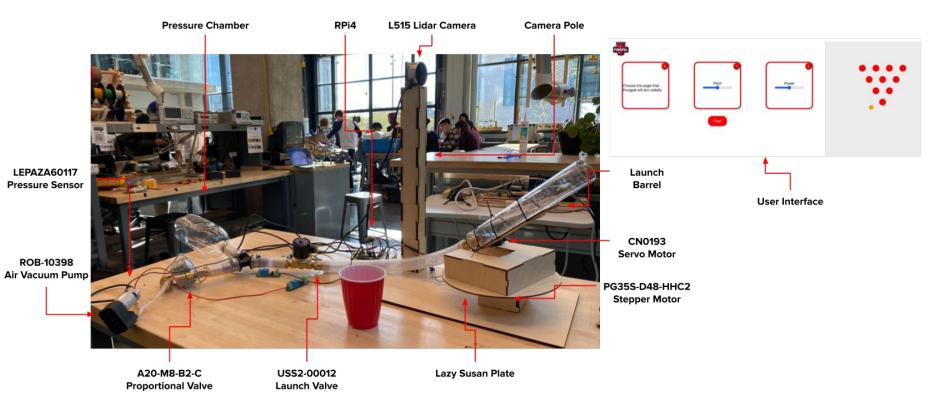

Use Case & Design Requirements

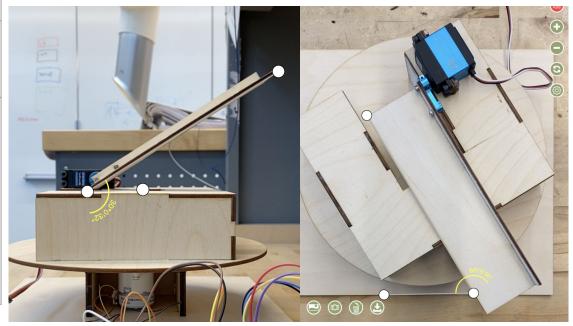

PongPal[™] makes water pong more accessible by allowing one to remotely control the robot and get feedback

Requirement 1 The user should experience minimal noise under the same robot settings to maximize the skill aspect of the game (Accuracy & Reliability)	Aiming system's angular error < 0.5 degrees	
	Cup location detection error < 5cm	
	Ball trajectory detection error < 5cm	
	When aiming 1.5m - 3m away and set at same setting, < 5cm depth variance and < 2cm horizontal variance	
Requirement 2 The user should have seamless gameplay experience (Responsiveness)	Processing latency for cup detection and ball trajectory detection < 5s	
Requirement 3 A new user can easily set up and learn to play the game (Accessibility)	Average UI/UX rating (intuitiveness & enjoyment) > 8/10	

Solution Approach

Complete Solution

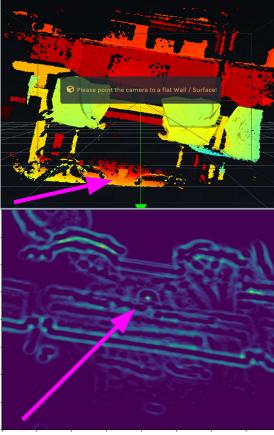
Complete Solution



Testing Plan

Requirements	Testing Plan	
Aiming system's angular error < 0.5 degrees	For both vertical and radial aiming system, set 10-degrees-apart angles in full range, and measure the average deviation	
Cup location detection error < 5cm	Place robot and cups in a known position, and measure the cup detection's deviation and the ball landing place's deviation from	
Ball trajectory detection error < 5cm	ground truth 10 times	
When aiming 1.5m - 3m away and set at same setting, < 5cm depth variance and < 2cm horizontal variance	Set the pressure level as same, perform 10 shots, then mark the landing spot	
Processing latency for cup detection and ball trajectory detection < 5s	Measure the processing latency of cup detection and ball trajectory detection 10 times	
Average UI/UX rating (intuitiveness & enjoyment) > 8/10	Show 10 users (5 users with pong experience, 5 randomly selected) UI and ask them to rate their experience	

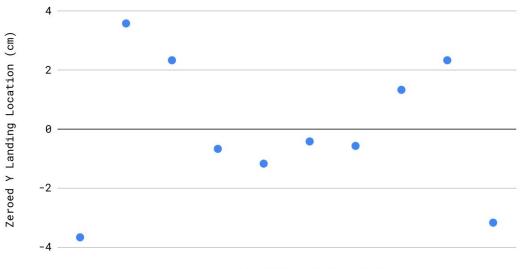
Verification (Aiming system)


Requirements	Aiming system's angular error < 0.5 degrees	
Testing Plan	Set 10-degrees-apart angles in full range, and measure the average deviation	
Performance	Radial aiming system's average angular error: 0.26 degrees	
	Vertical aiming system's average angular error: 0.14 degrees	

Verification (CV)

Requirements	Cup location detection error < 5cm	
	Ball trajectory detection error < 5cm	
	Processing latency for cup detection and ball trajectory detection < 5s	
Performance	Cup Detection error: X: 0.80 cm Y: 0.62 cm	
	Ball Trajectory Error: X: 2.45 cm Y: 4.289 cm	
	Processing latency: 4.37 seconds	

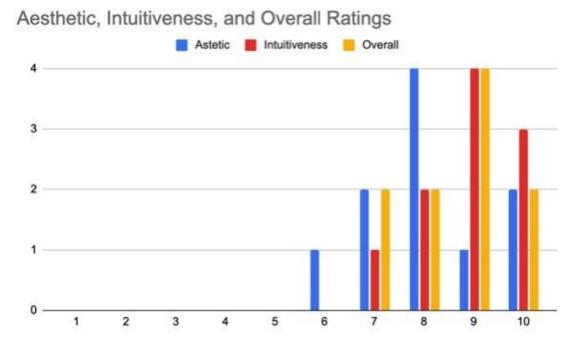
,*



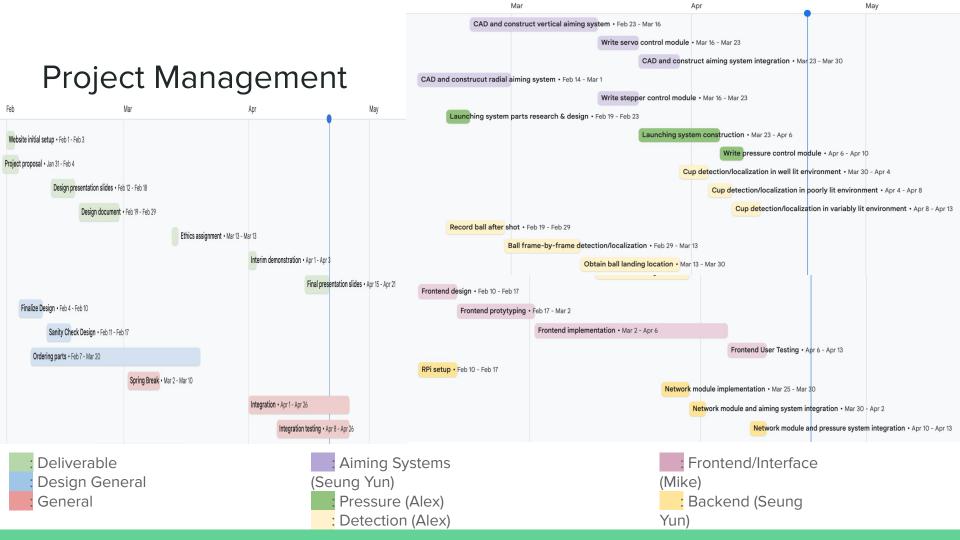
e

Verification (Launching System)

Requirements	When aiming 1.5m - 3m away and set at same setting, < 5cm depth variance and < 2cm horizontal variance
Testing Plan	Set the pressure level as same, perform 10 shots, then mark the landing spot
Performance	Depth Variance: 5.69 cm
	Horizontal Variance: 3.167 cm
	Interesting note: high variance shots seemed to come in batches


Zeroed Shot Landing Location

Zeroed X Landing Location (cm)


Verification (UI)

Requirements	Average UI/UX rating (intuitiveness & enjoyment) > 8/10	
Testing Plan	Show 10 users (5 users with pong experience, 5 randomly selected) UI and ask them to rate their experience	
Performance	Average Aesthetics rating: 8.9	
	Average Intuitiveness rating: 8.9	
	Average overall enjoyment rating: 8.6	

Design Trade-offs

What we chose		What was considered
Local Image Analysis		Remote image analysis
Dynamic DNS		Backend server
LIDAR	VS	Camera
Servo motor for vertical aiming		Linear actuator
Pressure launching system		Mechanical launching system

Conclusion

Lessons learned

- Designing a mechanically solid robot is hard
- Computer vision is hard
- Precise pressure control is hard
- Simple and Intuitive UI is hard
- Balancing budget constraint vs quick iteration

What's left to do

- Integrate CV results into frontend UI
- Integrate pressure system into frontend UI
- Integration testing

