Team A3: BikeBuddy

Jason Lu, Jack Wang, Johnny Tian

Use Case & Design Requirements

Β

 Blind Spot Detection Warn if car or large object is within 10-meter range Collision Alerts Relative speed of car behind is >= 15 mph Near insufficient distance left to brake before hitting car in front¹ Turn signals Capable of self-canceling when making 90 deg. Turns Display Flash red on section of display if having potential of being hit 	Category	Metrics
	Cost	<= \$200 Market Price
	Power Consumption	>= 2 hrs endurance
	Detection Range	>= 10 m
	Uptime	>= 99.999%
	Confusion Matrix	<= 40% False Negatives <= 30% False Positives
	Ruggedness	IPX4
	Difficulty of Installation	Easy (user survey)

¹Equation for stopping distance from AASHTO "Guide for the development of bicycle facilities", 4th ed.

Solution Approach

Cars Can't See Bikers vs Bikers Can't See Cars

"Man Riding Bicycle during Nightfall" from Pixabay under CCO

"Bicyclist with a rearview mirror attached to his helmet" from Oregon DOT under CC-BY 2.0

Why Radar?

Radar

- All-weather operation
- No direct line of sight requirements
- Speed measurement
- Direct serial output (K-LD7)

Other Possible Benefits

Public Health

Making biking safer More people biking

Safety

Reduce collision rates between cyclists and vehicles

Economic

Reduce healthcare, repair costs due to less rate of collisions

System Specification

- K-LD7 Radar
- RPi4
- Hosyond IPS 5 INCH LCD
- Hyunduo 5V LED CHIP light bulb
- Anker 337 power bank
- Button
- Rapid prototyped waterproof enclosure

https://rfbeam.ch/wp-content/uploads/2022/11/K-LD7-EVAL-1024x1024.png

https://www.sparkfun.com/products/15447

https://m.media-amazon.com/images/I/71PrFibLvLL._AC_SL1200_.jpg

https://m.media-amazon.com/images/I/61e-o+8K9HL._SL1500_.jpg

https://m.media-amazon.com/images/I/51rXQqJtTxL_AC_SL1500_.jpg

(Based off the example block diagram in the handout)

Turn Signal Schematics

Turn Signal led blinking switch activation handlebar position sensing self cancellation

UI hello world GUI design mockup UI implementation sensor integration

Radar radar basic bring up raw data processing tuning for BSM*, RCW*, FCW* Exterior Case bike attachments fitment check waterproof check

*BSM - Blind Spot Monitoring, RCW - Rear Collision Warning, FCW - Forward Collision Warning

Testing, Verification and Metrics

Metric	Test Plan	Pass Metric	Mitigation Plan
Uptime	• Record time that radars respond to data queries on RPi, divide by total application runtime	>= 99.999% uptime	• Analyze why system is not available and address accordingly - e.g., if wiring is loose, tighten them
Confusion Matrix	 Static testing - Record radar performance with and without objects in front in a controlled environment Real world testing - Record video, manually count both types 	<= 40% False Negatives <= 30% False Positives	 Try with different enclosure materials and radome configurations Tune radar parameters (max speed, distance, frequency) Switch to other method (LIDAR)
Power Consumption	 Measure average current draw using ammeter and extrapolate total time Record the running time of the system under normal use 	Endurance time >= 2 hrs	 Measure current draw of each component to identify excess usage Use a lower power device that still meets perf. need Increase battery size

Testing, Verification and Metrics

Metric	Test Plan	Pass Metric	Mitigation Plan
Detection Range	 Static testing - Verify radar on bike can see parked car beyond 10 m in a controlled environment Real world testing - Record both display and behind bike, manually analyze distance of vehicle when alert is triggered 	Car >= 10 m detected	 Try with different enclosure materials and radome configurations Tune radar parameters (max speed, distance, frequency) Switch to other method (LIDAR)
Ruggedness	 Test with IPX4 test protocol Test functionality of system in case by riding around in poor conditions and verifying functionality still works 	Passes IPX4 test, functionality unimpeded by case	 Identify points of water entry and seal Verify all wiring is tight and undamaged Verify radome to sensor distance is correct
Difficulty of installation	 Ask 5+ bike riders to try the product and gather their opinions 	Rated "easy" on rating scale	 Survey what people want and redesign if possible

