
Use-Case

Money Tracker APP with Voice Input

● Customers could use EchoBudget at home and outside with their phones or desktops

● Customers could verbally:

○ Record the spending

○ Change each entry

○ Request report for a given range

● ECE Areas:

○ Software

○ Signals

Our Customers

● Visually impaired people

● People with physical disabilities

○ If typing is painful or difficult

● Elder people

○ Easier user interfaces -> easier interaction

● People who want to record their spendings

○ Hands-free operation

○ Quick and efficient data entry

Use-Case Requirements

● Languages

○ Should at least support English

● System should be portable

○ Weight: <= 200g (weight of a mobile phone)

● Record customer speech

○ Frequency: 80-260 Hz (general frequency for adult male is 85-155 Hz, and for adult female is 165-255 Hz)

○ Volume: 50-65 dB (normal conversation, people may feel annoyed if the sound >70dB)

○ Should still work in noisy environment

● Identify amount of money customer spends

○ Accuracy: expected >= 95%

Use-Case Requirements

● Categorize each spending

○ Should be accurate with given categories (currently 5 different categories)

○ Accuracy: expected >= 90%

○ No customized category

● Read out the information upon request

○ E.g. generate a report for last month

● User Interface

○ Concise and simple

○ Elder people could learn how to use it within one day

Technical Challenge and Solution: Speech Recognition

● Challenge

○ Effectively record customer speech under 65-75 dBA environment

○ Achieve 80% average accuracy

● Solution

○ Noise Reduction through signal processing

■ Spectral gating using PyAudio, PyPI noisereduce, and SciPy

○ SpeechRecognition library for speech-to-text transformation

● Risk Mitigation

○ Recommend users to use the application in quiet environment

Technical Challenge and Solution: NLP Model

● Challenge

○ Correctly recognize user commands

○ Correctly identify the amount of money customer spend and item categories

● Solution

○ Rule-based matching model for user command recognition(e.g. “Generate report”)

■ spaCy library for matching command words to app functionalities

○ Custom Named Entity Recognition(NER) model for item categorization and price number

■ Random forest in Scikit-learning model

■ Pre-trained BERT models

○ Adjust NLP models base on edge cases found during testing

● Risk Mitigation

○ Introduce standardized command format instructions to the users

○ Provide corresponding guidance towards more accurately recognized commands

Technical Challenge and Solution: Usability

● Challenge

○ Accessible for visually-impaired groups

○ Hand-free operations and corresponding trade-offs

● Solution

○ A “Start/End Speaking” button is designed to avoid continuous idle listening of commands

■ When user wants to give commands, press the button and speak

■ Press the button again to finish the current speech recording session

○ Audio Assistant implemented using Text-To-Speech(TTS) model gTTS could serve basic functionalities

including input entry verification, start/end recording notice, and report reading

● Risk Mitigation

○ The “Start/End Speaking” button is designed large enough for visually-impaired users to operate without

difficulties

Solution Approach

● Software

○ Django framework Web Application

○ Speech Recognition models

■ PyAudio, PyPI noisereduce, SpeechRecognition

○ Natural Language Processing models

■ spaCy, Scikit-learning random forest/BERT model

○ Text-To-Speech model: gTTS

● Hardware

○ Raspberry Pi

○ USB microphone and speaker

Solution Approach Block Diagram

Testing, Verification and Metrics

Functional tests:

● Run Django-based web application on Raspberry Pi

● Turn on and off microphone by clicking button or

space on keyboard

● Create an entry for parsed expense information on

web app

● Generate a spending report based on a time range

User tests:

● Invite 5 volunteers to use our app, rate it out of 10

points and provide feedback

Performance tests:

● Speech recognition test (80% accuracy, or 20%

word error rate)

● NLP test (identify amount spent and item names

with 95% accuracy, classifying item names with

90% accuracy)

● Spending report should be generated in 100ms

● Spending entry is generated in 3 seconds after

receiving user input

Tasks and Division of Labor

Grace Xiao
● Django framework setup on

Raspberry Pi
● Web application MVC design
● Web application UI
● Web application - Manual input
● Web application - Report generation

Lynn Sun
● Microphone setup
● Microphone integration
● Noise reduction integration
● Speech recognition

integration
● Page reader integration

Ella Yang
● NLP model selection
● NLP dataset creation
● NLP model training
● NLP integration

Everyone
● Order hardware
● Functional tests
● Performance tests

Schedule

