Mmusic mirion

Team B3: Thomas Lee, Luke Marolda, and Matt Hegi

o
Use-Case music mirion

A comprehensive speaker attachment that seamlessly manages queuing,
song recommendations, and crowd engagement

Users steer the system through a distributed web app that hosts a suite of
song request and consensus voting capabilities

Existing Solutions

Current systems are singular - they focus on one person having full control.
We democratize the event listening experience for uniform enjoyment

Areas

Software Systems, Machine Learning, Hardware Systems

Design Requirements

e

music mirion

System ability to mount to any functional Bluetooth speaker
Light system colors and strobing match song genre, tone, and crowd
loudness noise sensor
Continuously generate recommendations based on previous User requests
3 direct song request formats. Implemented with a semantic matching
algorithm to map requests with queried spotify resources

- By name of song

- By artist or album

- By songs that have already been played
1 additional song request format: Similarity search

- Ability to generate song requests based on what has already been

played

e

music mirion

Design Requirements

- User song requests are accurately reflected by the centralized queue within
1 second

- Easily usable mobile-optimized website

- Users will be onboarded in under 1 minute on average

- Centralized concurrent queue to accept and maintain ordering of incoming
song requests for a target of 100-150 users

- Consensus voting protocol to support ‘veto’ functionality of songs on queue

- Queue can hold at least 100 songs (6 hour reception / 3.5 min average
song length)

_ 11|t 1
Solution Approach mus|!crr!ir|'1o1

@?otifv Api (c)

Noise Sensor

Key

e ! e ‘ || |||||| | I

e Java Module ! I | |
Spotify Web API | HTTPS——>
: | Ethernet Executable =SS .)
| ! ——Bluetooth——>> ﬁ music mirion
| as|

: Song Resources <— Reoognqndaﬁon UserQueue —> Player | inter-Module----+»> S

I : Spotify API

l | S

_____________________ | ——m - — —
\ | | |
I ! :
| Frontend
External Bluetooth Speaker : | |
|
| |
|
| ! TS React
Aglemt:;sl [Veto Consensus |] Controlier |
) T |
| | | A 1 |
—_— \ ! i {
RPi 4 8GB [: : 4 :
I
...................... |
Response I !
| | HTML/CSS |
|
Song Attribute | | Model Input I !
—V| Storage > Generator | | v R — '
Authenticai ' - | : |
on i : i | i 3
Module Queue Structure - : x l | - - - :
v ; | : y
L A 4 | 4 ! / 1
i | § : 3
....... i Noise Sensor ! ; |
i Semantic Match : LED Controller iiodans | | ; i | |
¥ : I ! |
T |
ChromeDriver : A y : | L) |
A ! 1 | |
: User Request ! H ! |
Y Receiver J v_ | | Users |
Chrome Exe : Il ____________ |
RPi45GE Furious Five RG POYOGA Noise |
LED Aray Decibel Sensor |
|
|

Implementation: Web App

Mo Bamba by Shek Wes ,l
e

music mirion

/Add a song to the queue.) @

music mirion

ErR————
.||||||||..|||||||
T p— PO
music mirion
uuuuuuu =
mmmmmmmmmmmmmmmmmmmmm ”
EETTE.

Add a song to the queue) @

@ Front End

@/

— Style —

Song Requests

Response

Web Socket

Raspberry Pi 1:

Backed Server

: : : o]
Implementation: Main RPi Core mus|icmir1o1

- Accept User requests via
API Request Veto Consensus Onboa rd WiFi Ca rd

< Module

ﬁi \ _ N ew SO n g S fo rWa rd ed ;’W H ckSearchResponse;

lass SpotifySearchRequest {

Response
4 i m m e d i ate | y to Q U e U e yublic TrackSearchResponse searchForTrack(Z; :igz :Zﬁ:j;;zlje; g el
ety btring artist_name,
Authentication | Queue Structure / . int encoding_scheme) {
! Structure, but confirmed 1 |
- —m URL url = n H

HttpURLCor

| e on 3@ match response from
] the Spotify Web API R e i oy

5 S | User Request
¥ Receiver

Chrome Exe

else if (encoding_scheme == 2)

RPI 4 8GB T - COU nts Song Veto Votes & = this.build_search_query_2(song_name, album_name, artist_name);
prunes vetoed songs from '

con = (HttpURI nConnection();

q U e U e catch (MalformedURLException e) {

e.printStackTrace();

IOException e) {

- Next song feeds to Web
API for playing through
the request generator

RPi 4 8Gb

Implementation: Recommender RPi Core

- Store data for each played song:

- Genre, accousticness, danceability,
energy, key, liveness, tempo, etc.
- Crowd decibel level from noise sensor

- Aggregate these metrics based on
user request

- Generate a query to Spotify’s
recommendation endpoint

- The top recommendation based
on our inputs will be queued

music mirion
RPi 4 8GB
Song Attribute Model Input
Storage Generator
; A
v H
Noise Sensor
LED Controller kiare

A

.
A
'

. .]]
Implementation: Physical Interface mus|icmir|'1o1

Speaker Lighting Noise Sensor

Eliminator Furious Five RG 5-in-1 Lighting Effect Fixture Features:

® 4 control modes: DMX, sound activation,

auto, primary/secondary for control in a . .
ey S POYOC?A Noise Decibel
Detection Module

Testing, Verification, and Validation

Latency

Web App to System: measure latency for a single time-stamped Play Song
request to be reflected on internal queue (< 1 sec)

Capacity

Queue: verify that all Main RPi queue can maintain 100+ songs without
running out of memory, and perform operations under max latency

User Network: verify that Main RPi can accept ambiguously timed requests
from 100-150 concurrently online users

Accuracy

Queue: use test script to issue song requests in a certain order, verify that
they appear in that same order on system (and then back on web app)
Lighting: use hard coded light script to verify that we can control each light
channel independently and to do the intended color & strobing

User Experience

Web App: measure average time to onboard new users, poll on 1-5 scale for
ease of use and input responsiveness

Recommendations: generate recommendations based on our compound
model, poll users on 1-5 scale for quality of recommendations and compare to
their ratings for generic Spotify recommendations

Project Management

lzl'asl} Owner Progress week 4 week 5 week 6 week 7 week 8 week 9
215-212 2/12-2119 2/19-2/126 2/26-3/4 3/4-311 3/11-3/18

Project Abstract
Project Proposal
Design Presentation
Ethics Assignment
Interim Demo

Final Presentation

User Graphical Interface
Communication Channel with Backend
Queueing/voting Functionality

Testing

Order Sensors & Compute Hardware
Get familiar with hardware
Listen For & Accept User Queue Requests
Propagate Spotify Requests
Song Queue Voting Consensus
User Requests Semantic Matching

| Testing

Model Construction & Fine-Tuning
Database Integration

1/0 Processing Modules

Testing

Loudness Sensor Integration
LED Circuit and Microcontroller
| Testing

Speaker Pipeline Connection
Module Communication Protocol

Web App User Satisfaction
' Song Recommendation User Satisfaction

week 11
3/25-4/1

week 12
4/1-4/18

week 13
4/8-4115

week 14
4/15-4/22

week 15
4122-4129

