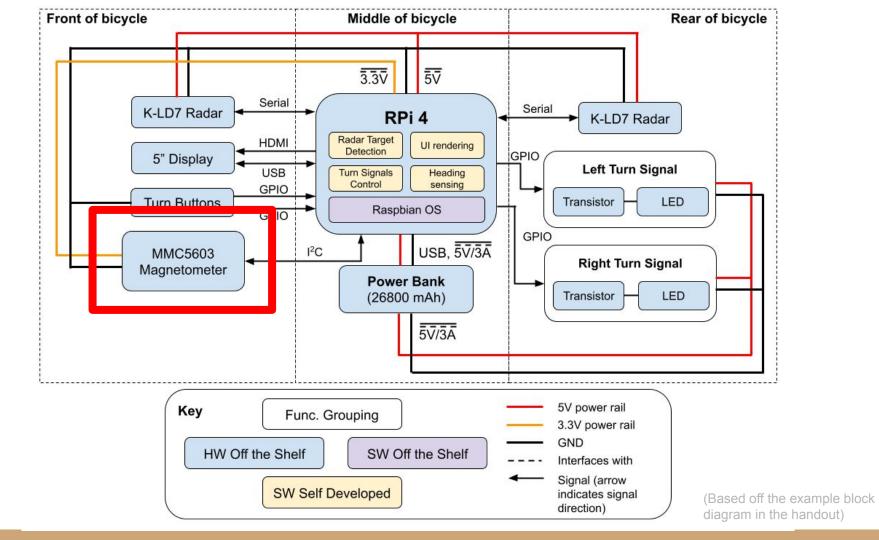
Use Case Requirements

• **Target**: Bicyclist commuters

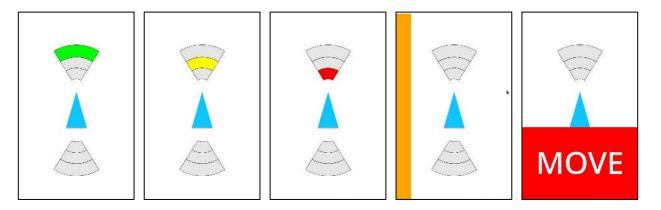
• Solution: Bike Safety Hub

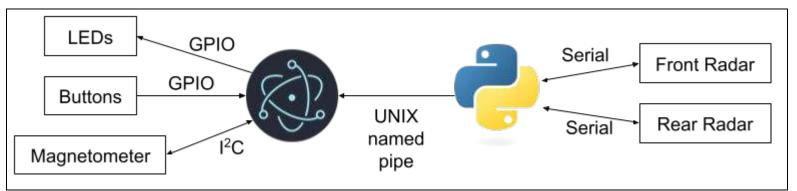

- Blind Spot
 Detection
- CollisionAlerts

Turn signals

Requirement	Metrics
Cost	<= \$200 market price
Battery Life	>= 2 hours
Detection Lead Time	>= 1.5 seconds
Uptime	>= 99.999%
Confusion Matrix	<= 40% False Negatives <= 30% False Positives
Ruggedness	IPX4
Turn Signal Visibility	>= 500 ft. (night), >= 100 ft. (day)

Design Requirements


Requirement	Metrics
Radar Detection Distance	>= 14 m
Radar Measurement Accuracy	<= ±10 % deviation
Radar Update Frequency	>= 10 Hz
Trackable Simultaneous Targets	>= 3 targets
Total System Power Consumption	<= 13.4 A



(Almost) Complete Solution - Hardware

Complete Solution - Software

Use Case Test Plans

Metric	Method	Pass Metric
Battery Life	 Record the running time of the system under normal use 	>= 2 hrs
Detection Lead Time	 Record time from when an indicator appears on a screen until the vehicle passes by 	>= 1.5 seconds
Uptime	 Record time that radars respond to data queries on RPi, divide by total application runtime 	>= 99.999% uptime

Use Case Test Plans

Metric	Method	Pass Metric
Confusion Matrix	 Compare system against real traffic and see the detection results 	<= 40% false negatives, 30% false positives
Ruggedness	 Test with IPX4 test protocol Ride around in poor conditions and verify functionality still works 	Passes IPX4 test + works in adverse conditions
Turn Signal Brightness	 Engage turn signal, walk backwards until no longer visible - calculate distance using Google Maps 	>= 500 ft. (night), >= 100 ft. (day)

Design Requirement Test Plans

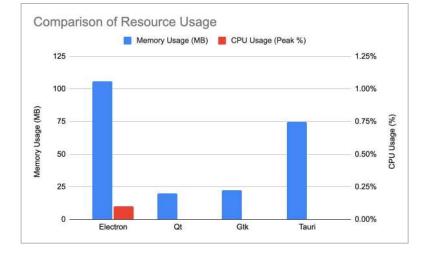
Metric	Method	Pass	Actual
Max detection range (rear)	 Align vehicle with rear of bicycle, drive forward until radar return is detected - record reported radar distance 	>= 14 m	24.82 m
Max detection range (side)	 Same as above, except align to right of bicycle 	>= 14 m	14.08 m
Distance Accuracy	 Randomly stop at a certain distance from the rear of the bicycle, measure distance from radar to front of vehicle 	<= ±10 % deviation	3.07%
Velocity Accuracy	 Drive at 5 mph* towards bicycle and record reported velocity 	<= ±10 % deviation	7.00%*

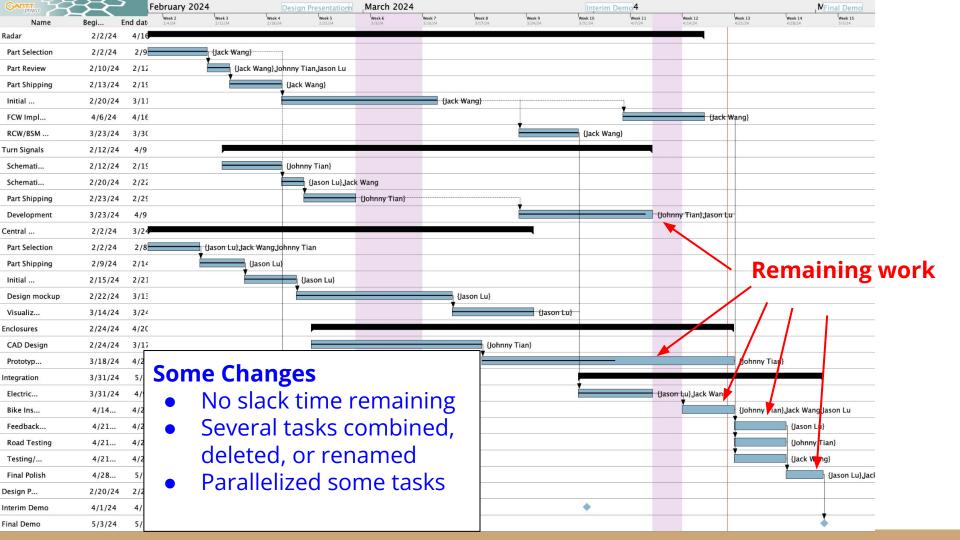
Design Requirement Test Plans

Metric	Method	Pass Metric
Power Consumption	 Place ammeters between outputs of battery pack and RPi 4 + LEDs, sum current draw 	<= 13.4 A
Radar Update Frequency	 In the UI, start a 1 second timer and count the number of data updates while an object is moving towards the bicycle 	>= 10 updates in that period
Simultaneous Target Tracking Ability	 Have three people spaced apart, walking towards radar 	All three targets reported accurately

Design Trade-offs

Embedded System Factors:


- Performance
- Power draw
- Heat
- USB max current



Images from Sparkfun, licensed under CC BY 2.0

UI Factors:

- Cross-platform support
- Language/Framework/Tooling familiarity
- Adoption
- Baseline resource usage
- Cross-compilable

Lessons Learned

Logistical

- Build in as much slack time as you can
- Parallelize tasks as much as possible

<u>Technical</u>

- JavaScript is pretty powerful
- Using a magnetometer as a compass is not trivial
- Data communication through named pipes
- Radar usage