare, and not have
 negative socio-political consequences. Music Mirror must
 cooperate with the music industry, and encourage healthy
 music consumption and production. The main potential issue
 is that of unfairly representing different genres or types of
 music, which may discriminate against different music
 fanbases. In order to be favorable to welfare considering the
 social factors, Music Mirror will completely democratize its

 12
 18-500 Final Report: B3: Music Mirror 5/3/2024

 song requesting and recommendation service, giving all users
 equal say, save for host privileges.

 X. R ELATED W ORK

 The Springboot Chat app [2] is similar to how we want to use
 our WebSockets. That is why we are using it for our
 WebSockets. This is a real-time chat app with a javascript and
 HTML frontend and a Java backend so it's very similar to our
 project.

 XI. S UMMARY

 In summary, we learned a lot about system design on our quest
 to democratize our users’ listening experiences. We feel that
 Music Mirror has the potential to be a staple in future
 weddings, restaurants, parties, and other music listening
 venues. We also learned the importance of performance
 tradeoffs, such as memory consumption versus number of
 supported users, which were the backbone of our development
 process. Some future features we envision are not only
 allowing users to veto a song off the queue, but also to be able
 to vote on the positioning of a song in the queue. For example,
 if all users want to hear a song really badly, they can vote for it
 to be moved to the front of the queue. In addition, we aim to
 add a provisional feature, which would allow this system to be
 marketed better as a product. Currently, all users have equal
 voting weights but say an owner of Music Mirror wanted to
 still have some administrative control over the queue, then we
 could make some minor changes in our implementation that
 would allow for a specific user to have higher weighted votes,
 giving them more control. Moving forward, we have big
 aspirations for the future of Music Mirror.

 G LOSSARY OF A CRONYMS

 API – Application Programming Interface
 DMX – Digital communication standard for controlling
 lighting fixtures and stage effects
 HTML – HyperText Markup Language
 JSON – JavaScript Object Notation
 RPi – Raspberry Pi

 R EFERENCES

 [1] Ably. (n.d.). WebSockets vs HTTP. Retrieved February 15, 2024, from
 https://ably.com/topic/websockets-vs-http

 [2] Bouali, A. 2023. spring-boot-websocket-chat-app. GitHub.
 https://github.com/ali-bouali/spring-boot-websocket-chat-app.git

 [3] rydercalmdown. (n.d.). DMX lights. GitHub. Retrieved March 1, 2024,
 from https://github.com/rydercalmdown/dmx_lights

 [4] Open Lighting Project. (n.d.). OLA on Raspberry Pi. Retrieved March 1,
 2024, from
 https://www.openlighting.org/ola/tutorials/ola-on-raspberry-pi/

 [5] Spotify AB. (n.d.). Web API. Spotify for Developers. Retrieved March
 1, 2024, from https://developer.spotify.com/documentation/web-api/

https://ably.com/topic/websockets-vs-http
https://ably.com/topic/websockets-vs-http
https://github.com/ali-bouali/spring-boot-websocket-chat-app.git
https://github.com/ali-bouali/spring-boot-websocket-chat-app.git
https://github.com/rydercalmdown/dmx_lights
https://www.openlighting.org/ola/tutorials/ola-on-raspberry-pi/
https://www.openlighting.org/ola/tutorials/ola-on-raspberry-pi/
https://developer.spotify.com/documentation/web-api/

 13
 18-500 Final Report: B3: Music Mirror 5/3/2024

 14
 18-500 Final Report: B3: Music Mirror 5/3/2024

