

Reach beyond your limits.

Varun Kumar, Hayden Simon, Nathan Zhu - Team B1

The Existing Infrastructure for Limited Mobility aid is lacking.

Individuals with mobility challenges face:

- Difficulty getting into/out of chairs
- Unsteadiness while walking
- Increased susceptibility to falls
- Exacerbated by picking things up

Existing solutions for object retrieval:

- Have a limited range
- Expensive
- Only exist in research labs

(HealthInAging.org, Olaya et al.)

HomeRover aims to address this need.

Mission: Provide a cost-effective, intuitive method of object retrieval for individuals with mobility challenges

HomeRover is a user-assisted autonomous robot that features:

- An interface for user navigation of the rover to an object's general vicinity
- Autonomy in operating within the vicinity to pick up the object
- Ability to return object back to the user

ECE Areas: Software Systems, Circuits

Use Case Requirements

User Control

- Roundtrip transmission to and from Rover <<u>100 milliseconds</u>
- Control center reaction to user input <20 milliseconds
- Raspberry Pi screen displays footage from the rover and simple user interface.
- Contains forward, backward, left, right keys and a pickup button
- Minimum battery life 1 hour

Autonomous Item Detection/Pickup

- Successfully pick up item 80% of the time
- Can detect an item and position for pickup within 30 cm, within 10 seconds.
- Suction capable of lifting > 700 grams
- Can detect and pick up
 - Books
 - Tablets
 - Cell Phones
 - Medication boxes

Use Case Requirements

Rover Hardware

- Communication with motors <20 milliseconds from receiver to motor
- Communication with suction claw <20 milliseconds from receiver to stepper
- Vehicle is capable of driving on carpet, hardwood and tile (with non-mirror finish)
- Cost <\$450 for a home market
- Minimum battery life 1 hour

Safety Considerations

- Materials are durable and safe for household use
- System can withstand spills
- Robot must move at safe household speeds <1 m/s

Technical Challenges

• Ease of Control/User Satisfaction:

- Control scheme must be simple and intuitive.
- Robot must move at at-home speeds.

Identification of Object:

- Reasonable time scale.
- Smooth Operation.
- Distance Threshold Monitoring
- Accuracy will be key.

Risk Mitigation

- End-Effector Modulation
 - Suction
 - ER Fluid
 - Gate System

<u>source</u>

Implementation Scheme

Control-Side:

- Simple Interface:
 - Arrows for movement
 - Knob for direction
 - Buttons for object interactions

Rover-Side:

- Via Wi-Fi, receives instructions from Control-Side.
- Sensing and Object Detection:
 - OĂK-D SR depth camera
 - Minimum distance of 20 cm.
- Actuation:
 - Custom designed Rover with Integrated Robot Arm

Testing, Verification and Metrics

Requirement	Method	Target
Transmission Latency	Record time of data transmission between the two RPI using simulation time	<100ms
Control Center Latency	Record time between pressing button and response in terminal, using slow motion iPhone camera (240 fps)	<20ms
Pick up weight	Have the suction arm pick up an iPad	>682g
Pick up accuracy	Multiple trials with each of the items listed	≥80%
Item Detection range	Multiple trials with items at different ranges	0.33 meters

Testing, Verification and Metrics cont.

Requirement	Method	Target
Driving on different flooring	Drive the rover over carpet, tile and hardwood	>0.5m/s and ≥80% success
Cost	Sum all the components	≤\$450
Receiver to Motor Latency	Send signals through the RPi and time how long it takes for motor to respond, using slow motion iPhone camera (240 fps)	<20ms
Receiver to suction claw Latency	Send signals through the RPi and time how long it takes for stepper to respond, using slow motion iPhone camera (240 fps)	<20ms
Battery life	Record time between each recharge	>1 hour

Division of Labor

Hayden:

- **Rover Navigation** Rover architecture and movement, communication protocol
- **Control Suite architecture** simple PCB design for keypad.

Varun:

- Item Retrieval Robot arm design, intra-Rover communication protocol
- **Robot Arm architecture** kinematics design for smooth movement.
- End Effector Design pickup mechanism

Nathan

- **Object Identification** Camera to Robot arm architecture, intra-Rover communication protocol.
- User Interface Design for Control Suite

Schedule

- Varun's Tasks
- Finalize picking-up mechanism
- Design robot arm
- ⊘ Kinematics Scheme
- ⊘ Finalize comm protocol Intra-Rover
- ► 🕗 Fabricate Rover Chassis 3 😂
- ▶ ⊘ Integration 4 🖙
- Improving user experience/slack
- Hayden's Tasks
- Design rover (4 wheels, camera mounts, nav capability)
- Design and finalize control booth
- Ø Kinematics Scheme
- Raspberry Pi WiFi communication scheme (Control Booth to Rover and back
- ▶ ⊘ Fabricate Rover Chassis 3 😂
- ▶ ⊘ Integration 4 🖙
- Improving user experience/slack
- Nathan's Tasks
- Set up programming and connect with RPi
- Experiment with depth camera
- O Depth camera able to detect objects
- Ø Mockup User Interface Design for control suite
- Sinalize comm protocol intra-Rover (kinematic translation to arm)
- Identify how far objects are on Raspberry Pi, in accordance with intra-Rover
- Setup RPi Display
- O Display Live Feed of camera on rover

Integration