
18-500 Final Project Report: Brailliant 05/04/2024

1

Abstract—Brailliant aims to provide a system capable of translating

English text to braille and displaying braille on a pad of actuators

controlled by an Arduino. It is integrated with a web-application to

transfer text input to the pad with ease. It explores innovative ways to

actuate multiple pins and utilizes 3D printing to achieve such designs.

It is more than 8 times cheaper than typical commercial braille displays

and designed to offer a widely accessible braille translation/education

tool to the visually impaired.

Index Terms—Stepper motor, Braille, Database, Web Application,

Arduino, Python, HTML, JavaScript, CAD

I. INTRODUCTION

 n 2015, it was revealed that globally 36 million people suffer

from blindness, not to mention the 217 million that are

suffering with severe visual impairment. While the cases of

visual impairment has been showing a decreasing trend over the

last 30 years, the challenges are more prominent than ever due

to the growing and aging population [1]. Despite the growing

need of assistive technology, most of them today are accessible

through auditory features, failing to provide sufficient help in

loud public settings, as well as to provide a complete command

over written language.

 The current standard of reading for the blind is through

Braille, a patterned cell of 6 protruded dots representing each

alphabetic character. Yet, public schools including those for

blind students have few teachers who are able to read braille.

Such circumstances explain the low literacy rate among the

visually impaired, merely capping at a low 10% [2].

With the continuous technological breakthroughs over the

recent years, there has been numerous devices in the market

designed to combat the literacy issue for the blind such as

portable braille displays. However, these products continue to

be inaccessible to the general blind population due to their high

prices averaging around $5000. Aside from the pricing, there

are also battery life and portability problems as the large

number of intricate solenoids and actuators in them require a

large amount of energy.

To address these short comings, Brailliant proposes an

affordable, highly portable, and low energy consuming braille

pad with a built in text to braille translator which allows the user

to easily learn braille and read texts at their own speed. A key

component in Brailliant is its innovative use of sliders and

stepper motors to replace pre-existing solenoid/actuator

architecture which reduces the pricing as well as the energy

consumption of displaying braille patterns. Thus, it is

Brailliant’s goal to provide a highly accessible way to learn and

read braille anywhere, at any time.

II. USE-CASE REQUIREMENTS

Our product aims to provide a learning tool for the visually

impaired that can help bridge this gap in braille literacy, at an

accessible price. As such, the device must be able to

dynamically refresh an array of braille pins to sequentially

display words from any text input. It must be portable, easy-to-

use for visually impaired users, and have battery capacity to last

at least a day of learning. These use-case requirements were

developed with our users–visually impaired students–

especially in mind.
Regarding the physical device, we identified a form factor of

30cm x 20cm, resembling that of an e-reader, for the device to

accordingly function as a portable and accessible educational

device. The device should be able to display braille one cell at

a time (where each cell is 3pins x 2pins) to represent English

word inputs. Finally, since the product should function as a

reader, we identified that an acceptable learning reading speed

is >10wpm. This is based on the average beginner braille

reading speed of 6 wpm [5]. We aim to be able to actuate

patterns of words quickly enough to achieve this speed.
Finally, the device must have greater than 95% accuracy for

our text-to-braille (T2B) algorithm, including error handling for

any unrecognizable characters in the text. After we produce the

pattern encodings, the device must have greater than 90%

accuracy in physically actuating the correct braille pin patterns.

This ensures that our learning device does not become an

inhibitor with misinformation. The battery life should last a day

of learning, so we aim for 6 hours running time. This ensures
that the device is a viable learning tool with our users in mind.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

Figure 1 outlines our full system diagram. Our device can be

divided into two major components: the hardware braille

pattern actuator array, and an accompanying software for user

customization of the array. The braille pattern actuator will be

enclosed in a 3D printed 12'' x 8'' box. As illustrated by the CAD

rendering in Figure 2a, we split up each individual 3x2 braille

cell by column, and the resulting three braille dots can be

actuated at the same time by a slider. The curvature changes

along the slider allows it to push a different subset of the dot

pins upwards at different given discrete locations. A detailed

design of the slider is shown in Figure 2b, and since there are

only eight unique configurations for a group of three dots, the

reader can verify for themselves that this design indeed can

Brailliant

Yujun Lee, Ziyu Li, Samay Sahoo

Department of Electrical and Computer Engineering, Carnegie Mellon University

I

18-500 Final Project Report: Brailliant 05/04/2024

2

Figure 1: System Block Diagram

cover all of them. The linear actuation of the slider is achieved

by driving a stepper motor through a gear and rack mechanism.

Further, a single braille cell can be formed by joining two of

these sliding actuators face-to-face, and an alternating motor

mounting position is designed to allow a linear layout of ten of

these braille cells to be mounted inside the box enclosure, as

shown in Figure 2c. This actuation scheme is inspired by

previous project by Ulmas Zoirov [6]. Contrary to most off-the-

shelf solutions, where each braille dot is actuated by a separate

piezo or solenoid component, this design is much cheaper to

manufacture, while retaining reasonable actuation speed as

outlined in section II.

Each motor is controlled by a driver, which in turn receives

its signal from a PWM pin from the Arduino Nano controller.

The Arduino will only control one pair of drivers that

correspond to a single braille cell at any given time. The PWM

signal is sent to two 4-to-16 decoders, which reroute the signal

to one of ten driver pairs. Four digital pins of the Arduino also

connect to the decoder as selector wires.

The mechanical design of the actuator is conducted using the

online computer aided design (CAD) software OnShape, and

parameterized modeling technique is used to ensure the CAD

model can be flexibly adjusted so that we can test various

dimensions of the braille cell. Agile development principle is

also utilized to rapidly fabricate the design using a 3D printer,

so that we can quickly test the gap between the ideal design

space, and the actual manufacturing deviation.

On the software side, our translation process and text input

will be handled by the web app. While the initial proposal was

to drop a .txt file to be parsed by the web app, we concluded use

a different method to increase accessibility and usability. Now

with a simpler prompt input method, the user could simply type

in a word on a prompt to be immediately added to the pad’s data

storage.

The web app will contain a hash map of character key to

braille pattern value where each braille cell column is a 4-bit

binary value encoding with each bit marking a pin actuation

among the 3 pins located on the braille cell column (Figure 3).

The one remaining bit would be used as an end-of-word marker

for the Arduino to pick up when to stop actuating. Once this is

done the encoded data would be sent to the Arduino via a serial

port connecting the web accessing device and the braille pad.

The web app will also be connected to its web-app database

containing all the inputted words. All words on the database

would be displayed on the web-app such that the user be aware

of the sequence of words and delete inputs or alter the sequence.

The words will be sent to the Arduino once a button is pressed

on the web-app.

18-500 Final Project Report: Brailliant 05/04/2024

3

(a)

(b)

(C)

Fig 2. Braille pin actuation mechanic. (a) Top view of design. (b) Side-view of

design. (C) Manufactured actuator

Fig 3. Braille pin encoding scheme.

The braille pad will handle the incoming data through its

Arduino where it will step through encoded data to map each

binary data to a stepper motor activation until the end-of-word

bit is read. Furthermore, a next word indicating button could be

easily implemented to the hardware pad to read the next word

received until the next end-of-word marker is read.

IV. DESIGN REQUIREMENTS

In order to satisfy the above use-case requirements and

considering our working implementation plan, we have

identified the following technical design requirements.
To achieve the identified use-case requirement for battery life,

we need to consider the power consumption of our entire

system. The micro stepper motors we have selected consume

0.6W and one motor per column per braille cell. As a result, the

20 motors running for 6 hours will at most require the

following:

0.6𝑊

𝑚𝑜𝑡𝑜𝑟
 × 20 𝑚𝑜𝑡𝑜𝑟 = 12𝑊

12𝑊 × 6 ℎ𝑟 = 72 𝑊 ∙ ℎ = 14400𝑚𝐴ℎ

Thus, the above equation shows us that our device must have

a rechargeable battery capacity of at least 14400 mAh in order

to operate the required number of motors for the required length

of time.
Next, our device’s usability and accessibility as a learning

device depends greatly on the physical layout. Specifically,

each braille pin must adhere to standard braille sizing

requirements for physical braille. According to the Braille

Authority of North America, the distance between two braille

dots within the same cell may be between 2-3mm [4]. Further,

the distance between corresponding cells can be between 6-

8mm. The layout of our 3D-printed braille cells and sliders must

adhere to these spacing requirements. Finally, each braille pin

should protrude 1mm up from our device’s “screen” in order to

be properly recognized by our users’ hands.

The accuracy requirements beget functionality to reset and

correct any mechanical jams we are bound to experience given

the small scale and mechanical stress. As such, the stepper

motors may lose tracking, especially considering that stepper

motors do not have a feedback system to control and remember

position. The device must recognize and re-try pattern actuation

in these situations.
The beginner reading speed of 12wpm requires our design to

be able to actuate the correct pins for any given word quickly

enough to be able to display words on the device to users at this
speed.

12 𝑤𝑝𝑚

60𝑠
 = 0.2 𝑤𝑜𝑟𝑑/𝑠 = 5𝑠/𝑤𝑜𝑟𝑑

Thus, the derivation above shows us the timing requirements

for our motor-slider actuation subsystem is 5s per word; in other

words, the design requirements is 0.5s per cell. This signifies

that each motor should spin to the correct position within this

amount of time.

18-500 Final Project Report: Brailliant 05/04/2024

4

V. DESIGN TRADE STUDIES

A. Software Platform

The choice of Arduino as the hardware/software electronic

platform was made in consideration of the low power usage,

and low price range for the overall product. Table 1 details the

difference between the two products. In terms of its alternatives,

a valid alternative would be a Raspberry Pi. An advantage of

using an RPi would be it’s higher processing power (1.6GHz

vs. Arduino’s 16MHz). However, the processing speed only

proves to be beneficial in the case of complex software

computations which would not be necessary as Brailliant’s

translation process would be done on the web app prior to

inputting the text data into the hardware device. In other words,

our project deals with sending the predetermined instructions to

the motors and hardware components to the device through the

application and thus would not require the processing power

and flexibility that RPi provides. Furthermore, considering the

portability of the product, RPi’s power usage stands around

1.7W which is comparable to Arduino’s 0.14W which much

suitable to our battery driven product.

TABLE I. COMPARISON OF BOARD SPECS

Table Head
Type of Board

Arduino Uno Raspberry Pi

CPU Type 8-bit Microcontroller 64-bit Microcontroller

Operating System None Linux

Storage 32KB Flash Depends on SD Card

Memory 2KB 1GB RAM

GPU None Built-in

Networking None
Wifi, Bluetooth,

Ethernet

Price $20-30 Up to $80

Power

Consumption
Less than 0.25W Up to 1.8 W

B. User Interface

The trade-offs that we considered when choosing the user

interface included the choice between a web-app, mobile

application, and a design where all the data management and

translation are all incorporated into the braille display device.

Ultimately, we decided a mobile application would not be

suitable due to the higher accessibility of web-based

applications. Additionally, we decided to separate the user

interface into the physical implementation of the device and

the web application. To step through the words in the text file,

we decided to use a button on the actual device considering

the fact that the device is to be portable and to be used in

outside environment. For inputting the list of words, we

decided to use the web app since the texts are likely to be

added by a third party, and as a result we needed to

incorporate the input process using the most widely accessible

method of interface which is the web. Furthermore, by using a

web application we could handle the translation process and

dictionary data within the web prior to transferring the data to

the device which could alleviate the memory usage and

processing done in the Arduino. This is more suitable for the

project since it would be unreasonable for the Arduino’s

limited 2KB RAM and 32KB flash to hold the translation

algorithm as well as the dictionary data which is to be

accessed continuously throughout the translation process.

C. Translation Algorithm

Pre-existing translation algorithms include a basic hash map

dictionary based algorithm and a machine learning

classification algorithm. While contemporary ML is extremely

powerful, we decided that it would not be necessary as there is

no variability in the translation for braille and no grammatical

changes depending on the context of the word. Thus, we

decided to use hash maps organized in key-value pairs in C++.

Most braille translation algorithm in the market uses one map

that maps each alphabetic pattern to a braille arrangement.

However, in our project we decided to use two maps (one for

whole words, and one for prefixes, suffixes, and braille

contractible alphabet patterns such as “aa”, “ment”, or “pre”.

The difference in the number of dictionary maps used creates

a large difference in the time complexity of the algorithm.

With each access of the dictionary being O(1), the usage of

one hash map would lead to a complexity of O(𝑛2) as for each

of the examined characters, the rest of the characters need to

be checked for a match in the dictionary. On the other hand,

the two map dictionary model we are using take advantage of

the fact that all contractible character sequences are capped at

a length of 4, and the rest are whole word abbreviations. This

leads to a time complexity of O(4n) since each character needs

to be checked with its 4 following characters at most to

determine their contractibility.

D. Actuation Method

The choice to utilize micro stepper motors to actuate braille

pins was developed based on our requirements for size, speed,

and cost. We first considered more straightforward actuation

with solenoids, planning to lay out an array of solenoids with

one solenoid per braille pin. However, this led to significant

design challenges as the available solenoid components are not

nearly small enough to fit our sizing design requirements.

Furthermore, we found out that solenoids require power to

remain in the actuated position. This led to significant power

consumption concerns since our requirements are to actuate

each pin and remain in this state until the user has finished

reading the entire word. We also considered piezoelectric

actuators, however this led to cost challenges as we required a

great number of actuators and the cost per part exceeded our

budget.
We finally reached a solution with an entirely distinct

approach to actuating pins—actuate patterns of pins using a 3D

printed sliding component and stepper motors. Each slider with

engravings will actuate all 8 different patterns that each column

18-500 Final Project Report: Brailliant 05/04/2024

5

of 3 pins can achieve. This design has significant advantages

over solenoids or piezoelectric actuators due to the low power

consumption, smaller component size, and reduced number of

components. We were able to find small stepper motors that

operated at 0.5W-1.2W. Further, this reduced the number of

“actuators” by a factor of three—2 motors per cell compared to
the previous 6 actuators per cell.

VI. SYSTEM IMPLEMENTATION

We will start the section by discussing fabrication method.

This section is then split up by hardware and software

implementation. The hardware portion is further split into

actuator mechanics (motor, driver, and decoders), and

miscellaneous (power system, speaker, capacitor sensor, etc.).

A. Fabrication

We used off-the-shelf products for all electronic

components. Critically, we will fabricate the device enclosing

and all individual slider actuators ourselves using fused

deposition modeling (FDM) 3D printers. This choice is

primarily motivated by our design goal of making this device

as easy to manufacture by DIYers in a garage as possible, and

other fabrication equipment, like laser cutters and CNC

routers, are not as readily available to the public as 3D

printers. The printer of our choice is ANYCUBIC MEGA-S

since this printer is widely available on the secondhand market

for very cheap prices. The printer settings, however, may be

altered for manufacturing on different printers.

During our fabrication and testing process, we discovered

that 3D printing using PLA plastic cannot produce our

miniature gear and rack components with our desired accuracy

and endurance. The small tip on gears proves to be too

compliant for relatively high torque use cases. Thus, this is the

only part in our design that must use laser cutting as a

workaround. Laser cut gear can provide the additional benefit

of reducing jamming, since the laser beam will slightly melt

away and shrink the design dimensions, conveniently

providing tolerance to the power delivery train.

B. Web-application

The web application will be built using JavaScript, and

HTML. Fig. 4 displays the role of the web app in consideration

to the whole software system. The web application will be

linked to a built-in SQL database to store the history of user

input. Once the user clicks done, the translation.py python

script would be run as a thread in the JavaScript front-end code

and would translate each word to a Grade-2 standard braille,

mapping each sequence of characters to a pattern from left to

right.

The braille dictionary would be incorporated into two

different key-value hash maps: one for whole word contractions

and one for 4 letter max character sequence contractions which

are the two types of word trimming used in grade 2 standard

braille. The translation process starts from left to right with each

letter and its 3 following letters being checked with the

dictionary hash map to output a matching braille encoding.

After the translation, the data would be transferred to the

Arduino and the user inputted text data would be stored to the

web database for reuse in the future. Fig. 5 depicts the final

web-app with each step of the word input process.

C. Device Software Implementation

The programming for the braille display would be done in

the Arduino IDE in C++. With the input from the web app, the

Arduino would map each braille encoding to a stepper motor

through a 4 to 16 decoder. The stepper motor was controlled via

its built-in library. The velocity setting was set to max to

increase hardware response speed and the steps needed to reach

a certain pattern on the braille cell was defined. In cases of jams

and motor stalling, the motor code would step left and right in

small margins multiple times until no jamming is detected by

the motor’s built-in jam detector.

D. Microcontroller

The Arduino Uno microcontroller will be responsible for
interfacing with the motor drivers, battery, and Python

translation program. These other subsystems will connect to the

18-500 Final Project Report: Brailliant 05/04/2024

6

Arduino via its analog and digital pins. The Arduino code

uploaded to the microcontroller.

E. Power

The motor drivers are supplied with 12V DC power and

thus the power subsystem will be integrated onto our main

breadboards. It is delivered from a 120V AC to 12V DC

converter from a wall outlet. The Arduino and VIO (logic)

voltage on motor drivers are powered by 5V via USB. The

initial plan to have the system battery powered did not work as

we found out that the stepper drivers worked much better at

higher power.

Fig. 5 Web-app implementation with system’s software

VII. TEST, VERIFICATION AND VALIDATION

Testing for Brailliant was mainly composed of testing the

user-case requirement for correctness (braille display and

translation algorithm), responsiveness, portability, and

accessibility. These requirements meant a design requirement

of a fast actuator response speed, accurate actuation, accurate

text-to-braille translation, and an easy-to-use and accessible

web-application. A summary of the test results, methods, and

the passing parameters are displayed on Table 2.

A. Tests for Web Application

For web-app validation, we collected 5 subjects from CMU

to perform user-testing on the difficulty of the text-inputting

process, data transfer between the web-app and the braille

display, retrieval of input history, and the basic end-to-end

performance of the site. Each subjects was told to input at

least 20 words to test the performance. To obtain a

quantitative measure on overall difficulty, usability, and

responsivity, the subjects were asked to give a rating of the

web-app for each criteria in a scale of 1 to 10. As

aforementioned in sections II and III, accessibility is a crucial

requirement for this device, so user-testing was done

extensively in order to take feedbacks from users to ensure our

ease of navigation through the site. The first iteration of the

test yielded an average score of 7.25 out of 10 and one of the

biggest flaw to our web-app was text data input method which

used to be implemented with a drag and drop of a .txt file and

a .txt file parser. Such method, restricted the users to a single

file format and created barriers to users unfamiliar with text

editing. As a result, the user prompt method where words can

be simply typed into the web-app was implemented and was

able to obtain a score of 8.75 on the next iteration of user-

testing.

B. Tests for Translation Algorithm

As mentioned in section IV, the correctness of our

translation is crucial to our project. In order to allow the

previously stated 100% accuracy in text to braille translation,

we tested the translation algorithm implemented in our web-

app with numerous sequences of words. To do this, we

collected more than 100 words of varying length and

complexity to achieve 100% accuracy. The 100 words were

further categorized to 50 contractible words and 50 non-

contractible words as lengthy words in braille are often

contracted to shorter versions to reduce the space needed for

display. To solely test the software before integration with the

hardware, we formed a testing function which displayed the

encoding to a visualized braille pattern to compare with the

reference solution. The test results successfully validated the

accuracy level of the translation algorithm, reaching the

required 100%.

C. Tests for Hardware Pin Actuation

Other than the algorithm itself, it is also significant for the

array of stepper motors to be accurate by itself. On all the

possible patterns (8 patterns), we tested the accuracy of

actuation. The user-case requirement for display accuracy

translated to an accuracy larger than 80% for design

requirement. The result showed an accuracy average slightly

above 80% over multiple iterations with motor jamming due

to 3D printer accuracy and motor power being the major

obstacle toward reaching higher accuracy.

D. Tests for Actuator Response Speed

As stated in our use-case requirement, it is important for the

Braille cells in our device to display each braille cell at the

average braille learner reading speed which is at 12WPH (0.5

second per braille cell). Thus, we tested the actuation speed

for each pattern through a slow-motion capture video,

ensuring that the actuation of a pattern takes less than 0.5

seconds. At our first iteration of testing we achieved an

average of 4 seconds for a pattern actuation, significantly

exceeding our set limit. One of the biggest setback was the

motor jamming resolution which needed a greater torque on

the motor to resolve. Thus, we ran the test with different

power sources for the motor driver (5V vs. 12V) exploring the

tradeoff between motor speed and torque against power usage.

The detailed result in shown on Fig. 6. In conclusion, an

average of around 1 second was reached with a higher voltage

power supply, marking an improvement from our previous

iteration. However, further study on stepper motors is required

to reach the desired spec on the design requirement.

18-500 Final Project Report: Brailliant 05/04/2024

7

Fig. 6. Actuator response speed based on power source

E. Tests for Portability

The reason why most braille devices are struggling with

implementation is due to the large amount of power

consumption. In section II and IV we derived a necessary

battery life of 6 hours for the use of our product during a

normal school day. To test the battery consumption of our

device we tested our device throughout the day, occasionally

switching through different braille patterns. After going

through more than 2 iterations our braille pad stayed

operational more than 6 hours. Sizing of the 3D printed braille

cell was also an important component to our design

requirement which ties to our user-case requirement associated

with portability. Our final product was able to stay 2 times the

size of the unified braille standard which allowed our product

to be stay within the 12 in. by 6 in. size limit we set for 10

braille cells.

TABLE 2. TEST AND VERIFICATION SUMMARY

Test Testing Method Requirement Result

Actuator

Response Speed

Record response

time per column

on 10 words

< 500ms actuation

time

~1000ms average

actuation time +

3s jamming

resolution

Actuator

Accuracy

Test grid on all

possible braille

pattern inputs

>80% accuracy 78% accuracy

Text-to-braille

Algorithm

Accuracy

Test on 100 words

and compare with

online translator

100% accuracy 100% accuracy

Web-app User-

testing

User-test on 5

students

(feedback on 1-

10)

>8/10 average 8.75/10 average

VIII. PROJECT MANAGEMENT

A. Schedule

See Figure 7 at end of document. The schedule has changed

from the design document to account for new tasks, abandoned

tasks, and adjustments to testing and assembly over the last

month. For example, we added laser cutting for the small gears

and linear racks that we ended up designing due to lack of

readily available parts.

B. Team Member Responsibilities

The project was divided into two primary components:

Software and Hardware. Due to the mechanical challenges

presented in the hardware implementations of the project, two

members were allocated for hardware and one was assigned to

deal with the software.

Ziyu was responsible for the CAD design of the project

including the 3D printed sliders and their connection to the

stepper motors. The pins and the casing design were also

handled by Ziyu. He also assisted the schematic design handled

by Samay to allow a smooth integration between the

mechanical components and the electrical components.

Samay is primarily responsible for the schematic for the

motors. He also dealt with the power management,

microcontrollers, as well as the code for stepper motors. It was

his primary goal to seamlessly connect the hardware

components all together and transfer the necessary signals for a

successful actuation of pins

Yujun’s was responsible for the software implementation.

Aside from handling the text-to-braille translation algorithm, he

created encoding scheme for braille patterns to transfer all the

necessary information while minimizing data usage.

Furthermore, he designed the web-application to take user input

in a user-friendly manner.

The testing for hardware was done by Ziyu and Samay, while

software testing was handled by Yujun. Ziyu focused primarily

on testing the precision of the 3D printer such that the printed

product is accurate to the expected design.

C. Bill of Materials and Budget

See Table 3 at end of document.

IX. ETHICAL ISSUES

When it comes to ethical concerns, it is paramount to

identify who the ideal users of our product is. In the case of

Brailliant, it is the visually impaired who lack access to

written texts. Since our users are a distinct group of people

within the population, It’s crucial to think of ethics within

their perspective. Furthermore, when there is a failure in the

technology it could create a bigger divide between these

distinct group of people, namely the visually impaired, and

those who are not as these groups of people would be solely

affected by whatever impact our product causes.

A. Public Health, Safety, and Welfare

When giving the blind an affordable reading tool to use, it

could increase their public health as they can gain more access

to information, and not be separated from the general

population. As stated by the National Library of Medicine,

patients with low literacy turned out to have poorer health

outcomes and uses of health resources [7]. Thus, our design

allows to lower the health risks for the blind which is already

higher for the blind due to their lack of visual awareness.

In terms of welfare, there is an obvious gap in the welfare

between those with healthy vision and those who are visually

impaired. Other than the fact that they lack one of the six

senses, this also causes higher illiteracy rates which is hard to

18-500 Final Project Report: Brailliant 05/04/2024

8

counter as educational establishments often lack braille-

reading teachers to teach these people the command over

written language. Thus, a flaw in the accuracy of our product

could possibly fail to affect such pre-existing gaps or in fact

worsen it if users were to become reliant on the product. As a

result, the accuracy requirement of the text-to-braille

translation of our product was increased from 90% to 100%.

However, there is still a need to increase the accuracy of the

actuation technique with a possible integration of a higher-

spec motor to ensure the users’ welfare is improved as

intended.

B. Cultural Concerns

One cultural issue that could arise from our system design is

the possibility of a welfare gap between English speaking

and non-English speaking people as our product only

translates English. In other words, the product contains a

cultural barrier to non-English-speaking users, barring them

from accessing the product. To counter such

effects, we decided to make our algorithm as open source as

possible and be based on a map of the braille dictionary that is

easily replaceable. Consequently, it is fairly simple to replace

the dictionary map with another language dictionary and have

the braille display work as intended mitigating the possible

discrimination the product could engender in the market.

C. Economic and Social Concerns

As previously discussed, our product aims to increase the

welfare and health of the visually impaired to close the gap

between them and the visually abled. However, by doing so

with a marketable product could lead to inequalities between

more privileged group of people and the less privileged

depending on the price of the product which could be a

societal issue. To mitigate such effects, we designed the

technology to be very affordable with the price more than 8

times cheaper than the typical price of braille displays on the

market. Therefore, even though it is inevitable that economic

concerns will follow any beneficial product unless it’s free,

our project still maintains to keep this inevitable harm as small

as possible with an affordable price.

 Other than economic barriers to accessing the product there

could also be other societal traits coming into play. For

instance, as Brailliant is heavily based on technological

innovations to achieve its goals, the benefits could be taken

away from those who are unfamiliar with technology,

especially those who are unfamiliar with computer usage. Our

initial design included an input method which utilized a .txt

file input. This could’ve increased the gap between those who

are familiar with technology and those who are not (elderly

and the young) considering the fact that file formats are not

commonly understood among regular people and file format

changes are only supported in certain devices or through third

party applications. Thus, we tried to mitigate creating such

societal barriers by introducing a newly integrated design

where inputs are easily and directly typed into the web-app

through a prompt given on the screen instead.

D. Environmental Concerns

The environmental issue that arises from our Braille display

is tied to our use of 3D printing. While 3D printing offers

countless benefits including rapid prototyping, customization,

and cost reduction from decentralized manufacturing, it also has

environmental consequences. Traditional 3D printing such as

the method our project used involves plastic filaments. As our

product is largely made of these filaments, it contributes to

plastic waste if not managed properly. Considering the fact that

plastic waste is the main perpetrator of water pollution and

corresponding habitat loss for marine animals, it is crucial to

ensure that environmentally friendly materials or at least the

waste is managed properly. While these possible solutions were

not within the scope of our project, with further research and

development of our product we could counter the possibility of

pollution with the use of bioplastics, or recycled plastic

filaments.

X. RELATED WORK

Our product seeks to be able to dynamically display braille

words, which has and remains a challenge. Other products that

currently exist include braille readers such as: . They have the

capability to produce braille translations of inputted words and

include many physical buttons to interface with the device.

However, these products are much larger in form factor and 5-

10 times as expensive as our product aims to be.

The product DotPad is more aligned with our proposed

device with its own custom electromagnetic actuator

technology. This product actuates each braille dot on a large

tablet-sized “screen” (array of dots). However, this product is

designed specifically to convert non-text media such as images

and charts into a physical pattern for the visually impaired.

There are also numerous research projects that have

developed innovative piezoelectric materials or other

proprietary MEMS based actuators.

XI. SUMMARY

Our goal with the Brailliant product is to be able to address

the incredibly concerning low literacy rates in braille among the

visually impaired. We want to provide a device that is

universally able to take any text input and both produce the

braille patterns and provide audio pronunciation output. This

will be achieved with our custom sliding actuation method.

There remain challenges in physically organizing the motors

and corresponding motor controllers within the 3D printed case.

Another area of concern that must be addressed is the reliability,

especially given the reliance on mechanical moving parts of our

design.

GLOSSARY OF ACRONYMS

CAD – Computed Aided Design

DIY – Do It Yourself

MQTT – Message Queuing Telemetry Transport

OBD – On-Board Diagnostics

PCB – Printed Circuit Board

PWM – Pulse Width Modulation

RPi – Raspberry Pi

18-500 Final Project Report: Brailliant 05/04/2024

9

WPM – Words Per Minute

REFERENCES

[1] Ackland, Peter, et al. “World Blindness and Visual Impairment: Despite

Many Successes, the Problem Is Growing.” Community Eye Health,

U.S. National Library of Medicine, 2017,
www.ncbi.nlm.nih.gov/pmc/articles/PMC5820628/

[2] Amato, Sheila. “Standards for Competence in Braille Literacy Skills in

Teacher Preparation Programs.” Journal of Visual Impairment &

Blindness 96, no. 3 (2002): 143-153.

[3] “Human Interface Guidelines.” Apple Developer Documentation,
developer.apple.com/design/human-interface-guidelines/. Accessed 12

Oct. 2023.

[4] National Library Service for the Blind and Physically Handicapped,

Library of Congress. Specification 800: Braille Books and Pamphlets.

(www.loc.gov/nls/specs/800_march5_2008.pdf)
[5] Perkins School for the Blind, Perkins School for the Blind: Reading

Rates, Accessed on Feb 24, 2024, [Online]. Available:

https://www.perkins.org/resource/reading-rates/

[6] Zoirov, Ulmas. Development of the low-cost solution for Braille display

based on linear actuators with 3D printed mechanisms and servomotors.
Rel. Marcello Chiaberge. Politecnico di Torino, Corso di laurea

magistrale in Mechatronic Engineering, 2021

[7] https://www.nnlm.gov/guides/intro-health-literacy

http://www.loc.gov/nls/specs/800_march5_2008.pdf
https://www.perkins.org/resource/reading-rates/

18-500 Final Project Report: Brailliant 05/04/2024

10

Figure 3. Schedule

18-500 Final Project Report: Brailliant 05/04/2024

11

Description Model
Number

Manufacturer Quantity Unit Cost Cost

Micro
Stepper
Motors

N/A Abovehill 2 $10.99 $21.98

Micro
Stepper
Motors

N/A QINIZX 6 $12.59 $75.54

PLA
Filament

N/A ELEGOO 2 $17.99 $35.98

Screws N/A uxcell 1 $7.79 $7.79
JST

Connectors
N/A N/A 1 $15.00 $15.00

$156.29

Table 3: BOM

18-500 Final Project Report: Brailliant 05/04/2024

12

Fig 8. Final Web-app design with user inputs

	I. Introduction
	II. Use-Case Requirements
	III. Architecture and/or Principle of Operation
	IV. Design Requirements
	V. Design Trade Studies
	A. Software Platform
	B. User Interface
	C. Translation Algorithm
	D. Actuation Method

	VI. System Implementation
	A. Fabrication
	B. Web-application
	C. Device Software Implementation
	D. Microcontroller
	E. Power

	VII. Test, Verification and Validation
	A. Tests for Web Application
	For web-app validation, we collected 5 subjects from CMU to perform user-testing on the difficulty of the text-inputting process, data transfer between the web-app and the braille display, retrieval of input history, and the basic end-to-end performan...
	B. Tests for Translation Algorithm
	C. Tests for Hardware Pin Actuation
	D. Tests for Actuator Response Speed
	E. Tests for Portability

	VIII. Project Management
	A. Schedule
	B. Team Member Responsibilities
	C. Bill of Materials and Budget

	IX. Ethical Issues
	A. Public Health, Safety, and Welfare
	B. Cultural Concerns
	C. Economic and Social Concerns
	D. Environmental Concerns

	X. Related Work
	XI. Summary
	Glossary of Acronyms
	References

