
Brailliant

E-Book & Learning Tool for the Visually Impaired

Team A0 - Yujun Lee, Ziyu Li, Samay Sahoo

The Problem & Solution

- 10% literacy in braille
- Most blind children attend public schools: few teachers know braille
- Most aids are audio based
 - Braille provides complete command of written language
- Current refreshable braille readers are expensive: \$2000-\$6000

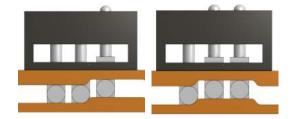
Need a cheap and accessible way to help blind students learn and read braille!

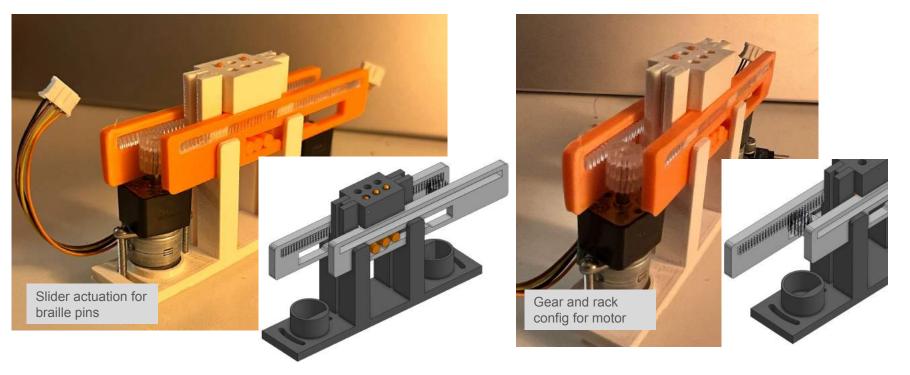
- A small form factor braille reader
 - Mechanical innovation to drastically reduce price
 - No proprietary parts, all purchasable or 3D-printable
 - Avoiding previous solution with solenoids -> lower power consumption
 - Open source and DIYable
 - \circ ~ Any text or learning guide can be inputted from a web app

Use Case and Design Requirements

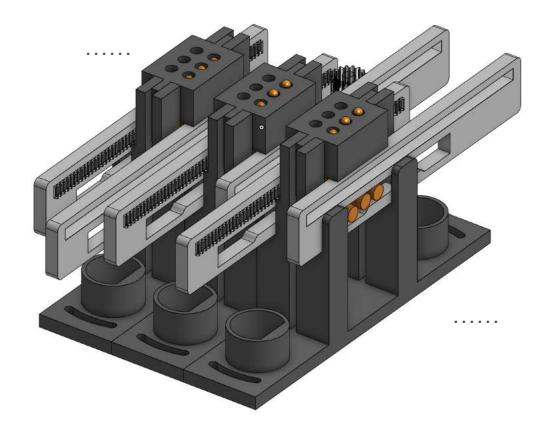
10 letters 10 cells 9 cells

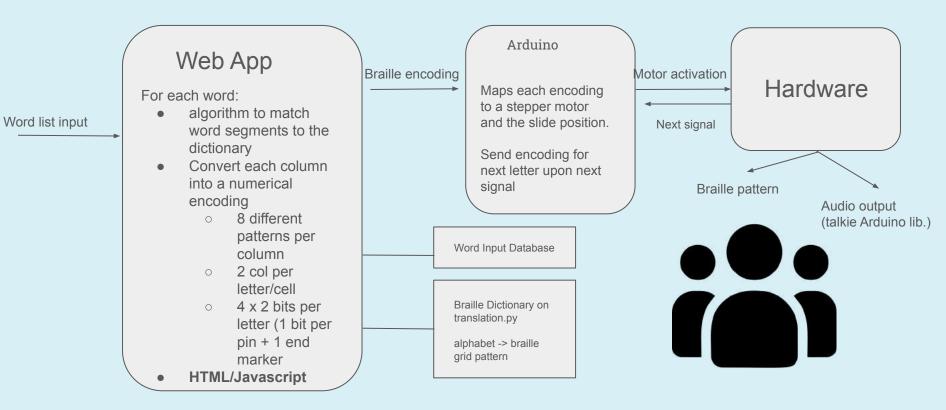
Battery life 6 hr in a school day	14400 mAh battery (0.6W/motor * 20*6hr)
Readable physical braille	CAD: ensure 1mm pin extrusion, 6-8mm spacing of pins/holes 10 cells : length enough to display any word
Beginner reading speed (12wpm)	0.5s/cell actuation time
Portability in form factor	Dimensions: < 12" x 8"
Accurate braille display	Motor code: Recognize stalling and initiate reset


One cell:

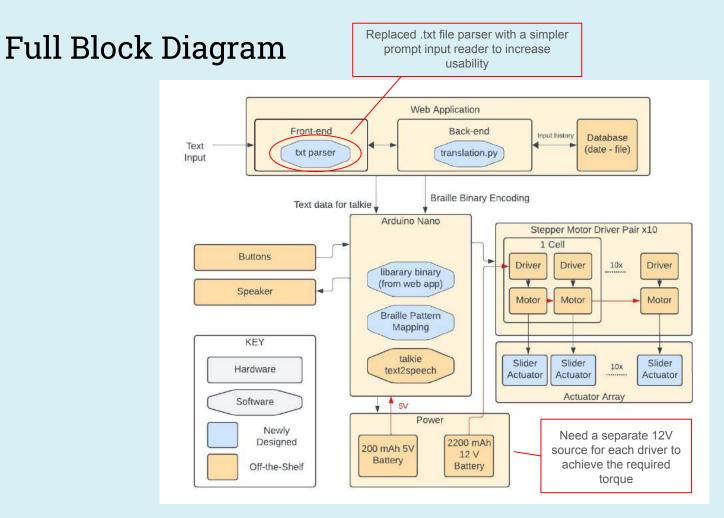

Ethical Concerns

- Public Health, Safety, and Welfare:
 - Ensured higher accuracy for translation (95% -> 100%) + Motor jam detector
 - No visually impaired users should be harmed by being reliant on our product
- Cultural:
 - Support for English translation only could generate cultural barriers between the user and product
 - Open source braille translation code that could be easily altered with varying dictionary implementation
- Economic & social:
 - High prices of previous designs made products accessible only to the privileged
 - Solution: ensured low design cost with slider implementation (two motors per cell)
 - Previous design of inputting a txt file could create barriers for people unfamiliar with tech
 - Change: simple web app design that directly takes input as user types on the prompt
 - Change: clear visualization of words inputted into the braille pad


Solution Approach - Hardware


An all new & custom actuator design & fabrication solution

Complete Solution - Scalable Array


Software approach

Software approach

	∕ BRAI∷IANT		
[Add.you	word	Add	
Hello		×	
Warr	1	×	
Cold		×	
Frus	rated	×	
Igno	ance	×	
Bliss		×	
Brail	le	×	
Caps	tone	×	
Нар	У	×	
Com	puter	×	

- Data sent to braille pad with translated encoding when added/removed
- Prompt to add words
- Words easily removed with x button
- Data saved to web database (refreshing does not refresh data)

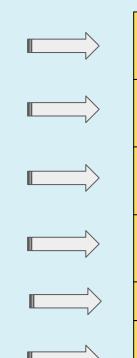
Verification Metrics

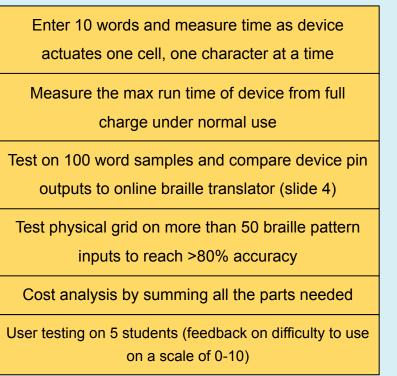
Refresh rate of each cell (pair of motors) at learning reading speed

Power consumption

(battery life > 6hr)

Text to Braille Algorithm


Accuracy (100%)


Physical braille pin pattern display

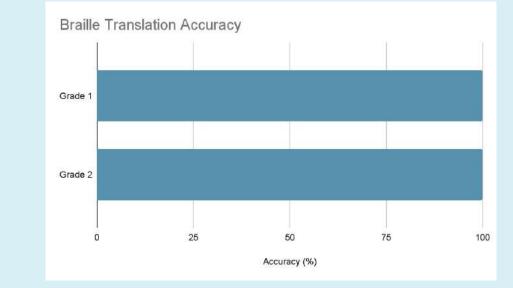
accuracy (slider accuracy)

Cost cap at \$600

Web App test for usability and simplicity

Results (Hardware)

Test Design:


- Goal: 0.5s per cell
- Test on 50 words
 - Encoding outputs for inputs sent from translation.py to Arduino
- Record video to observe accurate number of position changes per cell + responses to any jams

Goal	Result
0.5s/cell	0.73s
Stall testing	Recovery within 3s
1hr stress test (accuracy testing)	Success; but motor temperature concerns

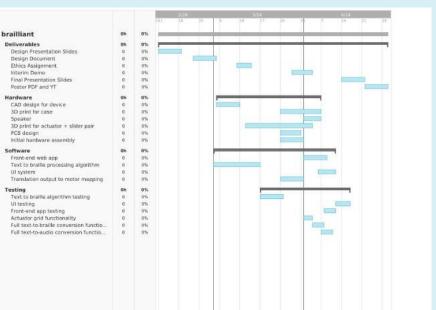
Results (Software)

Test Design:

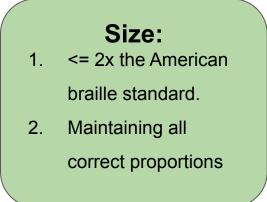
- Goal: use case requirement of 100% braille translation accuracy
- Test on 100 words
 - Randomly generated
 - 50 non contractible words (Grade 1)
 - 50 contractible words (Grade 2)
- Pattern display function made for braille encodings

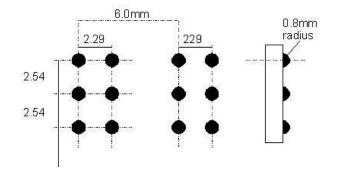
Output displayed on test function

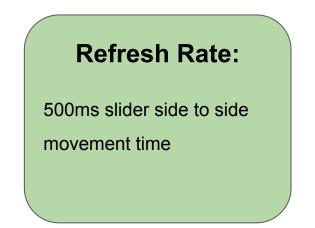
[' h	ella	o']								
1	0	1	0	1	0	1	0	1	0	х
1	1	0	1	1	0	1	0	0	1	х
0	0	0	0	1	0	1	0	1	0	х


Reference solution from BrailleTranslator.org

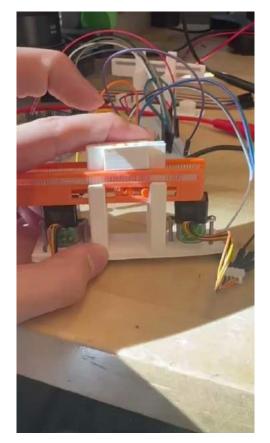
W	itl	h	br	aille font	
:.	۰.	:	:	÷	


Trade-Offs


- Braille cell sizing is 2x the standard spacing to reduce pin sliding error
- Torque over speed to prioritize actuation functionality
- Require additional 12V power source to achieve above torque


Current Schedule

Actuator Verification - Requirement



Refresh rate: **0.5s/cell = 5s** max.

for 10-cell word => **12 wpm**

Actuator Verification - Result

- Size: 2x the standard braille size, on par with our requirement.
- Refresh Rate: ~4s side to side slider movement speed, way exceeding requirement, need to perform further optimization and verification.

Actual dimensions fabricated

