
SmartStand
B2: Sebastian Garcia, Mary-Rose Rubino, Olivia Yang

18-500 Capstone Design, Spring 2024
Electrical and Computer Engineering Department

Carnegie Mellon University

System Architecture

Product Pitch
We are in a posture crisis. PCs are not

kind to our shoulders and necks. There are
computer stands on the market but
adjusting them is slow and cumbersome. So
why not use the intelligence of a computer
to do the stand adjustment for us?

SmartStand uses your computer’s
webcam and facial tracking to intelligently
set your computer to the right height and
angle, not matter where you are. Let’s use
technology to improve our health.

Our system is comprised of software (Figure 2), hardware
(Figure 4), and mechanical (Figure 3) components. The user
will interface with the product via our GUI. On the backend, our
algorithm will use OpenCV calculate the ideal stand position.
This will be sent to the Arduino serially. On the python backend,
the eye-tracking, and stretch reminders will be calculated and
then displayed to the user as notifications.

http://www.ece.cmu.edu/~ece500
/projects/S24-teamxx

System Description

System Evaluation

Conclusions & Additional Information

Overall, we are happy with the product
we created. But there is still plenty to improve
on. Design-wise, SmartStand could be lighter,
smaller, more elegant.

On the application-side, we tried to make
a posture detection model, but it was
inaccurate because of a lack of data available
to train it.

We ended up learning a great amount of
mechanical design and engineering concepts
when modifying the platform jack, and
learned new fabrication processes like laser
cutting.

The key to SmartStand is the webcam that tells the rest of
the system how to behave. We pass webcam data into
OpenCV which produces facial landmarks which feed into our
stand adjustment algorithm. Webcam data is also used to
track eye fatigue. The user can then select different stand
adjustment options (automatic and manual) and receive health
notifications through the GUI. On the hardware side, we have
an Arduino that receives packets via a serial connection to the
PC that contain motor inputs. The Arduino connects to two
motor drivers to control the linear actuators and main motor.

We tested the system by
measuring performance
metrics related to the
whole system which are
most important to the
user. The table to the right
shows how we met these
holistic quantitative use-
case requirements. Some
tradeoffs are shown in this
data. We opted for a high
torque motor with a
gearbox for reliable lifting
at the cost of speed. On
the algorithm side, we
aggressively sent motor
commands to adjust
quickly at the cost of
accuracy.

Figure 4. Circuit View

Figure 3. Mechanical View

Figure 1. System Block Diagram

Figure 2. GUI Homepage

Table 1. Test Data Comparison to Requirements

Table 2. Design Tradeoffs

