
Team B3: Luke Marolda, Thomas Lee, Matt Hegi

Problem

- Existing DJs and stereo systems do not efficiently collect and manage user
song requests, or ensure that these requests are representative of the
collective event

- The quality of song sets are solely dependent on the quality of the DJ, which
can be expensive and incapable of adjusting to event environments

Use-Case

- A comprehensive speaker attachment that seamlessly manages queuing, song
recommendations, and crowd engagement

- Users steer the system through a distributed web app that hosts a suite of song request and
consensus voting capabilities

Existing Solutions

- Current systems are singular - they focus on one person having full control. We democratize the
event listening experience for uniform enjoyment

Areas

- Software Systems, Machine Learning, Hardware Systems

Requirement #1

Effectively engage with the crowd environment (Engage with Users)

Motivation

- A successful DJ engages with the audience audibly and visually

Sub-Requirements

- System ability to mount to any functional Bluetooth speaker
- Easily usable mobile-optimized website

- Users will be onboarded in under 1 minute on average
- Predictable and consistent web app behavior to User inputs

- Light system colors and strobing match song genre, tone, and crowd loudness noise sensor

Requirement #2

Accurately process the users’ collective music requests (Listen to Users)

Motivation

- Everyone must have an equal ability to contribute to what gets played

Sub-Requirements

- 3 direct song request formats. Implemented with a semantic matching algorithm to map requests
with queried spotify resources

- By name of song
- By artist or album
- By songs that have already been played

Requirement #2 (cont’d)

- User song requests are accurately reflected by the centralized queue within 1 second
- Centralized concurrent queue to accept and maintain ordering of incoming song requests for a

target of 100-150 users
- Consensus voting protocol to support ‘veto’ functionality of songs on queue
- Queue can hold at least 100 songs (6 hour reception / 3.5 min average song length)

Requirement #3

Generate song recommendations that resonate with users (Serve Users content)

Motivation

- A great DJ injects creativity to introduce songs that users don’t immediately think of but will enjoy

Sub-Requirements

- Machine learning recommendation system
- Generates song suggestions in a multimodal sense, using data from the MusicBrainz

database, environment noise sensor, and user input

Requirement #3 (cont’d)

- 1 additional song request format: Similarity search
- Ability to generate song requests based on what has already been played

- Endless queue
- Queue should never be empty
- System can input creative song choices every 3-5 user requests

Technical Challenges

- Accurately accepts user requests and places them in the correct order on the queue
- Ability to semantically match user request to correct song resources and play them on the

speaker
- Robust protocols to manage concurrent users, maintain song queue consistency, and allow for

veto mechanism
- Tuning a song recommendation model to achieve desired level of user satisfaction accuracy at

both small and large user request volumes
- Efficient integration of subsystems to reduce User to System latency
- Easily understandable user interface within web app
- Noise sensors accurately detect & responds to user voice/volume inputs
- Light system colors & strobing match song genre, tone, and BPM in real time

Solution
Approach

Testing, Verification, and Metrics
System Correctness

- Verify that song and sound requests are properly reflected by the centralized queue and DJ system
behavior

- Semantic match for direct song requests reaches 90% efficiency in obtaining resources for correct
requests, and 70% accuracy for incorrect requests (misspelling, etc.)

Latency Clocking
- Use wall-to-wall clocks to time how long different User requests take to be accepted and processed by

the system
User Satisfaction

- Time Users to determine how quickly they can learn to use our web app interface
- Poll Users on how satisfied they are with DJ generated song recommendations that were based on songs

they queued, aiming for 75% approval
Stress Testing

- Leverage scripting to simulate large user count, request volume, and queue size, and observe system
stability and performance under load

Task Distribution

- Frontend web app (Matt)
- Backend system management

- Queuing system (Matt)
- Spotify requests (Thomas)
- Consensus voting (Thomas)
- Semantic matching (Luke)

- Machine Learning Recommendation System
- Model construction and tuning (Luke)
- Database integration (Luke)
- Input/output processing modules (Luke)

- Noise controlled lights
- Loudness sensor integration (Matt)
- LED circuit and controller (Thomas)

- Subsystem integration
- Speaker connection (Everyone)
- Communication protocol between

modules (Everyone)
- Testing and client surveys (Everyone)

