
1
18-500 Design Project Report: B3: Music Mirror 3/1/2024

Music Mirror
Luke Marolda, Matt Hegi, and Thomas Lee

Department of Electrical and Computer Engineering,
Carnegie Mellon University

Abstract—Traditional social events require an experienced,
human DJ to continually mix and play songs, while also queueing
more songs for the future. Not only is hiring a DJ expensive and
hard to source, it is also risky as the DJ’s personal music taste
may not align well with that of your guests. With the Music
Mirror comprehensive DJ system, hosts will be able to
conveniently and cheaply have music playing continuously,
chosen directly by their guests, as well as novel recommendations
and party lighting operated by the DJ itself. This will afford their
guests a more satisfying and engaging experience.

Index Terms—DJ, song, queue, DMX capable light fixture,
Audio Speaker, Raspberry Pi, web application

I. INTRODUCTION

THIS project aims to replace a costly, difficult to locate &

coordinate, and not custom tailored human disc jockey for
social events such as weddings, house parties, and reunions
with a comprehensive smart DJ system. The DJ is the
centerpiece of such events and similar gatherings: they are
responsible for setting the atmosphere of the event space,
which dictates the mood of its guests, and using their music as
social lubrication, which allows the guests to get out of their
shells and enjoy themselves (and each other). Thus it is crucial
that hosts employ a competent DJ that will continuously be
playing new songs, without allowing for a silent (or even
worse, a dull) moment that could derail the entire momentum
of the party. It is the DJ’s responsibility to cultivate an exciting
environment by playing crowd favorite song requests and the
best songs from their personal collection that the guests will
actually want to dance and sing along to.
Traditional DJs can only accomplish this well with years

and years of experience mixing, listening to large collections
of different song genres, and reading diverse crowds, and so
there is a shortage of good DJ talent, especially in places
outside of major cities with bustling young adult populations.
Additionally, even the best DJs will be of no use in a crowd
that does not match their target demographic, and to complete
the dance floor of the event another professional must be
hired, as a lighting designer must create the lighting rig to
sync with the music and illuminate the space. Therefore, for
most events, which are restricted by a combination of money,
time, compatibility, and availability, having a high quality
human DJ which garners a sufficient level of satisfaction from
its guests is infeasible.
The Music Mirror DJ system addresses these problems by

providing a custom tailored suite of services at a

comparatively low cost, more efficiently, and with a much
greater degree of convenience. As a self contained package, it
is readily available, and with a flat component cost it is much
cheaper than the exorbitant hourly rate of a popular DJ.
The guests of the event will interact with our DJ through

our web application (in most cases on mobile platforms, which
are ubiquitous) on which they will be able to queue their
favorite songs, request more songs similar to ones that have
been played already, downvote songs to remove them from the
queue (if it is vetoed by the majority of active users), and
provide live feedback on the songs that have been played. As a
result the guests will feel more satisfied as they will feel as if
their voice is being heard, and be more likely to dance, sing,
and enjoy the event as the songs they actually want to hear are
being played. This democratization of the song queue will
custom tailor the experience for the guests, as it reflects the
crowd’s tastes better than a single human DJ can read the
audience.
Music Mirror will also use the tracklist of songs queued by

the users, their inputs (Upvotes and Downvotes to manually
indicate to the DJ system what songs in the queue they liked
or didn’t like) as well as their level of engagement for each
song collected by a noise sensor to generate novel
recommendations to insert songs of its own to the collective
queue. The DJ system will blend these characteristics to create
comprehensive music choices that not only support the
interests of the audience, but are novel and potentially new
songs for the users. This will be accomplished using a two-tier
recommendation system, pairing Spotify’s API
recommendation endpoint with a clever seed sampling model
that utilizes the live user feedback.
Finally, Music Mirror will operate its own lighting fixtures

via the DMX protocol automatically, manipulating the
warmth, colors, strobing, intensity, and overall pattern of the
lights to suit the atmosphere and the characteristics of the
music currently playing. This will add the final dimension of
engagement to our comprehensive system that does not come
standard with a regular DJ.
Full-scope physical automated DJ systems similar to Music

Mirror are not publicly available, and the archetype is a novel
concept in the general market. However, there are other
computer DJs that generate song recommendations (like the
Spotify DJ) which exist as pure software, applications that
allow human DJs to remotely collect song requests from the
crowd and then make a decision on them, and jukeboxes that
allow guests to walk up and directly queue songs from the
central device itself (and thus, is not much different from a
music player app just being open on a tablet that anyone can
touch). Music Mirror is the first to combine these services into
a single, comprehensive, automated platform, allowing for
remote song requests concurrently to be added directly to the
music queue, to inject its own novel song choices, and to
operate its own lighting fixtures to complete the full spectrum
of the DJ set.



2
18-500 Design Project Report: B3: Music Mirror 3/1/2024

II. USE-CASE REQUIREMENTS

The target users of the Music Mirror DJ system are hosts of
social events that commonly have a DJ and a dance floor, but
where the guests aren’t attending to see a specific popular
celebrity DJ or musical artist. For example, the smart DJ
system would not replace a famous human DJ like Fred again..
or Skrillex at a nightclub where attendees are going solely to
see that artist, but instead events like weddings, high school
reunions, corporate socials, and house parties, where the main
focus is not the DJ but it is still necessary to have exciting
music playing.
As the DJ itself is not the main reason for hosting the event,

not much time, money, and organizational brain power can be
afforded to securing a good human disc jockey. Hence, users
should find Music Mirror much more convenient,
cost-effective, and reflective of their guest’s music
preferences. Event hosts will be able to simply pay a low flat
rate for the physical device instead of spending hours and
hundreds (or thousands) of dollars negotiating a time and rate
with a real DJ, and quickly turn on the system instead of
coordinating with and providing creature comforts for an
actual DJ. The companion web app will be intuitive and quick
to acquire and learn to use, and guests will be able to queue
songs on their own without external guidance in under a
minute. As Music Mirror learns the music tastes of the
audience through their song requests and inputs, it will have a
greater rate of matching the crowd’s preferences than a single
host making a judgment about which human DJ’s style best
suits their needs. The system will also come standard with a
lighting fixture system controlled by Music Mirror itself, and
so will not require extra time and money for hosts to hire a
lighting designer to collaborate with a human DJ to set up the
party lights.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

The complete physical system of Music Mirror is depicted
in Fig. 1. Event hosts will turn on and power the system, and
potentially swap out the speaker or the lighting fixture for
their own if they have a pre-existing device setup. Event
guests, which are the users of our DJ system, interact with the
DJ by accessing our web application. These users will type in
any songs they want to add to the queue and press Submit,

which will forward the song request to the Music Mirror DJ.
The songs on the centralized queue will be collected from all
the users and be displayed on the web app. The rest of the
functionality will be operated automatically by the system,
without requiring user intervention.

The overall system is composed of four main subsystems:
the web application which is the user interface, the main
Raspberry Pi 4 (“RPi”) which acts as the “brain” of the system
receiving and managing the queue, the secondary Raspberry Pi
which aggregates user inputs and engagement to generate
novel recommendations, and the physical interface, which
actually plays the songs and flashes the lights. A user will
submit a song request on the web app, which will
communicate through a web socket to the main RPi, which
will add it to the queue, forward a formatted request to the
Spotify Web API to look for a playable song match, and send
the updated queue view back to the web app client. The main
RPi will query the Spotify API to receive song data (e.g. the
song’s genre, theme, tone, tempo, etc.) as well as to actually
play the song once it is next up in the queue. The secondary
recommender RPi will be monitoring the songs on the queue,
as well as how loud the crowd is (correlated with how much
they are enjoying the currently playing song), to continuously
generate new song recommendations. The recommender will
insert these new songs occasionally onto the collective queue.

A. Web Application
The web application is the medium for which the users will be
able to request and vote on songs as well as see the most
updated version of the song queue. It will use WebSockets to
communicate with the backend controlled by the Main
Raspberry Pi core so that current users can be accurately
represented for vetoing and all users can see the same most
updated queue.



3
18-500 Design Project Report: B3: Music Mirror 3/1/2024

You can see a picture of how the website will look in Fig. 3.
above. The users can both add a song to the queue and vote
against others in a user-friendly way.

B. Main Raspberry Pi Core

The main Raspberry Pi contains modules responsible for
transferring the user song requests onto the queue, pruning the
queue for vetoed songs, and issuing calls to the Spotify Web
API to match requests to playable songs, retrieve metadata
about the songs, and playing them on the audio speaker
system. Additionally, this core pi is responsible for
semantically matching user song requests to queried resources
from spotify, to ensure the correct song is actually being
played. Further, this core will house an authorization driver
that utilizes Selenium and ChromeDriver to automate user
authentication with the Spotify Web API. The main RPi core
maintains these microservices using persistent Java processes
that are spun up on boot.

C. Recommender Raspberry Pi Core

The second core is responsible for generating song
recommendations when queried by the main core. Whenever
the queue needs a song recommendation (from either a user
request, insertion between user requests, etc.), it will
communicate with the second pi which will build a seed query
to send back to the Spotify Recommendation endpoint, using
our custom sampling and seed generation methodology. This
will also involve housing an in-memory data structure to hold
characteristics of songs that have been played, as well as those
that have been recommended by our model. In addition, the
processor also retrieves crowd loudness data in decibels over a
USB connection to the noise sensor. Additionally the core
transmits DMX control signals for the attached physical
lighting fixture using a Python program leveraging the DmxPy
library over a USB-to-DMX connection.

D. Physical Interface (Audio & Lights)

The system is highly modular and can connect to any
external bluetooth speaker. This is accomplished via the
Spotify Connect functionality, which allows us to control a
wifi-connected speaker via the Web API. To further increase
our modularity, we will be connecting with Spotify via a
wifi-based audio streamer, which will then allow us to route
the streamed audio to a bluetooth or directly-wired speaker.
This essentially allows us to widen our possible speaker
choices from just wifi-based speakers, which are expensive
and more difficult to find, to virtually any external speaker, as
the dominant speaker connection methods are bluetooth and
physically wired.
The lighting fixture receives DMX transmissions from the

main RPi core and is powered using a standard outlet
connection.

IV. DESIGN REQUIREMENTS

To satisfy the use-case requirements there are several design
requirements covering both the hardware and software (as
well as the distributed system networking) aspects of the
Music Mirror smart DJ system.
The primary method of interaction between the users and

the system is the web app, therefore it must be responsive as
well as easy to understand and use. Hence the latency from
placing a song request on the web app to the centralized
collective queue, and then pushing the updated view of the
queue back to the web app client must be under 1 second to be
snappy and to prevent users from being frustrated using the
app. Additionally, it must take new users to take less than 1
minute on average to learn how to use the web app on their
own. This will lower the barrier of entry and ensure that as
many guests as possible are accommodated by the DJ system.
The DJ system must have a sufficient capacity to fulfill the

use-case of an average medium to large sized social event.
Primarily these consist of gatherings such as weddings,
reunions, and parties. As a result our system needs to support a
network of 100+ concurrently online users (interfacing
through instances of the web app), as the average size of an
American wedding is 75-150 guests. Furthermore, the queue
must hold at least 100 songs, to reach the target of a 6 hour
average reception at 3.5 minutes per song.
User satisfaction is also a critical consideration, hence our

system must ensure that the novel song recommendations it
produces are high quality. Therefore the DJ’s target user
approval of the generated recommendations must be 95%.
This will assure event hosts that their guests will be enjoying
the songs that they are surprised with, with a small margin of
error..
The lighting system must always be in sync with the music

that the DJ is playing at the moment. This serves to make the
guest experience feel immersive and coherent, and impress
users with a more complete event. Hence our target is 80%
accuracy for matching the lighting pattern to the current music
and atmosphere of the event space.

Summary of quantitative requirements:

Specification Target Value

Web App to Queue Latency < 1 sec

User Web App Onboarding < 1 min

User Network Capacity > 100 users

Song Queue Capacity > 100 songs

Song Recommendations 95% Accuracy

LED Behavior music match 80% Accuracy



4
18-500 Design Project Report: B3: Music Mirror 3/1/2024

V. DESIGN TRADE STUDIES

A. Using WebSockets rather than HTTP
We decided to go with WebSockets over HTTP/HTTPS for

two reasons. The first is that we want for both the clients and
server (Raspberry Pi) to have the ability to initiate
communication. The client needs to be able to request songs
and the server needs to be able to update the client queue
sometimes independently of client requests. An example of the
server needing to update on its own is when it recommends
songs to the clients. We understand that the server can still do
that in the HTTP protocol, but that brings us to our second
reason: we want real-time communication between the client
and server. Our app maintains a real-time queue for songs to
be played and songs to be removed from the queue. So users
must be looking at an accurate representation of what the
current state of the server is. So we decided to use (the more
complicated implementation) webSockets for those two
reasons.

B. Choosing the veto consensus protocol
When choosing the consensus protocol we thought about

who should have a say and how we could make that happen.
Here are a few possibilities we thought of: everyone with
access to the website, everyone who was ever at the event,
everyone who is currently at the event, and everyone who is
currently at the event and interacting with the app. We decided
that we wanted only people who are currently at the event
(since they are the only ones hearing the music) and only the
people interacting with the app (since they are the ones who
are actively voting). So to accomplish both of these we
decided to:

1. only host the website on a local host for the wifi so
only people on the wifi can access the website.

2. Implement a heartbeat system to check what users
have interacted with the app in a certain period of time. So
user’s votes will not count if they have not interacted with the
app.
We chose 15 minutes (about 5 songs) because people won’t
constantly be on their phones during weddings. So if people
cared what songs were playing next, they would check at least
once during every 5 songs. We also have to consider what
percentage of votes are needed to remove a song from the
queue. Our web app is designed to only let users vote against a
song, so if they do not vote against the song then we count it
as a vote for. Since we already have narrowed down the votes
that count to only users that have interacted with the app for
the last 15 minutes we know that they have had the chance to
look at the soon-to-be-played songs, so we think that a
majority rule would work best. if >= 51% of people vote
against the song then we will remove it from the queue.

C. Using a custom recommendation system
As mentioned, the Music Mirror system will incorporate a

model to generate novel song recommendations for the users.
A naive vanilla solution is to simply use Spotify’s
recommendation endpoint. However, we took this a step
further due to one core concept: the lack of real time user

feedback that goes into the Spotify model. In our system, as
more songs are played by the user, and more upvotes and
downvotes are provided for the songs that have been played,
our system gains critical context and insight into the music
taste of our users as well as the broader opinions of the
collective audience. We also have live sensor data such as our
loudness measure that can be utilized. This real time feedback
is something that would not be included into a naive API call
to Spotify’s model, which takes in an input seed of songs,
artists, albums, and other song characteristics such as BPM,
tone, acousticness, and a dozen other parameters. Therefore,
we have decided to build a second component of the model,
which incorporates this real-time feedback to generate more
effective seeds to be passed into this model. For example, if a
user specifies that they want to hear a song that is similar to
the last 5 songs played, how do we accomplish this? There is
no input to the Spotify model that would allow us to
distinguish between which of these 5 songs resonated the most
effectively with the audience. So, we implement a custom
sampling mechanism that takes a weighted sample of the song
characteristics that is directly correlated to the approval of the
songs (ie. the number of upvotes or downvotes each song has).
Further, we will include our physical measures (ie. the noise
sensor) into this seed generation as well, adding another
dimension of live feedback. This initial filtering provides
much better input data to the Spotify model, in turn generating
better song recommendations that are more representative of
the collective event opinion.

VI. SYSTEM IMPLEMENTATION

A. Web App
As shown in Fig. 7. the web app will be hosted on the

Raspberry Pi. We are using the spring boot chat app [2] to
serve as a starting point for the web application because it has
a working implementation of web sockets using Java
Springboot. It starts the WebSocket in the Java backend and
can listen for events and messages that happen through the
connected JavaScript that the users will be able to interact
with through the HTML. There are already event listeners for
users joining, leaving, and sending messages. We will need to
edit those. We will edit the backend functions to keep track of
the song queue and users' votes (both that currently count
towards the veto and not). Our backend will:

1. Keep the queue in a ConcurrentLinkedQueue data
structure since multiple requests will be added at the
same time. This will hold the songs as well as votes
for and against them which will be held in a
concurrent list

2. Keep track of users in ConcurrentHashMap that has a
key of socket_id and a value list that holds votes
against specific songs, and the last time they sent a
heartbeat.

3. If a user's heartbeat times out it will mark all of their
votes as not counting and adjust each song
accordingly



5
18-500 Design Project Report: B3: Music Mirror 3/1/2024

4. Continuously listen for new users through web
sockets to add them to the dictionary and enforce
their votes

5. When there is a change in the queue it updates the
frontend accordingly

6. Communicate with the other modules to get
recommended songs

We will edit the front end to look like the wireframes in Fig. 3.

The users can both add a song to the queue and vote against
others in a user-friendly way.

B. Main Raspberry Pi Core
1. User Request Receiver

The main RPi receives incoming song requests from clients
on the web application via a JSON formatted data payload.
This request data is accepted by the User Request Receiver
server hosted on the main RPi, which is continually listening
for communication over the websockets, and forwarded to the
Queue Structure Manager node. The User Request Receiver
also sends this request data to the API Request Generator to
begin the process of identifying the corresponding intended
song on Spotify’s internal database.

2. Queue Structure Manager
The Queue Structure Manager node retrieves successfully

accepted song requests and adds them to the internal collective
song queue. The centralized song queue utilized a Concurrent
Linked Queue data structure for storage and manipulation
operations in local memory, as the songs are String entries and
are relatively lightweight since the actual audio files
themselves will not be hosted on this RPi. The Queue
Structure Manager performs all song addition and removal
operations as requested by the User Request Receiver and

Veto Consensus modules in collaboration with the web app
backend service.

3. Semantic Matching & API Request Generator
Although it may seem trivial to find a song on Spotify that a

user requests, this is in fact not the case. The Spotify database
maintains song data in a very particular manner, and any
discrepancies in the way songs, artists, and albums are named
may cause unintended difficulty when querying for song
resources. For example, say a user requests “Yesterday” by
“The Beatles”. Well, this song may be directly stored on
Spotify as “Yesterday”, or perhaps it contains extra

information such as “Yesterday (Remastered)”, or even
“Yesterday (10th Anniversary Edition)”. Even further,
Spotify’s search mechanism is imperfect. There could be many
different search results that are close matches, such as
“Yesterday - Remastered” by J Dilla or “Lost in Yesterday” by
Tame Impala. Obviously, a naive string matching algorithm
will not give us a high success rate in actually choosing the
songs that the users actually intended to play. That is why we
have the system interaction detailed above. We need a
semantic matching algorithm to choose between the songs that
Spotify’s API call responded with, and then if the desired song
is still not found, we will need to re-query the endpoint. Thus,
we will be using Cosine Similarity to match between
constructed strings of the desired and returned song name,
artist name, and album in which the song is from. We will
have a parameterized minimum similarity for us to choose a
song, but also will not require 100% similarity to determine a
match, but rather will parameterize a threshold that results in
the most accurate selection process. Once we reach a
successful match, the Spotify response also includes a unique
song ID which can then be used to actually access the song
resources via the player.

4. Veto Consensus
As described earlier we will keep a few data structures to

keep track of the song queue and songs that should be vetoed.
At every user action, we will be updating votes for and against
each song. If we find that 51% of active users have voted
against the song we will remove it from the queue. This also
goes for users who have not sent a heartbeat in the last 15
minutes. Their timer will run out and an event will be
triggered to remove their votes from all of the songs. But their
votes will still be stored for when they get back on the app.



6
18-500 Design Project Report: B3: Music Mirror 3/1/2024

5. Authorization Module
To access the Spotify Web API, proper authorization is

needed. Essentially, we have a singular Spotify premium
account associated with the system that needs to allow the
system to access its resources. Typically, because this is a Web
API, it would be implemented via some graphic interface that
can be displayed to a user. Once you start up the system, an
authorization request is sent to Spotify to obtain an
authorization code that will be used to generate access tokens.
However, Spotify’s response to the authorization request is a
redirection to a callback URI, where the user can physically
click the proper approvals and proceed. However, our device
needs to be able to handle the auth process solely on the RPi
core because the system itself is the ‘user’ in the context of the
API and we don’t have a physical user interface where we
could access the internet and follow the callback URI.
Therefore, we accomplish this process by using Selenium web
driver, in accompaniment with ChromeDriver to automate this
authentication process. The driver itself attaches to the
callback URI response, and then clicks on the necessary
buttons to approve of the needed provisions for the system.
Following this, the session is redirected back to our server.

C. Recommender Raspberry Pi Core

1. Song Attribute Storage

To most effectively generate seeds for our recommendation
model, we need readily available access to song characteristics
and attributes that will be inputs to the model. Therefore,
whenever we add a song from Spotify onto the queue, we will
also send a request to gather the song’s analysis, and will store
these attributes in an in-memory map. We do not need to
utilize a database because the number of songs in which we
will store will not exceed the memory capabilities of the pi.

The actual attributes that are stored will be discussed in the
next section, but they will be easily accessible for the input
generator’s use.

2. Model Input Generator

As previously mentioned, our recommendation system utilizes
the Spotify recommendation endpoint, as well as a clever
sampling mechanism to generate the best possible seeds to
input into the model. We will have access to 15 different
parameters for the model, including: track, genre, artist,
acousticness, danceability, energy, instrumentalness, key,
liveness, loudness, mode, popularity, speechiness, tempo, and
valence. To select the values we will actually feed into the
model for a given user request, we will utilize the live user
feedback to build an exponentially weighted combination of
these attributes for each song being utilized in the seed. For
example, if the user requests a song to be played that is similar
to the last 5 songs that have been played, then to choose the
parameters to build a seed with, we will weight them by the
number of thumbs up / thumbs downs they have, with an
exponential factor used to parameterize how concentrated the
selected values are around the most highly rated of these 5.
This is an important distinction than something as naive as a
normal average, because this would produce very dull results.
To see this, consider the averaging of a song’s BPM. If you
had 5 songs, 2 with very slow BPMs and 3 with very fast, then
the average of these would simply be a dull medium paced
song. That is why we are interactively using context provided
by our users’ experience to inform which of these songs we
should place the highest weight on. In a way, it is a
reinforcement learning approach to improving Spotify’s naive
recommendations by introducing live feedback on the songs
being played and the recommendations provided.

3. LED Controller

The lighting fixture attached to the recommender RPi will be
controlled via DMX signals transmitted over a DMX cable.
These signals will be generated on board the recommender
RPi using a Python program which controls the different
channels (independently controllable groups of LEDs) of the
fixture by using the DmxPy interface to generate specific
DMX outputs. The DMX channel signals, which control the
behavior and colors of the lights, will be determined based on
the characteristics (danceability, liveness, energy, etc.) of
currently playing songs, which are derived from the Spotify
Web API.

VII. TEST, VERIFICATION AND VALIDATION

The software, hardware, and networking aspects of the
Music Mirror DJ system will be tested to verify intended
behavior and validate the quality of our submodules. The
objective is to confirm that the user experience is intuitive,
smooth, and satisfying, and that the system can stand up to the
stressors of our target use-case scenarios.



7
18-500 Design Project Report: B3: Music Mirror 3/1/2024

A. Tests for Web App to Queue Latency
Timestamped test song queue requests will be issued from a

mock web application instance to the DJ system, and will be
used to measure the time elapsed between inputting a request
and seeing the corresponding queue update return to the web
app. As per the specification the latency will be clocked at
under 1 second roundtrip time. This will allow us to
benchmark the level of responsiveness of our web app to
internal system pipeline. Fulfilling this latency test will ensure
that users will have a seamless experience, and not be
frustrated or discouraged from using the app.

B. Tests for User Web App Onboarding
In order to test the intuitiveness of our web app we will

collect data using real survey participants to determine how
quickly it takes an average new user to learn how to queue
songs and access the different functions of the app. To
accomplish this we will time fresh users which have never
been exposed to our web app and measure how long it takes
them to feel confident about their understanding of it and be
able to make song requests and navigate the queue on their
own. The target amount of time for this onboarding is less than
1 minute. Additionally we will issue surveys for users to time
themselves on how quickly they can learn to use the app to
aggregate a larger volume of testing data. This will ensure that
the barrier for entry into our DJ ecosystem is low, and that the
vast majority of guests will have their song choices factored
into the system, creating a much more accurate reflection of
the crowd’s music tastes.

C. Tests for User Network Capacity
To test network capacity a barrage of stress tests will be

conducted to determine whether or not the critical user
interaction functions of our system hold up in the presence of
many concurrent users and a large volume of incoming
requests. In order to accomplish this, increasing numbers of
dummy users (up to 100) will connect to the DJ, and we will
verify that the system can manage these large amounts of
websockets and accept requests from any of them at any time.
Additionally, we will send multiple requests to the system all
within one second of each other, and verify that none of these
requests are dropped and that the system produces the correct
behavior manipulating the queue. This will ensure that our
system will be able to accommodate our use-case, which
involves large numbers of guests at an event issuing requests
at random times.

D. Tests for Song Queue Capacity and Veto System
To test our song queue we will use a Python script to

simulate different loads of users performing actions that our
clients would. So they will request songs as well as vote
against others. Since there is no reference solution we will
define certain steps that each user will take and will check the
queue to see if it is what we expect for correctness. We will
also make sure that our system can hold events from 150 users
by doing simpler correctness tests and also doing stress tests
where the 150 users request multiple songs to see if the system

can handle it. Namely, we will test certain circumstantial
sequences of requests, such as multiple users sending requests
at very high-paced rates.

E. Tests for Song Recommendations Quality
Because song recommendations are a subjective matter in

nature, we will be testing the quality of them with user
feedback surveys. We will provide lists of songs that have
been played, and then will display Spotify’s naive
recommendation results, and then our own improved two-tier
system’s results, and will have the user compare which of the
two is preferred. We are looking for 80% preference between
our model to Spotifty’s, in order to justify the complexity of
our design choices. These surveys will be sent out to 100
participants for statistically significant results.

F. Tests for LED Behavior Matching Music
The lighting fixture’s LEDs will be visually inspected over

a set group of songs played to verify that the patterns and
colors they are emitting match the genre and tone of the songs
playing. If the fixture emits the incorrect lighting scheme
prescribed to the song at any point during its duration it will
be considered an error, and the accuracy will be determined by
calculating which percentage of the songs in the
predetermined test set produced an error. The target is at least
an 80% success rate. This design requirement will ensure that
the users will perceive a coherent and synergized DJ
experience, leading to greater user engagement and
satisfaction.

VIII. PROJECT MANAGEMENT

We have been maintaining efficient systems to keep track of
our work progress and communicate our ideas, which are
discussed below. Apart from these, we also have scheduled
meeting times for Zoom calls every Wednesday and Friday
evening for higher level design choices and progress. .

A. Schedule
The schedule is shown in Fig. 8.. We have been using this

schedule to guide and track our work progress.

B. Team Member Responsibilities

Thomas ● Light connection
with the Raspberry
Pi

● Light controller
● Communication

protocol between
RPis

● Queuing/voting
functionality

Matt ● User graphical
interface

● Web app



8
18-500 Design Project Report: B3: Music Mirror 3/1/2024

communication
with backend

● Queuing/voting
functionality

Luke ● Recommendation
RPi
implementation

● Authorization
Driver

● Semantic matching
● Speaker pipeline

connection

All Members ● Loudness Sensor
Integration

● User satisfaction
surveys

● Testing

Fig. 1. Schedule example with milestones and team responsibilities

C. Bill of Materials and Budget

D. Risk Mitigation Plans
The team has identified a few potential risks that could

hinder the progress of our design implementation. These risks
necessitate mitigation strategies to ensure continued
advancement.
One potential risk is not being able to properly control the

lighting fixture through a signal generator module hosted on
our system. This is because the DMX protocol intended to
control the lights is more of a hardware solution, and may not
lend well to being controlled via software. Our mitigation
strategy is familiarizing ourselves with other DMX signal
generation libraries as backups, such as the Open Light
Architecture framework and PyDMX, in addition to our
primary DmxPy interface.
Another risk would be if we can not effectively transfer data

between the RPis through ethernet. We don’t think we should
have any issues but if we do then there are other ways to
transmit the data like Bluetooth or some sort of socket
connection.

IX. RELATED WORK

The Springboot Chat app [2] is similar to how we want to use
our WebSockets. That is why we are using it for our
webSockets. This is a real-time chat app with a javascript and
HTML frontend and a Java backend so it's very similar to our
project.

X. SUMMARY

The Music Mirror project aims to democratize the music
listening experience by creating an all-inclusive smart DJ
platform.

GLOSSARY OF ACRONYMS

API – Application Programming Interface
DMX – Digital communication standard for controlling
lighting fixtures and stage effects
HTML – HyperText Markup Language
JSON – JavaScript Object Notation
RPi – Raspberry Pi

REFERENCES

[1] Ably. (n.d.). WebSockets vs HTTP. Retrieved February 15, 2024, from
https://ably.com/topic/websockets-vs-http

[2] Bouali, A. 2023. spring-boot-websocket-chat-app. GitHub.
https://github.com/ali-bouali/spring-boot-websocket-chat-app.git

[3] rydercalmdown. (n.d.). DMX lights. GitHub. Retrieved March 1, 2024,
from https://github.com/rydercalmdown/dmx_lights

[4] Open Lighting Project. (n.d.). OLA on Raspberry Pi. Retrieved March 1,
2024, from
https://www.openlighting.org/ola/tutorials/ola-on-raspberry-pi/

[5] Spotify AB. (n.d.). Web API. Spotify for Developers. Retrieved March
1, 2024, from https://developer.spotify.com/documentation/web-api/

https://ably.com/topic/websockets-vs-http
https://ably.com/topic/websockets-vs-http
https://github.com/ali-bouali/spring-boot-websocket-chat-app.git
https://github.com/ali-bouali/spring-boot-websocket-chat-app.git
https://github.com/rydercalmdown/dmx_lights
https://www.openlighting.org/ola/tutorials/ola-on-raspberry-pi/
https://www.openlighting.org/ola/tutorials/ola-on-raspberry-pi/
https://developer.spotify.com/documentation/web-api/


9
18-500 Design Project Report: B3: Music Mirror 3/1/2024



10
18-500 Design Project Report: B3: Music Mirror 3/1/2024


