

Team A6: Alan, Erin, Matthew

Why a Smart Water Bottle?

\$4.03 Billion

Global water bottle market

± 1,000,000+

Reviews for water tracking apps

On average, how many 16 oz glasses of water do you drink per day? (1 bottle of water = 16 oz)

Our Solution

Merge water bottles and the tracking app into one

- 1. Track water consumption
- 2. Identify different liquids
- 3. Gamification through streaks + social media

Use Case Requirements

1. Track liquid consumption

Bottle measures level of water within **+/- 20%**

2. Differentiate liquids

Categorize between water, soda, coffee, juice with at least **85%** accuracy

3. Bottle -> App Communication Send data about water to user's phone via Bluetooth with a maximum latency of 5 seconds

4. User Interface

Accessible user interface in **app** and on the **bottle** for users to see

5. Battery life

Endure at least **2 days** of typical usage 6. Food Safety

Follow **3-A Sanitary** standards to ensure hygiene and washability 7. Track temperature Bottle measures liquid temperature within +/- 4°F

Our Approach

Hardware Bottle

- Seeed Xiao
- LCD display for on-bottle display
- Ultrasound sensor for water level
- Temperature sensor
- **Capacitance** for identifying liquid
- **Photodiode** for color of liquid
- Accelerometer for detecting motion

React Native App

- Android + IOS app
- Get sensor data from bottle via **Bluetooth** when needed
- Accessible UI for all users
- Streaks Page
- Friends/**Social** view
- Total water intake view

DB Liquid Differentiator

Use **capacitance, temperature, color** to categorize

_

Classify liquid between: coffee, soda, water, juice + user-added liquids

Hardware Schematic

Bottom

Bottle Mockup

Software Diagram

Testing, Verification, and Metrics

Requirement	Test	Mitigation of failure
Water level	Use a graded recipient and contrast with the sensor reading	Switch measuring sensor (Piezo or photoelectric)
Classify liquids	1- Create datasets based on sensor reading (pre assembly)2-Load different liquids into the bottle (post assembly)	Switch sensors, switch classifying metrics
Battery power	Leave bottle running for at least 2 days while simulating usage	Increase battery pack, increase solar panel area
Food safety	Analyze each sensor according to 3-A standards; wash and inspect for sediment/integrity	Switch sensors, improve sealing

Testing, Verification, and Metrics - continued

Requirement	Test	Mitigation of failure
Temperature	Use a food thermometer as ground truth and compare the thermometer reading	Switch measuring sensor
Bluetooth connection	1- Send dummy data from seeed and time it (pre assembly)2-Send data from bottle and time it (post assembly)	Redesign package transport and processing structure
App reliability	1-Atomic unit testing (pre assembly) 2-Integration testing (post assembly)	Debug, switch structuring
Accelerometer	Remove cap and move bottle	Switch sensors, recalibrate

Project Sequencing

Thanks for listening

