## Brailliant

## E-Book \& Learning Tool for the Visually Impaired

Team A0-Ziyu Li, Samay Sahoo, Yujun Lee


## The Problem

- Low literacy in braille for: $10 \%$
- Most blind children attend public schools where few teachers know braille
- Most aids are audio based:
- Various limits to audio aid
- Braille provides complete command of written language
- Current refreshable braille readers are expensive: $\$ 2000-\$ 6000$


## Need a cheap and accessible way to help blind students learn and read braille!

## Our Solution

- A small form factor braille reader made from cheaper components
- Mechanical innovation to drastically reduce price
- No proprietary parts, all purchasable or 3D-printable
- Avoiding previous solutions with solenoids -> lower power consumption
- Open source and DIYable at home
- Text/learninq quide can be inputted from a web app



## Design Requirements

- Portable form factor: $<\mathbf{1 2 "} \mathbf{x} \mathbf{8 "}$
- Braille on physical buttons
- Resolution: $\mathbf{1 0}$ braille cells $\mathbf{=} \mathbf{6 0}$ pins
- Cost: $\leq \mathbf{\$ 6 0 0}$
- Refresh rate: $\mathbf{0 . 5 s} /$ cell $=\mathbf{5 s}$ max. for 10 -cell word $=>\mathbf{1 2} \mathbf{~ w p m}$
- Battery life $\mathbf{1} \mathbf{~ h r : ~ ( ~} 0.6 \mathrm{~W} /$ motor $)=12 \mathrm{~W}=\mathbf{2 4 0 0} \mathbf{~ m A h}$ battery
- $\mathbf{8 0 \%}$ accuracy: text to braille encoding
- Error handling for unrecognizable characters
- $\quad \mathbf{8 0 \%}$ accuracy: pin patterns on device

| 10-letter word: | fabricated | 10 letter |
| :---: | :---: | :---: |
| Grade 1 (uncontracted): |  | 10 cells |
| Grade 2 (contracted): | : - : :. . ${ }^{\text {c. }}$ : | 9 cell |

One cell:


## Hardware Solution - 2 Sliders



Actuate Patterns Instead of Individual Dots!

Hardware solution - Patterns Attainable


## Implementation Plan

－Micro stepper motors for each slider
－Arduino microcontroller to drive motors
－Need a motor controller per motor
－Motor shield to interface with Arduino
－3D printed sliders with pin pattern combinations
－Decoder to driver motors sequentially
－Due to limited Arduino DC pins and power
－Audio text－speech voice
－Output to a speaker after each word
－Rechargeable battery（＞ 2400 mAh ）



## System Specs / Block Diagram



## Software approach

## Web App

For each word:

- Wordbreak DP algorithm to match word segments to the dictionary
- Convert each column into a numerical encoding
- 8 different patterns per column
- 2 col per letter
- $3 \times 2$ bits per letter
- Pipeline breaker



## Testing/Verification Metrics

| Refresh rate of each cell (2x motor) <br> at learning reading speed |  |
| :--- | :--- |
| Power consumption <br> (battery life $>1 \mathrm{hr}$ ) |  |
| Text to Braille Algorithm <br> Accuracy |  |
| Physical braille pin pattern display <br> accuracy (slider accuracy) |  |
| Cost cap at $\$ 600$ |  |
|  | Resolution to effectively display <br> readable braille characters |



Enter a 10-cell braille word and measure time as device controls motors sequentially

Measure the max run time of device from full charge under normal use

Test on 50 text samples and compare device pin outputs to online braille translator (slide 4)

Test physical grid on more than 50 braille pattern inputs to reach $>80 \%$ accuracy

Cost analysis by summing all the parts needed
User testing on 10 visually impaired students; Office of Disability Resources/School for Blind Children

## Division of Labour

| Software (Yujun Lee) | - Front-end (web app): UI for text data input from user + filtering on unidentified words <br> - Text to grid parser for Raspberry Pi <br> - Text to braille using word-break algorithm |
| :---: | :---: |
| Hardware (Samay Sahoo, Ziyu Li) | - Speaker implementation - Samay <br> - Step motor grid - Ziyu <br> - PCB design (power management, microcontroller, I/O buttons) - Ziyu <br> - CAD design +3D printing for slider and pins - Ziyu <br> - Physical product design - Samay |
| Data Collection <br> (All) | - Sequence of braille-translatable words <br> - Braille patterns for actuator grid testing |

## Schedule



