
Use Case

Individuals with mobility challenges face:

- Difficulty getting into/out of chairs
- Unsteadiness while walking
- Increased susceptibility to falls

Limitations of current solutions:

- Have a limited range
- Expensive
- Only exist in research labs

Our mission:

Provide a cost-effective, intuitive method of object retrieval for individuals with mobility challenges

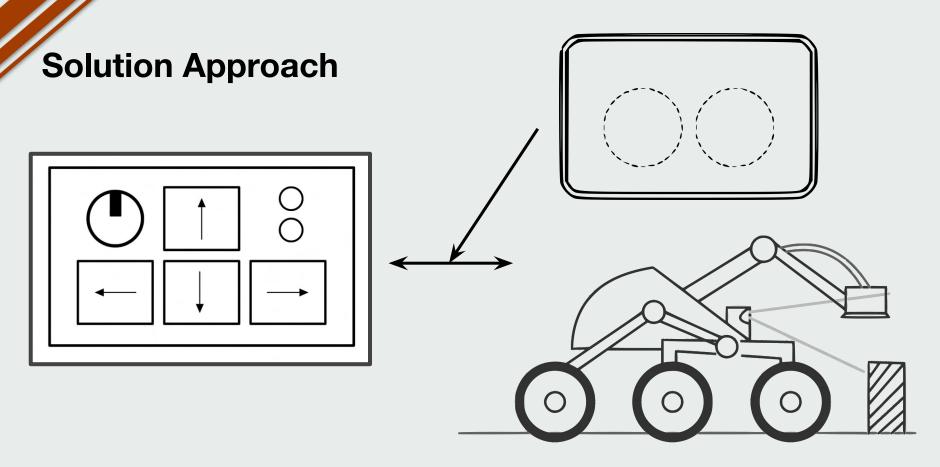
Design Requirements

User Control

- Roundtrip transmission < 100 ms
- User-side latency < 20 ms
- RPi screen displays camera footage
- Directional control keypad
- Min. battery life **1 hour**

Rover Hardware

- Motor latency < 20 ms
- Suction claw latency < 20 ms
- Carpet, hardwood and tile capability
- Cost < **\$450**
- Min. battery life **1 hour**

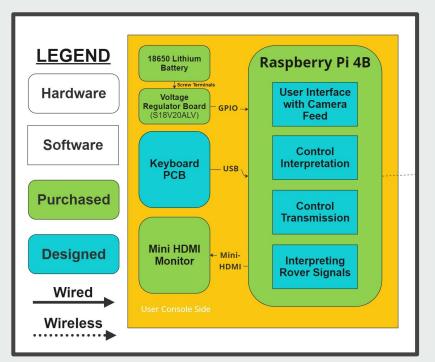

Autonomous Item Detection/Pickup

- 80% pick up accuracy
- Detection range **30 cm**, pickup in **10 sec**
- Suction capable of lifting > 700 grams

Safety Considerations

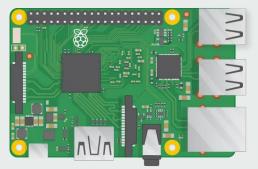

- Durable and safe Materials
- System can withstand spills
- Robot must move at safe household speeds < 0.50 m/s

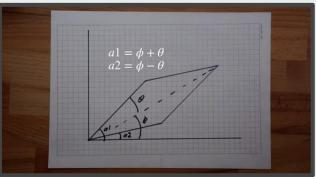
System Specification / Block Diagram



Implementation Plan: User Side

- Copying and modifying PCB for control


 Link
- Copying and modifying arduino code to translate to USB protocol
- Raspberry Pi Wifi capabilities to communicate
- Purchasing monitor
- 3D printing surrounding assembly for controller



Implementation Plan: Software

- Writing control interpretation software
- Developing user interface for camera feed
- Adapting Depth Camera Software
- Writing Kinematic control software:
 - Drive Train
 - Robotic Arm Motion

Implementation Plan: Rover Side

Drive Train:

- Uxcell Gear Motor DC 12V 201 RPM Gear Ratio 21.3:1 **(\$)**
- Mounting Bracket (D)
- Timing Hub Pulley & Wheel (D)
- Timing Belt (\$)
- Washers, Bushings, Bolts (\$)

Control:

- Raspberry Pi 4 (\$)
- Oak-D SR Camera (\$)
- Electronic control PCB
 (D)
- Object Recognition & Control Software (D)
- ESCs (\$)

Suction Claw:

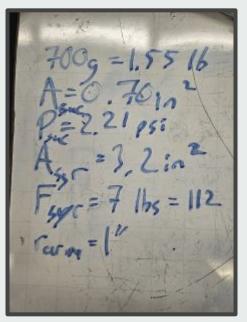
- 2000 Series Servo (\$)
- Robot arm chassis (D)
- Washers, Bolts (\$)
- Hxchen 3-6V DC 370 High Power Air Pump (\$)
 - Uxcell Bellows Suction Cups (\$)

- Red: Electric HardwareD:Blue: Battery\$:Green: 3D printedComponentsOrange: RubberGrey: Mechanical Hardware
 - D: Designed \$: Purchased

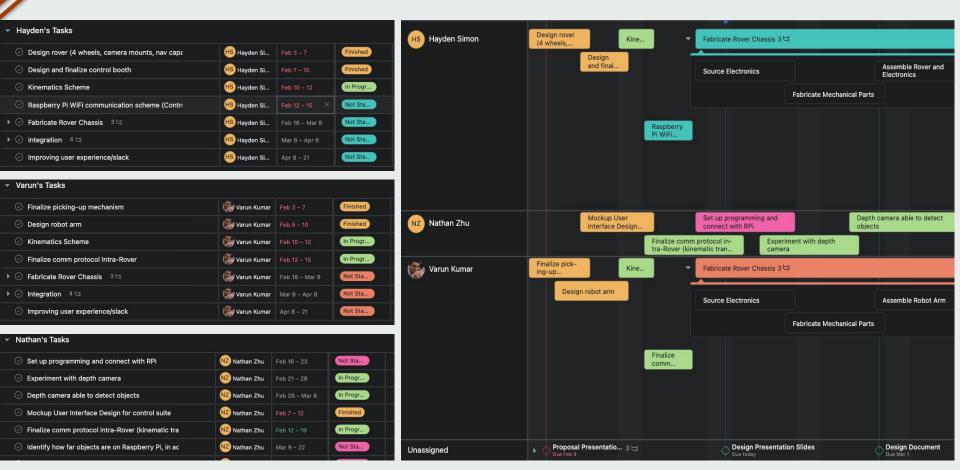
Testing, Verification and Metrics

Requirement	Method	Target
Transmission Latency	Record time of data transmission between the two RPI using simulation time	<100ms
Control Center Latency	Record time between pressing button and response in terminal, using slow motion iPhone camera (240 fps)	<20ms
Pick up weight	Have the suction arm pick up an iPad	≤700g
Pick up accuracy	Multiple trials with each of the items listed	≥80%
Item Detection range	Multiple trials with items at different ranges	0.30m - 1m

Testing, Verification and Metrics cont.


Requirement	Method	Target	
Driving on different flooring	Drive the rover over carpet, tile and hardwood	>0.5m/s and ≥80% success	
Cost	Sum all the components	≤\$450	
Receiver to Motor Latency	Send signals through the RPi and time how long it takes for motor to respond, using slow motion iPhone camera (240 fps)	<20ms	
Receiver to suction claw Latency	Send signals through the RPi and time how long it takes for stepper to respond, using slow motion iPhone camera (240 fps)	<20ms	
Battery life	Record time between each recharge	>1 hour	

Risk Mitigation


Risks		Mitigation Strategies	
•	Invasive footprint with current suction mechanism	 Switch to DC from syringe 	c air pump
•	Suction mechanism reaching the desired target	 Simpler, DOF robot arm Ample integr 	
•	Vision and detection of the objects	 Utilize examp guidance New camera onboard feat 	with

Pressure Calculations

Project Management

