
# **CHARGIN'**

TEAM A5: Anirud Durani Callum Bagnall Luca Garlati



## **Use Case Requirements**

- Easier to use than current market wireless chargers
- Support for multiple devices
- Fast enough to give useful charging feedback
- Well-built for multi-use purposes
- Tops up left devices with charge over time
- Provides fast charging speeds



# **Design Requirements**

| Attribute      | Target (SI) | Actual      |
|----------------|-------------|-------------|
| Footprint      | 40cm x 55cm | 54cm x 69cm |
| Thickness      | 5cm         | 8cm         |
| Detection      | 500ms       |             |
| Detection Acc. | 95%         | ~95%        |
| Movement       | 1 m/s       | 0.5 m/s     |
| Top Thickness  | 5mm         | 6mm         |
| Surface Temp   | 50°C        |             |
| True Accuracy  | 5mm         | NYT         |

- Larger footprint reduced speed and increased design thickness.
- Overall, the worst case scenario time-to-charge is about 1.5s: fast detection helped minimize lower speed
- We expect true accuracy to meet design requirements.

# **Design Changes**

### • Sensor Matrix

- We decided to use PCBs to allow for rapid testing and cleaner assembly
- Checkerboard grid over optimal grid
- Op-amps were added to increase sensor resolution

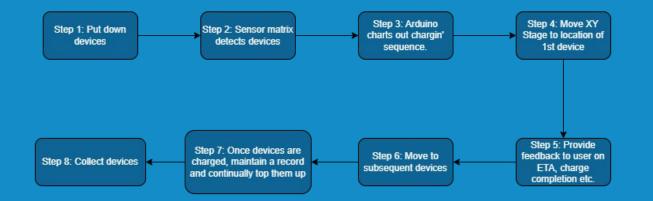
#### • Ammeter

 Switched from gantry-driven sensors for making minute position optimizations

### • Gantry

- Many minor dimension changes to accommodate cheap parts
- Redesigned cable routing as movement caused wire shearing

### • Software


 We have decided to focus away from UI in the final build as with speed, a user gets enough feedback from operation



# **Solution Approach**

### Leave and Forget

Users should be able to place a device and expect it charged when they next use Chargin' All of the heavy lifting should be completed by the system as per our use-case requirements



# Gantry

### Simple Compact Design

- 100% usage of rail lengths
- Only uses lateral attachments to reduce thickness
- Minimal dead zones used to house electronics

#### Material Choice

- Critical components are aluminum
- High rigidity PLA 3D prints
- High durability rubber GT2 timing belt

### • Electronics

- 1.8 degree, 1.5A, 42Ncm Steppers
- 2.5A 42V motor drivers
- 36V 4 axis cnc Shield
- 6 calibration limit switches

### • Software

- Convert XY coords to motor step increments
- Automated homing sequence
- Custom Command Line Interface (CLI)
- Arduino Mega and user interface via simple commands: goto, pos, etc

## **Sensor Matrix**

### Overall Design

- Nine PCBs with 13 Hall Sensors
- Two 4051 Analog switches per PCB
- Each PCB holds a non-inverting amplifier

#### Connectivity

- Headers used for easy PCB connection
- 5V, GND, 5-bit Select, and Output Pins
- Output Pins are unique to each PCB
- Wood frame proper spaces PCBs

#### • Software

- Arduino polls each row for data
- A moving average filter reduces noise
- Debug program allows for easy tracking



# **Ammeter/Charger**

### • Wireless Charger

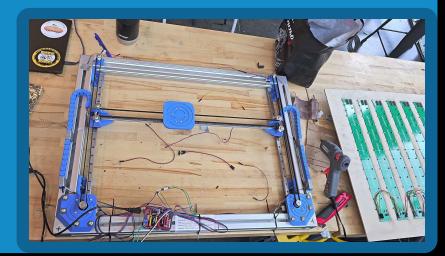
- Off-the-shelf USB-C connected wireless charger taking in 20-30W AC
- Connected in series with an ammeter
- Arduino Ammeter
  - Reads the current through the charger
  - Uses this data to estimate charging time and charging status

### • Filtering

- Moving average of current filters out AC noise in the system
- Can be adjusted in software

### Location Validation

- We took advantage of the fact that stronger inductive coupling leads to a higher current through the charger
- When the gantry navigates to a device, the ammeter values are used to help locate the device position
- Small step changes in the gantry position help to identify in which direction the system should translate for higher current flow and faster charge.


# **Testing & Verification (Gantry)**

#### Component Testing Before Install

- Dimensioned and adjusted for each ordered component
- inspected and adjusted each 3D printed component for irregularities
- Larger subsystems tested independently (steppers, friction, belt tensioning, etc)

### Post Assembly Testings

- Tuned steppers
  (min/max RPM, duty cycle, etc)
- Tested steppers to ensure repeatability
- Quantified performance (speed, backlash, drift, etc)



# **Testing & Verification (Matrix & Ammeter)**

- Single PCB Testing
  - Before assembly, each PCB was tested for reliable and expected output
- Matrix Testing
  - The 9 PCBs were linked and tested to ensure each sensor reliably spiked at the correct location

### • Timing

 Using pyserial, we found that a device could be detected in a max of 200ms

Accuracy

 Repeated device placement showed high but not complete accuracy in sensing nearby devices

### • Current Draw

- Tested times for current to rise or fall when a device is placed on charge
- Charging Position
  - Tested how device position affects charging current/power
- Charging Time
  - Analyzed how charging current falls as device charges over time

This testing allowed us to use the ammeter to find devices in a small range and estimate their time-to-charge

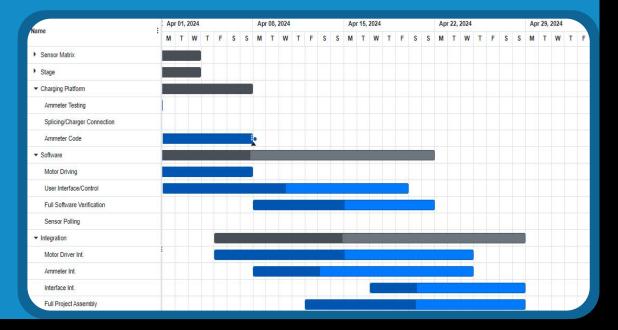
# **Testing & Verification (System Wide)**

#### • Overall Time-to-Charge

- A measure of how long it takes between device placement and charging
- Will be tested by placing and removing devices repeatedly

#### True Accuracy

- Will be tested on how close the gantry can get to the device using output data from the matrix
- Will be measured center to center between device and gantry


#### • Final Physical Attributes

Weight and Dimensions will be finalized on completion of system assembly

# **Project Management**

### Wrapping up the Schedule

- Somewhat behind on software verification and module integration
- We previously expected to be at MVP a week prior to the demo
- Many factors caused us to fall behind
- In this final week, we expect to be ready for MVP and final demo

