
18-500 Final Project Report: B0 EchoBudget 05/03/2024

1

Abstract—The system is a web-based application that provides

money tracking functionalities with audio input. Traditional
money tracking apps are not accessible for visually impaired
people and the elderly due to lack of visual aids and complex user
interfaces. To meet their needs for money tracking, we propose to
implement an application that records, shows, and analyzes
spending solely with audio input and output.

Index Terms—Design, natural language processing, noise
reduction, signal processing, speech recognition, text-to-speech
conversion, user interface, web application.

I. INTRODUCTION

WITH the development of social welfare and

humanitarianism, the living standard has been greatly enhanced
for visually impaired and elderly people. However, their need
for accessible money tracking methods is not satisfied because
the traditional apps require the user to know what functionality
each component has in a complex UI, which is too sophisticated
for visually impaired and elderly people to manipulate. The
voice assistants in smartphones are not capable of converting
voice input to a specific command interpretable by a traditional
money tracking app. In addition, many visually impaired and
elderly people do not possess smartphones and thus have no
access to the traditional apps.

A portable device with an app supporting audio-command
conversion and content reader can address this issue. Our
project is to develop a voice-controlled money tracking app on
a low-cost device. The system can parse the audio input into
parameterized commands and provide audio output of the
generated contents to best satisfy our users’ need for recording
their expenses without visual help.

II. USE-CASE REQUIREMENTS
Available Operations: Our system EchoBudget would

support common functionalities of money management apps in
the market. Users are able to create, edit, and remove entries to
record their daily expenses. In addition, users could ask our
system to generate spending reports to acquire more
information about their spending habits. While other
applications require users to input all the information by
tabbing, our system could be controlled fully with voice
commands. There would be a button on each page and users

could push the button and begin to give their instructions. Our
system would then complete the tasks assigned by users.

Voice Input: Users would communicate with our system like
sending voice messages through their phones. Therefore, when
users are holding our system and talking to it, our system would
be able to receive the voice input. According to Gitnux, the
average adult female arm length is about 27-31 inches (68.58-
78.74 cm) and the average adult male arm length is about 28-
34 inches (71.12-86.36 cm)[5]. Therefore, our system should be
able to receive inputs with distances from 0 to 100cm.
According to the Centers for Disease Control and Prevention,
the average sound level for normal conversation is about 60 dB,
and that for whisper is about 30 dB. Therefore, our system
should work well with human voice ranges from 30 to 70 dB.
Since we expect our users to use our system in places including
restaurants and supermarkets, our system should also work in a
relatively noisy environment.

Latency: According to WebsiteBuilderExpert, 25% of users
would leave if the websites did not load within 4 seconds[7].
Therefore, we would expect our websites to give any update
within 4 seconds. To be more specific, our system would create,
edit, and delete the entry within 4 seconds. Additionally, our
system would generate a report within 4 seconds.

Portability: It will be inconvenient for customers to bring a
large and heavy device with them. Thus, the size of our system
is designed to mimic the size of a mobile phone (iPhone 13 pro)
and the weight of our system would be similar to that of an iPad
Air (500g).

Battery Life: With the monitor on, our device should be able
to operate for at least one hour. Since customers would only use
our device for money management, one hour of operation
would be enough to record daily spending. When the monitor is
off, we would try to minimize the energy consumption to allow
customers to charge the device less often and we would expect
our system to operate for at least 24 hours with the monitor off.

Accessibility: Our system is designed to be friendly to both
people with visual impairment and elder people. To enhance
accessibility for visually impaired individuals, our system will
offer active voice responses in accordance with their
commands. For instance, when our system successfully
completes an action, such as creating, modifying, or removing
an entry, the system will audibly confirm with phrases like
"entry created/modified/removed". This confirms would let
users realize that their actions are successful without looking at
the monitor. Furthermore, when users navigate to the record
page, the system will audibly announce the details of each entry
displayed. For example, "entry number 12: apple, categorized

EchoBudget

Lynn Sun, Yuxuan Xiao, and Yixin Yang

Department of Electrical and Computer Engineering, Carnegie Mellon University

18-500 Final Project Report: B0 EchoBudget 05/03/2024

2

under food, priced at 5 dollars." For the user interface, we aim
to make it concise and clear. We would expect the elderly
people to master our system within one day. Moreover, the
button used to initiate commands is designed to be large and
consistently positioned on every page. This would be friendly
for visually impaired groups because they can easily find the
button.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION
 EchoBudget is a device that executes a web application on

Raspberry Pi and allows users to interact with it via a
touchscreen and a microphone. The design could be distributed
into a hardware section, a signal processing section that could
be further split into speech recognition and NLP processes, and
a software section. The hardware and signal processing sections
transform interactions in the physical world into data that can
be interpreted via software. The software section analyzes the
data and provides corresponding performances based on user
requirements.

A. Hardware
Our system performs all functionalities on a Raspberry Pi 4

with a touchscreen monitor and a USB microphone. Customers
could interact with the system via finger tapping and audio. The
primary home page user interface would be displayed on the
monitor screen, and a “help” command is recommended for
users to receive an initial audio-driven tutorial that provides
them with a basic introduction to the web application through
the built-in speaker. Customers could use the microphone to
deliver voice command inputs and the audio signals would be
transmitted to the speech recognition subsystem.

A lightweight and portable power bank is connected to the
Raspberry Pi as the power supply when using the device in
outside environment. The power bank could guarantee a 4-hour
battery life when the touchscreen is on.

B. Speech Recognition
The speech recognition pipeline is designed to convert the

voice commands from the customers to text strings that would
then be fed to the natural language processing models. The
audio input stream goes through a noise reduction algorithm to
guarantee that the voice commands can be effectively
distinguished under environments with volume from 30 to 70
dB. The treated stream is then delivered to a trained speech
recognition model and outputs as text strings.

C. Natural Language Processing
Once the audio is successfully converted to text strings, two

natural language processing models will be used to parse the
strings, extract key information including command words,
item names, price numbers, entry numbers, or dates, and
classify the distinguished item names to different categories
based on the command inputted.

Command Parsing: The converted text string will be passed
to two command-parsing models instead of one to parse all
information and send it to each web page. An action verb is
essential for all received text strings, and potential item names,

price numbers, item numbers, or date information will also be
required for different pages. The corresponding web page
would be rendered based on the information captured. If the
models fail to recognize the action verb or corresponding
parameter words, it will send a notification to the customers so
that they can repeat their commands. Specifically, the model
would let the customers confirm whether the parsed item name
and price number are correct or not.

Classification: There are six standard categories for the
entries including food, housing, necessities, entertainment,
transportation, and others. These categories should be able to
cover most of the daily spending classes, and the “others”
choice could always serve as a backup choice if no other
categories are appropriate. After the customer enters the item
name and price, the new entry will automatically be assigned a
category based on its name. The customers could modify the
classification if needed by providing new commands.

D. Web Application
 The Django framework web application is the major

interface for the users to interact with the systems. The
application allows customers to input new expenditure entries
to the database, view existing entries, modify or remove entries
if needed, and learn the spending statistics via financial reports.
To benefit the visually impaired groups, a large button is
designed on the right-hand side of all pages of the application,
and the customers could give their voice commands by tapping
the button. The customers could also speak up after a “start
recording” audio notification, and we changed the original “end
recording” button clicking to an automatic stop after 6 seconds.

Based on the received commands, different pages of the web
application would be rendered. Action verb “Enter” will render
the Enter Item page, and an item name and cost value are
expected to be parsed as the parameters for a new entry. An
audio notification that repeats the entered information will be
played via the speaker, and the customers could use the
“Confirm” command to save the entry to the database. If any
field is incorrect, a new voice command with action word
“Change” and the corresponding field name and expected value
should be given.

Customers could be able to view their entries via the
command “Get” or “Get entries”. The page that displays entries
for the current month will be rendered and each entry will be
assigned an id number. All listed entries and their information
will be read out during the page is rendering. The customers
could use “Modify” with the id number to adjust a specific
entry. The modification page for that entry should then be
rendered, and the customers could make changes via the same
approach as the Entry Enter page adjustment operations.
Command “Remove” with the id number parameter of a
specific entry is used when the customer wants to delete an
existing entry.

Command “Generate”, or “Generate report” refers to the
Financial Report page, and the customer could use the
command “Generate report from start month-start year to end
month-end year” with the corresponding date information
parameter to get the report of that time range.

18-500 Final Project Report: B0 EchoBudget 05/03/2024

3

Customers could always use “Help” to learn about available
action words.

An additional set of ordinary UI is designed for customers to
perform all operations using touch and is displayed on the left-
hand side of the screen.

 (a)

 (b) Home Page

 (c) Entries Page

 (d) Entry Modification Page

 (e) Financial Report Page

Fig. 1. Overall system. (a) Photo. (b)-(e) Web App User Interface.

TABLE I. AVAILABLE VOICE COMMANDS

Voice Command Action Response

“Enter {item name}
for {price} numbers”

Parse item information
to the Entry form

“Entering {item name}
for {price} dollars,
please confirm”

“Confirm”
Submit or update the
information of the
current entry

“Entry created/updated”

“Get entries (from
{start month, start
year} to {end month,
end year})”

Get entries created in
the given time range

Read all entries with id,
item name, price, and
category

“Modify No.{id}”
Enter the entry
modification page of
the specific entry

“Modifying entry no.
{id}, you can change
the category, item name,
or price by saying
‘change’ {field} to
{new value}”

“Change {field} to
{new value}

Change the value in
the specific field to the
new value

“Changing {field} to
{new value}, please
confirm”

“Remove No. {id}” Remove the specific
entry from database “Entry removed”

“Generate report
(from {start month,
start year} to {end
month, end year})”

Generate financial
report for entries
created in the given
time range

Read the percentage of
each category

18-500 Final Project Report: B0 EchoBudget 05/03/2024

4

Fig. 2. Block diagram of the system.

IV. DESIGN REQUIREMENTS
Speech Recognition: According to Statista, the error rate of

speech-to-text technology of Amazon, Microsoft, and Google
Video is 18.42%, 16.51%, and 15.82%[8]. Therefore, we expect
our system to have less than a 20% error rate for the whole
sentence. The important information for our system is the action
verbs (e.g. generate the report, create, delete, etc.), item names,
and prices. We would expect at least 90% accuracy for these
important words to ensure our system works smoothly.

Voice Input Parsing: Our task for this part would be to extract
important information (including action verbs, item names,
prices, etc.) from the whole sentence. The action verbs
determine the main task our system would handle and help us
navigate to the correct page. Item names and prices would be
the primary information we need for each of the entries, and the
item names would be the inputs for categorization. Since the
information we get from this part would directly influence what
would be displayed in the web application, we would expect the
accuracy for this part to be at least 95%.

Item Categorization: We would have six basic categories:
food, housing, necessities, entertainment, transportation, and
others. It would be burdensome if the auto-categorization fails
too often, so we would ensure at least 90% accuracy. We would
not allow customers to add personalized categories. This is
because the newly created category would have negligible
training datasets, which would substantially decrease the
accuracy of classification.

Power Bank: We would use the battery life of mobile phones
to help estimate the size of our power bank. The battery capacity

of iPhone 15 Pro Max would be 4441 mAh[9]. The battery test
shows that a fully charged iPhone could supports 11 hours and
28 minutes of social media browsing. Using our system may
require more power than browsing social media, because our
system would consistently provide audio output. In addition,
raspberry pi would heat up when running the application, which
will consume additional power than a normal iPhone. Therefore,
we would choose to try a power bank with 10000 mAh capacity
(about 2.2 times as the size of iPhone power bank). With this
power bank, we would expect our system to be active at least
two hour every day and the battery life would be at least 24
hours.

Active Interaction: We would want our system gives constant
feedback to the users so that they would know the system is
actually processing their request. For the voice input part, we
would have voice notifications when button is pressed to inform
the users that the following commands would be recorded.
Additionally, we would repeat the information provided by the
users and let the users confirm what they said. For example,
when adding new entry, if the user says “enter apple for five
dollars”. Our system would have audio responses like “do you
want to enter apple categorized in food for five dollars?”.

UI Design: For every page of our system, we would divide
the page into two parts. The left part would handle all the
functionality of a money tracker app, including editing,
displaying, and deleting the entries and showing the reports we
generated. The right side would always be the button for voice
input, which ensures that users could easily use voice
commands on every page.

Financial Reports: We would generate reports for a given
periods. One would be the pie charts, which show how a user’s
spending is divided among different categories.

Default Display: Users could provide a time range for the
record page (where we display all the entry) and for the report

18-500 Final Project Report: B0 EchoBudget 05/03/2024

5

page (where we display the report). However, if the user does
not provide the time range, we would display the entry or report
for current month by default.

V. DESIGN TRADE STUDIES
Based on our use-case and design requirements, 5 crucial

choices are made and the trade-offs are analyzed.

A. Hardware Selection
The hardware that carries the signal processing modules and

web application is crucial for the general product. An embedded
system consisting of RPi 4 and a touchscreen monitor is
preferred over laptops and smartphones in our design. The
major factor that leads to this decision, other than a laptop, is
portability. Customers should be able to use our systems in
various scenarios, with or without the condition of using
laptops. For example, one of the expected use cases would be
inputting entries at grocery stores. Therefore, the hardware
should be lightweight and portable, allowing the product to fit
in hand and to satisfy the use case requirements.

On the other hand, although a smartphone could be an
appropriate device that guarantees portability, we decided not
to choose it as the carrier hardware due to the target customer
group's specific requirements. The target user group of our
design is visually impaired people, and the majority of this
group either do not have a phone or simply use phones with
basic functions. As a result, a smartphone application fails to
provide the service to a large group of our customers.

Based on the research and discussions, a portable embedded
system implemented using Raspberry Pi and a monitor is
finalized as the hardware selection for our design. The total
weight of the design is about 500 grams (including RPi,
monitor, USB microphone, and power bank), and customers
can interact with the system via the touchscreen.

B. Speech Recognition
As the primary module of the signal processing system, the

speech recognition pipeline should convert the voice input from
the customers to text strings for NLP process in environments
under 30 to 70 dB volume. Therefore, three Python libraries are
used to construct the pipeline script and guarantee a high
performance of the speech recognition module. PyAudio is
selected to convert audio signals to streaming data because this
library simplifies the audio-capturing process, making it ideal
for microphone and speaker interfaces. Although there are
several libraries that could handle noise reduction such as
pydub and PyAudio, the noisereduce library is selected because
it is designed specifically for identifying and reducing
background noise in audio signals, which is crucial for the
speech recognition process under high-volume environments.
The library SpeechRecognition is chosen for the actual speech-
to-text component in the pipeline because it could support
multiple engines and APIs, which provides flexibility and
versatility. Therefore, backup scripts implemented by different
engines could be utilized when the primary engine fails.

C. Command Matching
For parsing the whole sentences, we are deciding between

two models: spaCy and NLTK. We choose to use spaCy for the
following reasons.

Firstly, spaCy provides out-of-the-box support for Named
Entity Recognition (NER) which is more advanced and
accurate compared to NLTK. This feature of spaCy can
effortlessly identify and classify proper nouns, including
product names and monetary values, directly from the text,
which is essential for our use case.

Moreover, spaCy's processing pipeline is designed for
production use and can handle large volumes of text rapidly,
making it highly scalable and efficient for real-time
applications. NLTK, while powerful for academic and research
purposes, is not optimized for speed and may not perform as
well in a production environment where quick processing is
critical.

Another advantage of spaCy is its superior part-of-speech
tagging and dependency parsing which are crucial for
understanding the grammatical structure of sentences. This
allows for a more accurate extraction of action verbs to the
items and prices mentioned, providing a clearer understanding
of the sentence's intent.

D. Item Categorization
In the item categorization process, our main goal is to assign

one of the predefined categories to the item name obtained from
the first half of the NLP pipeline. There are many text
classification algorithms such as Random Forests (multiple
Decision Trees), Logistic Regression, and Decision Trees.
However, these algorithms are used to handle long texts with
many features, while we only aim to parse single words or short
phrases. Therefore, models that implement the above
algorithms are not under consideration of this task.

Word vector representation is what we can make use of. It is
a method of converting words into high-dimensional vectors so
that similar words are close to each other in the vector space.
The two most popular word vector representation methods are
Word2Vec and GloVe, both of which can potentially be
customized for our word classification task. Although
Word2Vec and GloVe differ in how they train the model, they
are similar in the result, so there is little difference for us using
one or the other[2]. For convenience, we initially adopted the
pre-trained Google News Word2Vec model, which contains
300-dimensional vectors for 3 million words and phrases and is
readily available for download and use through Python’s
gensim library. GloVe, on the other hand, provided an
alternative since the performance of Word2Vec was not ideal.

E. Database
Our project is a local app with a single user and does not

contain complex user data to be stored in the database.
Therefore, we will be using the SQLite that comes with the
Django framework. SQLite is easy to set up and stores data in
a single file, making it handy to use for a standalone application
like ours. Other databases supported by Django provide
features, such as authentication, distributed systems, and

18-500 Final Project Report: B0 EchoBudget 05/03/2024

6

duplication of databases, which are unnecessary to our project.

VI. SYSTEM IMPLEMENTATION
The whole system of our project runs on a Raspberry Pi 4. A

touchscreen monitor that displays the web application UI and a
USB microphone for voice input is connected to the RPi.

A. Hardware Setup

 There are four major hardware components in the design:
a RPi 4, a 7-inch RPi touchscreen monitor with speaker, a USB
microphone, and a power bank. The RPi could be mounted on
the back of the touchscreen with 4 screws. A 3-pin GPIO cable
is connected to RPi pin 2 and pin 4(5V power) via the red wires
and pin 6(Ground) via the black wire to output power from the
RPi to the monitor. Thus a separate power for the monitor is not
required and portability is guaranteed. To enable the touch
feature of the monitor, a microUSB to USB-A cable between
the USB port of the RPi and the 5V-touch port on the monitor
is connected. An FPC cable with HDMI connector is also
needed between the RPi and the monitor to transmit audio and
video signals. The device could be charged either through a
receptacle or a portable charger. A 10000mAh 5V/3A power
bank is chosen for portable charging. The USB microphone is
connected to the RPi directly.

Fig. 3. RPi, touchscreen monitor, and USB-microphone connection

B. Speech Recognition
To convert the voice inputs given by the users to text strings

that could be fed to NLP models, a speech recognition pipeline
script is implemented using several Python libraries. An audio
stream is initialized once a new recording session starts, and
corresponding data is continuously written using the methods
in PyAudio library. The recorded data is then passed on to the
noise reduction module that is implemented via the noisereduce
library.

After eliminating possible environmental noise, the modified
data would be transferred to the speech recognition module
built based on the SpeechRecognition library. This library

supports different speech recognition engines and APIs that
could work both offline and online. The output will be
concatenated as strings that are sent to the NLP models once the
conversion process is completed.

C. Text Parsing
The input of the NLP models would be the script from speech

recognition. Our initial guide for customers to learn how to
interact with our system would require them to use imperative
sentences. Therefore, we would expect all the commands given
by the customers to be imperative sentences.

Based on our requirements and the structure of imperative
sentences, for most of the time, there should be only one verb
in the sentence and that verb would be the key action users want
our system to proceed. Therefore, we would load the existing
spaCy model and use POS (Part-of-speech tagging) figures of
spaCy to identify the verb.

It would be harder for us to extract item names and prices.
The features we would use here is Named Entity Recognition.
For this part, we would first train our own spaCy model. We
would want our model to learn to assign ITEM label to items in
our 6 categories. For example, “apple” (categorized in food),
“laptop” (categorized in necessities), and “rent” (categorized in
housing) should all have label ITEM in our model. For the
price, we want our model to assign PRICE label to prices in
different format. That is to say, we want both “xx dollars xx
cents” and “$xx.xx” would have a label PRICE. For the time
range, we want our model to assign DATE label to both a time
range and a single month. For instance, both “month1, year1 to
month2, year2” and “month1, year1” would be assigned a label
DATE.

D. Item Classification
After parsing the required components from the text, we use

a pre-trained GloVe model for the item categorization process.
The model is downloaded and customized with the NumPy
library in Python. An initial dataset is created mapping item
names into categories. Given a new item name, our algorithm
will calculate the similarity of the new item name and each of
the item names in the dataset, obtaining a normalized similarity
score for each category. The category with the highest score is
assigned to the new item name. The user has chances to modify
the category of a spending, and once confirmed, the dataset will
be updated with the item name and the new category for future
comparisons.

E. Web App UI & Text-to-Speech
The web application user interface is split into a GUI section

and a VUI section that satisfies user requirements for different
customer groups. HTML pages could be rendered via both
voice commands and button clicking. Customers could submit
new entries through the Entry form and a new instance of the
Entry model will be created and saved to the database if
confirmed. Similarly, entries could be modified by extracting
the model instance data from the database and saving the
updated instance back. To display the monthly entry lists and
financial reports, the application would retrieve and filter Entry
data based on the time field and feed the data to specific

18-500 Final Project Report: B0 EchoBudget 05/03/2024

7

command handler functions.
The major component of the VUI section is a large button on

all pages that enables and disables the voice input functionality.
Customers interact with the web application through voice
commands in this section, and the system will respond
accordingly. The user could start giving voice commands after
pressing the button and hearing a “start recording” notification.

Action “Enter”, “Get entries”, and “Generate report” could
be achieved by simply sending an HTTP GET or POST request
with no extra information despite those in the current command.
Therefore, the corresponding action functions that render the
pages could collect the required request information and render
the page. However, other actions such as “Confirm” and
“Modify” would require additional information from the
previous page, which could not be achieved through the voice
command. Since Django framework does not allow direct
access from views.py (the file where most backend algorithms
are) to the currently displayed static HTML page and the data
posted on the page, sessions are introduced to store the
necessary information from the last page to the page rendering
by the new request. For example, the session could store the
newly entered item information in the request after an “Enter”
command which only parsed the item name and price
temporarily. In this case, after the voice command “confirm”,
which is equivalent to a manually submitted new entry creation
form, is given, the request could still keep the entry information
and save it successfully to the database.

Each voice input is assisted with a corresponding audio
response, so after parsing the key parameters from the audio
input and processing the command, the response information
strings will fill the corresponding pre-generated message
templates that are stored in static text files. The completed
response texts are then generated based on the requested
information and fed to a text-to-speech converter implemented
using gTTS. A new thread will be created to generate the audio
file, deliver the output audio to the customer via the built-in
speaker of the touchscreen monitor, and remove the audio file
while the page is rendering in the main thread.

The GUI section is mainly constructed using HTML
elements and JavaScript components. Customers could
manually create or update entries through HTML forms and
could view the entry lists and responsive financial reports that
include a pie chart.

F. Data Storage & Management
The database used in the design is the SQLite database in the

Django framework and the key data that need to be stored in the
database are Expense, Date, and Category.

The Django model for Expense is defined in models.py and
consists of an item name character field, a price number decimal
field, a category foreign key field, and a date field that indicates
the creation time of the entry. Item name and price number are
parsed from user input, while category and date are determined
or assigned by scripts. Once a new entry is created, the instance
will be stored in the database table for the Expense model. To
update specific fields of an existing Expense, an ID number that
corresponds to the ID of the entry (which is assigned

automatically by Django) should be entered and the entry could
be found in the database. Modifiable fields for the Expense
model are item name, price number, and category. When a
financial report is requested, expenses created in the given
month are extracted via the date field. These entries are
distributed into 6 arrays by categories, and the total price spent
for each category is calculated. The statistics are fed to chart
components and the complete report page is generated.

The Django model for Category contains the category name.
In the migration file, 6 Category objects are automatically
created in the database, serving as the 6 predefined categories.
In the ExpenseForm, the Category field is a dropdown list of
those 6 categories. There is also a DateSelectionForm that can
be used to select the time range to view entry records and to
generate the report.

VII. TEST, VERIFICATION AND VALIDATION
We evaluate the functionality and performance of the system

through both unit tests and integration tests. These tests are
conducted during the implementation or after the integration of
all parts.

A. Results for Speech Recognition Accuracy
As the primary module that collects the user input and

translates to text, the audio-to-text accuracy plays a crucial role
in the whole system performance. The speech-to-text
conversion done by the SpeechRecognition library is expected
to reach an accuracy of 90%.

To conduct unit testing, we spoke the common phrases used
in the product to the microphone and counted the number of
words that were translated incorrectly. Then the accuracy is
calculated accordingly. 150 different voice commands that
cover all available action verbs are tested with different item
name, price number, id number, and date time information. The
general speech recognition accuracy among these test cases is
about 98.3%.

TABLE II. SPEECH RECOGNITION ERROR CASES

Test command Translated Text Accuracy

“Spend 15 dollars on eggs” “Spend 15 dollars on X” 80%

“Enter bread for 5 dollars” “Enterprise for 5 dollars” 60%

“Buy pie for 3 dollars” “By Pi for 3 dollars” 60%

“Enter healthcare for 100
dollars”

“And her healthcare for
100 dollars” 80%

“Enter laptop for 1500
dollars” “Enter laptop for 1500” 80%

“Enter music for 19
dollars” “Enter music for 19” 80%

 After analyzing the test cases, we figured out that the
SpeechRecognition library may fail to convert money into the
expected pattern with its unit attached i.e. ${price}, which
would lead to further NLP edge case handlers. As for
misunderstanding of action verbs and item names, reasons

18-500 Final Project Report: B0 EchoBudget 05/03/2024

8

including pronunciation and accents should be taken into
consideration, and the current error handling method is simply
asking the user to repeat the command with a response of “Try
again”.

B. Tests for text-to-command parsing
The input for spaCy model is the text string of commands.

spaCy would parse five different categories of words and
phrases from these text strings. We fed 150 different commands
into spaCy for testing.

spaCy can recognize the action verbs in every command,
reaching 100% accuracy. It could also identify cardinal number,
and date with 100% accuracy. However, it may encounter some
edge cases when parsing items and price. For example, when
we want it to parse “apple pie” from “enter apple pie for 5
dollars”, spaCy would only parse “apple”. Tests for Latency

We will test the total time spent waiting for the system to
parse the command. From the time the user stops recording to
when the parsing result is reflected on the page, the elapsed time
should be less than 3 seconds for 90% of the trials. We will run
10 trials for this test.

TABLE III. TEXT-TO-COMMAND ACCURACY

Text Label Example Accuracy

ACTION / VERB

Enter/buy/spend,
modify/edit,

remove/delete, get
entries/view entries,

generate report

80%

ITEM

Change item name to
apples (item), enter

housing (item) for 1200
dollars

96%

CARDINAL

Modify/delete entry
number 12 (cardinal),
modify/delete entry 12

(cardinal)

100%

PRICE
“Enter laptop for 800
dollars (price), change

price to $6 (price)
96%

DATE

Get entries for May 2024
(date), generate report
from January 2023 to

March 2023.

100%

C. Results for Text Input Functionalities
The app is expected to function correctly as a normal money

tracking tool supporting text inputs. It should serve basic
functions discussed in the Architecture and/or Principle of
Operation section and behave as described in Table I. The tests
include but are not limited to the following: the pages for entry
input, expense list, and financial report contain all components
as shown in the UI design (Figure 1(b)-(e)); upon the
submission of an entry input, the information is stored into the
database and can be viewed in the expense list; users can
modify or delete any spending entry in the expense list, and the

change will be made correspondingly in the database and
reflected in the expense list; the financial report calculates the
total amount spent and the amount spent in each category for
the selected time period correctly.

These basic functionalities were tested immediately after
their implementation so that later audio input functionalities
could be built upon these basic functions.

D. Results for Item Classification Accuracy
If the voice command is to enter a new entry, we will then

classify the item name into one of the categories using the
GloVe model. The item name is limited to a single word and is
converted to all lower-case letters to match words in the GloVe
model. The classification process should reach an accuracy of
90%. Among the 20 randomly selected and labeled item names,
18 were correctly classified, reaching the expected accuracy of
90%. The incorrectly classified words belong to the expected
category of transportation, probably due to insufficiency of
words under the transportation category in the training dataset.

TABLE IV. ITEM CLASSIFICATION ACCURACY

Item Name Expected Category Actual Category
taco Food Food
soup Food Food
sushi Food Food
avocado Food Food
lease Housing Housing
electricity Housing Housing
tv Entertainment Entertainment
laundry Necessities Necessities
shampoo Necessities Necessities
tissue Necessities Necessities
cosmetics Necessities Necessities
music Entertainment Entertainment
shoes Necessities Necessities
concert Entertainment Entertainment
flight Transportation Entertainment
parking Housing Housing
car Transportation Housing
train Transportation Transportation
haircut Others Others
decoration Others Others
Total number of items: 20
Number of correctly classified items: 18

E. Results for End-to-End Accuracy
For the audio command processing as an integral part, we are

aiming to achieve an overall accuracy of 90%. That is, 9 out of
10 audio commands should be interpreted and executed without
mistakes in order for the product to be useful and labor-saving
for our users. Among the 10 audio commands we tested, only 1
failed to generate the expected output: audio command “Enter
cake for 12 dollars” was converted to text “Enter a cake for $12”
and the parsed item name was “a cake”, classified to “Others”
category instead of the expected “Food” category. The
remaining 9 commands triggered correct responses, resulting in
an end-to-end accuracy of 90%.

F. Results for Latency
We tested the total time spent waiting for the system to parse

18-500 Final Project Report: B0 EchoBudget 05/03/2024

9

the command. From the time the user stops recording to when
the parsing result is reflected on the page, the elapsed time
should be less than 4 seconds on average. We ran 10 trials for
this test. The actual average latency is 4.52 seconds, 13%
greater than the expected value. This is because we ended up
fixing the recording time to 6 seconds and the time spent
waiting for the recording to stop counts most for the latency.

G. Results for Noise Reduction
Since our product should function well in noisy

environments such as supermarkets and restaurants, we
repeated the test for accuracy with surrounding noise of 70dB.
We conducted the end-to-end accuracy test in Giant Eagle
supermarket, which has a constant ambient noise of between
70dB and 80dB. The test is expected to meet the same
requirements as the test for accuracy, and the result is indeed
the same as that of the end-to-end accuracy test (90% accuracy).

H. Results for Battery Life
We power the battery with the power bank only and keep

using the app for 1 hour to test if the battery can support the
system for 1 hour with the monitor on. We will also shut down
the monitor for sleep mode and see if the battery can last for 24
hours without charging.

It turned out that the power only dropped from 100% to 77%
after one hour of intense usage, so the battery life is
approximately 4 hours, which is much better than our
expectation. The power further dropped from 77% to 72% with
the monitor off for 24 hours. Our initial calculation of the
required battery capacity took efficiency loss into consideration,
leading to an overestimation of the capacity needed. We could
replace the power bank with a 6,000mAh one to reduce the
weight of our device, but this is not a big concern for now.

I. Results for Portability
The portability of the whole device is a key feature because

the expected use cases of this product include shopping in
grocery stores and malls. The system should be lightweight
enough and small in size to be carried around by the user. The
expected weight of our product is 500 grams. The key
contributors to the total weight of the device are the touchscreen
monitor, Raspberry Pi, and the power bank. While we did not
have many choices for the monitor and the RPi, we managed to
choose the most lightweight 10,000mAh power bank without
sacrificing the battery life. The resulting weight of the device is
exactly 500 grams including the power bank, satisfying our
requirement.

J. Results for User Experience
We invited 5 volunteers to use our product without our

excessive interference. After they thoroughly explored our
product, they were invited to provide any feedback regarding
the conciseness of the UI, the complexity level of their
interaction with the app, and the overall experience. This guided
us to make potential improvements or adjustments before the
final demonstration.

During the test, we found several bugs in voice command
parsing where we did not catch or report the error upon failure.

For example, if the user did not say “dollars” when talking
about price, the number would not be parsed as a monetary
value and would cause the web page to crash. We fixed several
edge cases causing similar issues.

Based on the volunteers’ feedback, we identified some
situations where more guidance was needed by the user. For
example, we initially introduced all our commands in the
response to the “help” command, but the user found it too long
to remember those commands at once. We then kept three basic
commands in the “help” menu and incorporated the remaining
commands to the pages where they could be triggered. The user
will be instructed to “modify” or “remove” a specific entry after
they visit the record page by saying “get entries”, for example.
By spreading the instructions to the corresponding pages, the
user can get a more coherent experience when exploring those
pages.

Moreover, we made modifications to our UI by displaying
bigger font size and unifying the voice command and button
name (like changing “delete” buttons to “remove” to match the
command “remove entry number x”).

Fig. 4. Device weight measurement.

VIII. PROJECT MANAGEMENT

A. Schedule
Please see the Gantt Chart (Figure 5) for our detailed

schedule.

B. Team Member Responsibilities
The project is roughly divided into three parts and distributed

to team members.
Lynn is responsible for UI design, graphic works, speech

recognition, and text-to-speech conversion. Yixin researches
and trains the spaCy model for parsing commands and
parameters from the text. Yuxuan develops the web application
and customizes the GloVe model for word classification.
Everyone in the team participates in hardware setup, component
integrations, and testing process. We worked together on
certain tasks that require extra effort.

18-500 Final Project Report: B0 EchoBudget 05/03/2024

10

C. Bill of Materials and Budget
See Table V for a complete list of materials and costs.

Fig. 5. Schedule Gantt Chart

D. Risk Management
Accessibility: It might be hard for visually impaired people

to press accurately on the button. To assist them in pressing on
the recording button, we will notify the user upon the start of
the recording with a voice output of “start recording”. We also
implemented a “help” command to guide our user to follow
templates of commands that are guaranteed to be recognized

by our models. We respond to the “help” command by telling
the user that the recording button is on the right half of the
screen and that there are three basic commands they can start
exploring the system with: enter a new expense, get entries,
and generate a report. We also prompt the user about the
available commands on each page after rendering that page so
that the user will not get confused about the next steps. For
example, after reading out the list of entries on the record
page, the voice assistant will tell the user how to modify and
remove a specific entry.

Latency: The Google News word2vec model failed to be
loaded on Raspberry Pi probably due to the large size (1.5
GB). Instead of spending time reducing the dimensions of the
model and truncating the unnecessary words (non-nouns), we
decided to work around with a smaller pretrained GloVe
model which is only 347.1 MB in size. The change also
reduced the latency in item classification because the words in
the new model are only 100-dimension compared to the 300-
dimensional Google News model. The GloVe model met the
accuracy requirement of item classification, but it also comes
with a drawback of accepting only single words but not
phrases.

Error handling: Our NLP models would not support all
variations of voice commands and could only parse imperative
sentences for the verb to identify the requested action. Errors
in audio-to-text and text-to-command conversions could cause
a failure to parse the command. We caught all these errors by
displaying an error message on the page and playing an audio
output such as “no such category” or “action not supported”.
We thoroughly tested all edge cases and made sure that the
web page would not crash under any scenario.

IX. ETHICAL ISSUES
Ethical concerns of our product can be divided into two main

parts: privacy and accessibility.
Since all the information of the user is stored in the raspberry

pi, if the user loses the product, their financial information may
be seen by other people. This would be a severe privacy issue.
To tackle this problem, we may add some user identification in
the future to make sure only the owner of this product would be
able to open it.

For accessibility, there is a risk of bias in voice recognition
systems, which might not work equally well for all accents or
dialects, potentially leading to unequal access or quality of
service based on demographic factors. This bias could
potentially lead to frustration and financial errors. We would
address this problem in several ways. First, in addition to voice
commands, our system also supports typing. If our system
cannot get several words correctly, users could choose to type
it. In addition, we also have an “edit” action for users to modify
existing entries, making error fixing very easy.

X. RELATED WORK
There is currently no money tracking app with built-in voice

control feature in the market. Apple does have comprehensive
accessibility support on iPhone, iPad, and iPod. There are voice
controls that help users interact with the screen, display
accommodations for the visually impaired, and Siri to convert

18-500 Final Project Report: B0 EchoBudget 05/03/2024

11

voice into very basic commands. However, the accessibility
support cannot describe UI components for the user, and most
apps do not support internal interaction with Siri. Hence,
Apple’s accessibility support does not provide a practical or
efficient way to help the visually impaired, especially fully
blind, group to interact with a money tracking app.

XI. SUMMARY
Our project is a money tracking application integrated on

Raspberry Pi with innovative features of audio input and
webpage reader. It’s a highly interactive, easy-to-use, and
inclusive money tracking app that helps visually impaired and
elderly people log, review, and visualize their spendings with
our powerful speech recognition and NLP models. The main
challenge is to correctly parse elements from a text with NLP
models, and our team will carefully create datasets and tune the
models for satisfactory outputs. Our team is confident that this
product provides a promising solution to catering the need for
financial management and budget keeping of the visually
impaired and elderly people.

A. Future work
While our current system demonstrates a complete product

of our original design, further improvements can still be made
to enhance user experience and serve more customers.

The current solution only supports approximately 7 voice
commands and can only accept imperative sentences, parsing a
command based on the key word, which needs to be a verb. We
could train the SpaCy models with more comprehensive
datasets and incorporate more SpaCy models into the NLP
pipeline to support commands with various sentence structures,
giving the user a greater degree of freedom to speak out their
requests.

Additionally, there are only 6 pre-defined categories to
assign to the spendings, but the user might have the need to
create their own categories. Future versions of our product
could allow the user to customize their category list while still
supporting the automatic classification of item names. One
potential method to implement this functionality is by checking
the similarity between new item names and the category names
while constantly updating the words under each category to be
compared to future item names. Therefore, the user can create
their own categories while still enjoying an intelligent and self-
updating item classification system.

Another improvement we can make is to support more
languages to benefit non-English speakers. The
internationalization process includes designing the web page
layout based on text sizes and positions, handling dates,
currencies, and numbers as dynamic content, and testing the
product in different languages and regions. The localization
process includes translating the contents, training the NLP
models, and using the text-to-speech libraries for different
languages. By supporting more languages, our product can
serve the need for more people, especially the visually impaired
group.

B. Lessons Learned
Creating a project from scratch is very different from

implementing a system given the requirements. We need to
think from the user's perspective, come up with detailed
requirements, and evaluate the trade-offs for each design
decision we make. Our group gained valuable experience in
gathering information online, choosing the best tools based on
the requirements, and learning new tools by ourselves.

We also recognized the importance of user testing to the
finalization of our product. The quantitative tests have
limitations because we tend to ignore the special cases while
designing those tests. By inviting volunteers to play around
with our product, we fixed many bugs caused by edge cases and
improved the user interface based on their feedback.

GLOSSARY OF ACRONYMS
FPC - Flexible Printed Circuit
GPIO - General Purpose Input/Output
GUI - Graphical User Interface
HDMI - High-Definition Multimedia Interface
NER - Named Entity Recognition
NLP - Natural Language Processing
RPi - Raspberry Pi
UI - User Interface
VUI - Voice User Interface

REFERENCES
[1] “Gensim: Topic Modelling for Humans.” Modelsl.word2vec

embeddings – genism, December 21, 2022[Online]. Available:
https://radimrehurek.com/gensim/models/word2vec.html.

[2] Great Learning Team. “What Is Word Embedding: Word2vec: Glove.”
Great Learning Blog, February 23, 2024 [Online]. Available:
https://www.mygreatlearning.com/blog/word-embedding/.

[3] S., Edward. “SQLite vs Mysql – What’s the Difference.” Hostinger
Tutorials, December 21, 2022 [Online]. Available:
https://www.hostinger.com/tutorials/sqlite-vs-mysql-whats-the-
difference/.

[4] “Support.” Official Apple Support. Accessed March 1, 2024 [Online].
Available: https://support.apple.com/accessibility.

[5] J., Lindner. “Statistics About The Average Arm Length.” Gitnux,
February 7, 2024 [Online]. Available: https://gitnux.org/average-arm-
length/#:~:text=An%20average%20NBA%20player's%20arm,humans)
%20is%20about%2082%20cm..

[6] What Noises Cause Hearing Loss?” Centers for Disease Control and
Prevention, November 8, 2022 [Online]. Available:
https://www.cdc.gov/nceh/hearing_loss/what_noises_cause_hearing_los
s.html#print.

[7] E., Ryan. “Website Load Time Statistics: Why Speed Matters in 2024.”
WebsiteBuilderExpert, November 27, 2023 [Online]. Available:
https://www.websitebuilderexpert.com/building-websites/website-load-
time-statistics

[8] “Speech-to-Text transcript accuracy rate among leading companies
worldwide in 2021.” Statista, May 2021 [Online]. Available:
https://www.statista.com/statistics/1133833/speech-to-text-transcript-
accuracy-rate-among-leading-companies/.

[9] “Apple iPhone 15 Pro Max Battery Test.” DXOMARK, December 8,
2023 [Online]. Available: https://www.dxomark.com/apple-iphone-15-
pro-max-battery-test/

[10] Abraham CH, Boadi-Kusi B, Morny EKA, Agyekum P. Smartphone
usage among people living with severe visual impairment and blindness.
Assist Technol. 2022 Sep 3;34(5):611-618. doi:
10.1080/10400435.2021.1907485. Epub 2021 May 3. PMID: 33760680.

https://www.dxomark.com/apple-iphone-15-pro-max-battery-test/
https://www.dxomark.com/apple-iphone-15-pro-max-battery-test/

18-500 Final Project Report: B0 EchoBudget 05/03/2024

12

TABLE V. BILL OF MATERIALS

Description Model # Manufacturer Quantity Cost @ Total

Raspberry Pi 4 4GB Model B Raspberry Pi 1 ECE inventory $0
Raspberry Pi Starter
Kit

SD card,
cables, etc. CanaKit 1 ECE inventory $0

7-inch Touch Screen IPS HD
1024*600 NORSMIC 1 $69.99 $69.99

Microphone AU-UL10
USB MAONO 1 $22.99 $22.99

Portable Power Supply 10000mAh
5V/3A Charmast 1 $29.99 $29.99

Grand Total $122.97

