
Team B3: Thomas Lee, Luke Marolda, and Matt Hegi



Use-Case
- A comprehensive speaker attachment that seamlessly manages queuing, 

song recommendations, and crowd engagement
- Users steer the system through a distributed web app that hosts a suite of 

song request and consensus voting capabilities

Existing Solutions

- Current systems are singular - they focus on one person having full control. 
We democratize the event listening experience for uniform enjoyment

Areas

- Software Systems, Machine Learning, Hardware Systems



Design Requirements
- System ability to mount to any functional Bluetooth speaker
- Light system colors and strobing match song genre, tone, and crowd 

loudness noise sensor
- Continuously generate recommendations based on previous User requests
- 3 direct song request formats. Implemented with a semantic matching 

algorithm to map requests with queried spotify resources 
- By name of song
- By artist or album
- By songs that have already been played

- 1 additional song request format: Similarity search
- Ability to generate song requests based on what has already been 

played



Design Requirements

- User song requests are accurately reflected by the centralized queue within 
1 second

- Easily usable mobile-optimized website
- Users will be onboarded in under 1 minute on average

- Centralized concurrent queue to accept and maintain ordering of incoming 
song requests for a target of 100-150 users

- Consensus voting protocol to support ‘veto’ functionality of songs on queue
- Queue can hold at least 100 songs (6 hour reception / 3.5 min average 

song length)



Solution Approach





Implementation: Web App



Implementation: Main RPi Core
- Accept User requests via 

onboard WiFi card
- New songs forwarded 

immediately to Queue 
Structure, but confirmed 
on a match response from 
the Spotify Web API

- Counts song veto votes & 
prunes vetoed songs from 
queue

- Next song feeds to Web 
API for playing through 
the request generator

RPi 4 8Gb



Implementation: Recommender RPi Core

- Store data for each played song:
- Genre, accousticness, danceability, 

energy, key, liveness, tempo, etc.
- Crowd decibel level from noise sensor

- Aggregate these metrics based on 
user request

- Generate a query to Spotify’s 
recommendation endpoint

- The top recommendation based 
on our inputs will be queued



Implementation: Physical Interface

Speaker Lighting Noise Sensor

POYOGA Noise Decibel 
Detection Module 



Testing, Verification, and Validation
Latency Web App to System: measure latency for a single time-stamped Play Song 

request to be reflected on internal queue (< 1 sec)

Capacity Queue: verify that all Main RPi queue can maintain 100+ songs without 
running out of memory, and perform operations under max latency
User Network: verify that Main RPi can accept ambiguously timed requests 
from 100-150 concurrently online users

Accuracy Queue: use test script to issue song requests in a certain order, verify that 
they appear in that same order on system (and then back on web app)
Lighting: use hard coded light script to verify that we can control each light 
channel independently and to do the intended color & strobing

User Experience Web App: measure average time to onboard new users, poll on 1-5 scale for 
ease of use and input responsiveness
Recommendations: generate recommendations based on our compound 
model, poll users on 1-5 scale for quality of recommendations and compare to 
their ratings for generic Spotify recommendations



Project Management


