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Abstract—Musician’s Scribe is a free-to-use web
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sheet music which can be downloaded as a PDF.
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1 INTRODUCTION

Many musicians don’t have the skills to efficiently chart
their musical compositions. For example, bands that per-
form original music will want to share their pieces with
bandmates, and teachers will want to share exercises with
their students quickly and easily. We aim to build a web
application that takes a monophonic audio recording in-
put and transcribes it into easy-to-read sheet music. We
thought this would be a great project to do because cur-
rently there are applications being offered with required
subscriptions that transcribe audio files, however we could
not find any free versions. Our software would be useful for
people that want to transcribe simple, monophonic audios
and do not necessarily want to spend money on a more
complex transcriber system.

2 USE-CASE REQUIREMENTS

There are five requirements for our system to work -
frequency reference, pitch accuracy, time signatures, tempo
range, and transcribed note length accuracy.

We also need the input audio signal to be monophonic
with a reference A4, which has a frequency of around 440
Hz. The instrument that plays this audio file should also
always be a piano. The reason we have this requirement is
that different instruments may have different onsets when
being played. Onset is defined as the beginning of a note.
For example, with a violin, it will have a different, more
gradual onset in reaching a volume where the note can be
identified, as compared to a piano which has a quicker on-
set when a note is being played. By focusing on just one
instrument which we have easy access to, we aim to make
the transcription as accurate as possible.

We are also targeting a 95% onset accuracy. This metric
will track the rhythm of the piece and determine its rhyth-
mic accuracy. Secondly, we will run our frequency processor
on the played recording of the sheet music we generated on
an input file to see if we accomplish 95% accuracy. How
this will work is that we will compare our sheet music out-
put to that of already established sheet music for the same

audio, with the audio being a common tune such as Happy
Birthday. We believe it is important for the user to hear
the right pitch most of the time for it to be accurate, hence
our high bar for success.

Another requirement is that our system will only allow
a subset of time signatures. We will provide the following
commonly-used time signatures: 3

4 ,
4
4 ,

2
2 ,

3
8 ,

6
8 .

The tempo range required for our system is 60 to 100
beats per minute. This is because these are standard tem-
pos that we think an average person might use when play-
ing, which is what our system is targeting. Obviously the
time signatures and tempos offered by our system might
not suit the need of all professional music players, but we
aim to target audience that just want to transcribe simple,
monophonic audio of not very high complexity, and can
produce it quickly for them.

Finally, in terms of rhythm, we aim to ensure that ev-
ery transcribed note is accurate within one-half a beat of
it’s actual length. We think this is a good requirement be-
cause our target use case is entry-level music, which usually
doesn’t involve notes shorter than a half beat.

3 ARCHITECTURE AND/OR
PRINCIPLE OF OPERATION

Our whole music transcription system can be split into
different smaller subsystems that when combined together
perform the function of a music transcription system. The
reason we decided to create smaller sub-systems and inte-
grate them together later on, is because it allows us to have
multiple people work on different systems concurrently. It
is also easier to test a smaller system than to test a big-
ger system all at once, so our validation step can easily
determine where the problems in our system are. We de-
cided to split our system into 5 sub-systems. These include
the user interface, pre-processing system, pitch processor
system, rhythm processor system, and transcriber system.

First, we have the user interface. This is the first point
of contact that the user will have with our system. They
will connect to our web application by accessing our site
through any web browser of their choice. Then, they will
be able to upload an audio that is a .wav file of length less
than or equal to 5 minutes, containing a piano monophonic
melody. The user then should select the time signature and
type of clef for their transcription. After all these inputs
have been selected, the user will hit a ”Submit” button
which will send a HTTP request to the pre-processing sys-
tem.

Once the pre-processing system receives the request, it
will compute the Signal-To-Noise Ratio (SNR) of the au-
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Figure 1: Overall Architecture
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dio file. If the SNR is less than 60 decibels, this audio file
will not be transcribed by our system and thus the pre-
processing system will send a failure HTTP response back
to the user. In case of a successful SNR, the audio will be
normalized and filtered. The filtered audio will be sent for
processing to the pitch and rhythm processor now.

The pitch processor will receive the filtered audio and
will have to analyze the signal in the frequency domain in
order to detect the adequate notes. We decided to use a
Short-Time Fourier Transform, which iterates through our
system at intervals of one-eight of a beat, applies a rectan-
gular window to the signal, and applies a Discrete Fourier
Transform to it. We find the maximum magnitude value
of the Discrete Fourier transform and use the associated
frequency value to determine the key played. This ensures
harmonic frequencies of the note are not included, as they
will have smaller magnitude than the frequency of the ac-
tual key played. Then we append to the detected key to
an array, which is the output of our pitch processor.

The rhythm processor works similarly to the pitch pro-
cessor because it also uses the sliding window processor,
except it does not need to Fourier transform the signal.
This processor will iterate through the signal and only look
at smaller parts of the signal with length of 1

8 th of a beat.
Then, it will use SciPy’s find peaks function to detect if
there is a peak during that subset of the signal. If it de-
tects a peak, that means there has been an onset and thus
it will append a 1 to an array, otherwise if no peaks are
found it will append a 0. The output of the rhythm pro-
cessor should be a binary array indicating whether there is
a new note being played at that time interval or not. This
system with 1s and 0s will be used to determine the length
of the note.

Finally, we have the transcription system which takes
the output of the rhythm processor and the pitch proces-
sor to create a note array. Since we iterated from left to
right of the signal when analyzing it using the same sliding
window length when computing frequencies and whether
an onset occurred or not, we know that the indexes of the
rhythm and pitch processor output arrays align. Therefore,
we can get the frequency of a note by looking at the pitch
processor array and the length of that note by looking at
whether a new note has been played or not from the pitch
processor output. Once the note array is done, it will be
put through Vexflow, a JavaScript library that allows us to
make a music sheet PDF. We can give Vexflow the notes
array, as well as the clef and the time signature specified
by the user input from front-end. Vexflow should be able
to generate the PDF and return it to the user.

4 DESIGN REQUIREMENTS

A. Signal-To-Noise Ratio
Standard music analysis and distribution systems, such

as speakers, mp3 players, and turntables, have a minimum
Signal-to-Noise ratio of 60 decibels. An audio with this
SNR will be readily processed by our software, while more

noisy signals will have too much variance to be accurately
represented in our data structure. To ensure the input au-
dios have the necessary SNR, we will be using an algorithm
we found from SciPy pre-processing library.

B. Pitch Accuracy

At least 95% of the notes detected in the audio must be
accurate in pitch, with accuracy defined as the frequency
measured at any arbitrary time t will corresponding to the
note played in the input signal. The remaining five percent
will be at most 2-3 notes given the time limits on the au-
dio length, and such errors do not heavily detract from the
purpose of a basic composition. We want the song to sound
almost equivalent to the original audio and we believe that
near-perfect accuracy in terms of frequency is required for
this to be satisfied.

C. Length-Note Duration

We require our design to measure each note and rest’s
duration accurately to the nearest one-eighth of a beat. For
example, a quarter-beat measured as three-eights of a beat
is acceptable, but a quarter-beat measured as a half-beat
is unacceptable. This is because standard musical exercises
and basic compositions will not require notes of any shorter
duration of a sixteenth note. We assign this requirement
this way so that it can be applied to audios of various tem-
pos and time signatures, which wouldn’t be the case if we
measured accuracy in, say, milliseconds. We target a 95%
rate of accuracy in regards to detecting note onsets and
rests.

D. Front-End User Interface

The final technical requirement is that the user should
be able to easily interact with this application through the
front-facing web app. This means a user can easily up-
load their recording, select basic requirements, and receive
a free-to-download PDF of the returned sheet music. The
application will be entirely accessible via the web, not re-
quiring any hardware or software from the user’s side of
things besides their own method of recording themselves.
The intent is for the application to be accessible to those of
limited resources, as well as those with little experience in
the music industry. Anyone can record themselves playing
a piano and upload it to the web, and anyone can download
and share a PDF.

5 DESIGN TRADE STUDIES

5.1 Short-time Fourier Transform

To process our audio signal in our pitch and rhythm
processors, we decided to use a Short-Time Fourier trans-
form, which applies a sliding window to the time-domain
audio signal and performs a Discrete Fourier Transform on
each section. This allows for our spectral data to be di-
vided into time indexes, which is necessary for determining
which key is played at what point in the audio.

We considered using Hann, triangular, and Gaussian
windows, but as our pulses are transient waves this resulted
in a lot of attenuation at important segments of the signal.
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We settled on rectangular windows, which have zero at-
tenuation of the signal. This window design also removes
the need for overlapping the segments, because there is no
attenuation to account for.

Currently, we have decided on using a window size of
1
8 th of a beat. We decided on this value because we want
to detect notes to the nearest 1

8 th of a beat. This means
that for the rhythm processor, it would split the signal into
smaller signals of length of 1

8 th of a beat and any pulses
of shorter length will be overlooked. This is an acceptable
margin of error because most basic musical pieces will not
involve any notes of shorter length.

The size of the window will be dependent on the tempo
of the given audio piece. Based on the user’s desired beats
per minute, we can determine how long a single beat is and
design a window with a length of one-eighth of a beat. To
get the best window-size value we plan on testing different
window sizes and seeing what overall note accuracy we get.
We plan on plotting figures representing on the x-axis the
window size and on the y-axis the rhythm and pitch accu-
racy. This way we can observe which window sizes might
work best.

5.2 Signal-To-Noise Ratio of Input Audio
File

Our system will need to be able to process signals with
decent audio quality. We do not expect it to be able to han-
dle extremely noisy signals where the signal quality present
is very low. Therefore, we decided to impose a restriction
on the minimum signal-to-noise ratio required for audio to
have for our system to accept and process it.

We realize a trade-off in this is that this might be frus-
trating to some users whose microphones do not offer a
good enough quality for them to upload their audio to be
transcribed by our system. Therefore, ideally, we would
want to accept the lowest possible acceptable SNR audio
files.

We did some research and found out that the lowest
SNR that can be handled by a phono-turntable is of around
60 decibels and around 90 decibels for an amplifier or a CD
player. Therefore, we will be trying to accept audio files
with an SNR closer to the 60 decibels value.

We plan on testing this by inputting audio files with no
noise and increasingly introducing noise. This way, we will
see how much worse our music sheets generated get when
more noise is being introduced. This will help us determine
what might be the best SNR for us to accept.

One way we plan on selecting the best SNR, is by plot-
ting on the x-axis the SNR and on the y-axis the pitch and
rhythm accuracy that our system had. The accuracy for
both of rhythm and pitch processor should be greater than
95% , therefore this plotting should allow us to visualize
where the best SNR value lies at.

5.3 Preprocessing of the Signal

We first attempted to apply a bandpass filter, but we
found that the windowing techniques used by most filter de-
sign systems resulted in attenuation and distortion of the
initial signal. Instead, we simply analyzed the frequency-
domain of the signal only within the standard range of mu-
sical notes, 16 Hz to 8000 Hz. Any pitches detected outside
this range are ignored.

We also determined how we needed to remove extrane-
ous samples from our signal, so only the user’s performance
is relevant in the system. We normalized the data based on
it’s maximum magnitude, then applied a threshold to all
values; any samples of magnitude smaller than the thresh-
old were assigned a value of 0, meaning the first non-zero
sample would be the user’s first played note. We initially
attempted a very small threshold on the scale of 10−3 to
minimize loss of data within the relevant portions, but this
proved ineffective as very few samples had this small mag-
nitude. We settled on a threshold equal to one-tenth the
maximum magnitude of the signal; the trade-off was that
each pulse was slightly truncated at it’s end, just before the
next pulse began. We considered this an acceptable loss be-
cause the samples’ small magnitude means they have little
impact on the spectral analysis compared to the samples
that passed the threshold.

5.4 Finding onsets in the input signal

We decided to find the onsets in our signal by looking
at intervals of length of our window size and appending a
1 if an onset is found in that interval otherwise append a 0
if no onset is found to our array. This will return an array

of length
Length of Signal

Window Size
which will match the length of

the array returned by our pitch processor. We apply this
sliding window approach on both the pitch and rhythm
processors so that the elements in the array at a specific
index will match to the same time interval at that index
for the pitch processor. If we look at the values located at,
for example, index 2 in both the output of rhythm proces-
sor and pitch processor we will know whether the note at
that same time interval is being held or a new one is be-
ing played and what pitch it has. It allows us to have the
rhythm and pitch processors output aligned in time, and
greatly simplifying the integration process.

The other alternative we had was to try to find peaks
across the entire signal at once instead of using the sliding
window approach. We realized this approach might lead to
the rhythm processor running a little bit faster, for example
for a 10 seconds audio file it was about 0.000355 seconds
faster. However, the issue is that if we analyze the signal
entirely at once SciPy would return to us an array contain-
ing all the time locations of the onsets that were found.
We would now need to proceed to analyze each time inter-
val of length of the window size and determine if a peak
is found there, so it would not really make sense to do it
this way. Therefore, we think it is better to just call our
find peaks function while analyzing the signal at a specific
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window so that we only have to iterate through the signal
once and get an output that is easy to integrate with our
rhythm processor. We also think that the difference in time
of 0.000355 seconds is not significant enough, since at the
end of the day this function call is local and not something
like a RPC function call where it might be more concerning
in terms of time.

6 SYSTEM IMPLEMENTATION

6.1 Preprocessing

After the initial audio signal is read by the application,
it is represented by an N-array in the time domain. In order
to allow for varying input volume, quality, frequency range,
etc. we first normalize the data, dividing each sample by
the size of the largest sample in the array; the result has
a magnitude range of 0 to 1. We can then apply a volume
threshold of 0.1; any samples that don’t meet the threshold
are set to 0 and are considered rests by the system. This is
the stage where the backend records the user input of clef,
time signature,and tempo. If the user does not include the
tempo, it is automatically detected by the backend using
the library Librosa, a powerful library for audio and music
processing in Python.

6.2 Pitch Processor

The Pitch Processor analyzes the audio in the frequency
domain to determine which notes to transcribe. We imple-
ment it by applying the Sliding Discrete Fourier Transform

algorithm. The result is a KxN array where K is ⌊N/8
fs

⌋ and
row k represents the N-point Discrete Fourier Transform of
each segment of the audio.

n=N−1∑
n=0

Π(
n− k

fs
)x(n)e−

j2πkn
N (1)

From this we generate our K-point array of notes, where
K(k) is the index of the maximum value of the kth row of
the DFT array.

Pitch Processing of Input Signal

We then iterate through the array and determine the
frequency at which K(k) has it’s maximum value. This
frequency is the detected pitch of the note, f . We then cal-
culate the note’s distance in semitones from the reference
note, fA = 440 Hz:

n = 12 log2(
f

fA
) (2)

The number of semitones determines the note played;
for example, n=2 semitones corresponds to a B note.

6.3 Rhythm Processor

The Rhythm Processor analyzes the audio in the time
domain to determine whether an onset has occurred at a
specified time interval. It is implemented by using a sliding
window approach. Our sliding window will be of length of
1
8 th of a beat. The algorithm will look at the part of the
signal that lies in the sliding window and call the function
find peaks from SciPy to try to detect any onsets. The
function find peaks finds peaks inside a signal, with peaks
defined as samples that are larger than their surrounding
samples, having a minimum distance of one-eight beat be-
tween each other and a non-zero magnitude. The properties
that we set are a distance of 1

8 th between peaks detected. If
the find peaks function finds a peak at the current window
time interval it will append a 1 to our rhythm processor
output list, or a 0 if it did not find a peak. After the al-
gorithm is done applying the sliding window throughout
the whole signal we should have a binary array indicat-
ing whether onsets where found at a specific time interval,
where every time interval is of length 1

8 th of a beat. This
will be the binary array returned by our processor.

6.4 Integration System

This system will combine the output of the rhythm and
the pitch processors to form an array of notes.

Below is an example of the outputs of the two sub-
processors based on a short input signal.

output of pitch processor noteList = [’A’, ’A’, ’B’, ’B’,
’C’]; output of rhythm processor beatList = [1, 0, 1, 1, 1];

The noteList array represents the notes played at each
one-eight beat of the audio signal, and the beatList array
represents whether or not a new pulse at each one-eigth
beat. In the above example, we have an A note held for
two-eights of a beat, then two consecutive B’s held for 1/8
of a beat.

The integration step outputs a list of Note objects,
where each note has a corresponding pitch and length field.
The Notes were originally implemented as a Python Object
class, but we found that this data type was difficult to read
in the front-end, so we decided to implement it as a Python
dictionary with the class fields being replaced by key-value
pairs. Below is the design structure of the Note class.
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6.5 Vexflow Formatting

This sub-section of our design was added late in the
process when we found an issue with sending our data from
back-end to front-end. Our back-end determines the dura-
tion of notes in terms of seconds, but the Vexflow library
used in the front-end writes notes in terms of the duration
in beats. This requires an intermediate step between inte-
gration and transcription, which converts the durations to
beats.

It does this based on the tempo of the audio, which
is either manually chosen by the user or auto-detected in
the pre-processing section. The tempo defines how many
beats are in one minute of audio, so the inverse of the
tempo represents the duration of a single beat. We iterate
through the output of the Integration System and divide
the duration field of each Note by the tempo. This value is
rounded to the nearest one-half beat because our target is
to achieve rhythm accuracy to the nearest one-half beat. If
this rounded duration was 0, the Note was removed from
the output list entirely, as it would not need to be tran-
scribed.

Vexflow also requires us to determine how the notes will
be divided into bars. After we determined the duration of
each note in beats, we determined which bar they would be
assigned to. The number of beats per measure is part of the
time signature selected by the user; for example, a 3

4 time
signature means each bar will be three beats long. Instead
of sending the front-end a list of note objects like before,
we now send a dictionary where each value represents a bar
of music. This simplifies the transcription process by es-
sentially creating a series of smaller equally-sized datasets
instead of requiring the front-end to process one very large
dataset of indeterminate size.

6.6 Web App Interface

We have a Web App for the user to access our system.
We plan on making it accessible through laptops. The web
app will be built using Django, with React.js as the frame-
work for the front-end. These frameworks heavily facilitate
the transfer of data between the front and back end, al-
lowing for repetition and variety on the part of the user.
We will use the React.js tools to provide HTML forms for
the user to upload an audio file and select the previously
stated parameters of the song. Then, the front-end will
send a HTTP Request to our backend system. The request
will be in the format of a Django Form object, containing
the audio file and the user-selected parameters. The Form
calls the functions that implement the Preprocessor, Pitch
Processor, and Rhythm Processor. Each Form sent by the
user will correspond to a new instance of the Note Model.

The response to the form is then passed to the Vexflow
library.

6.7 Vexflow

Vexflow is a JavaScript library that parses the Response
from the back-end of the application, which contains a list
of Note models, and generates the PDF transcription of
our notes. It is implemented entirely within the front-end
of the code.

Vexflow iterates through the output of the Vexflow For-
matting system and draws each bar in the piece; first the
musical staff of the bar, then each note in the order it reads
them. The Note data structure is designed such that each
field can be copied over to the Vexflow API’s Note method
without modification. These fields are the key, duration,
and type.

7 TEST & VALIDATION

7.1 Results for Signal-to-Noise-Ratio Fil-
ter

Our system will reject audios with an SNR that is
less than or equal to 60dB. We decided on this value by
looking at the generated music-sheets with different SNRs.
We modified the value of the SNR by adding different
amounts of White-Gaussian noise to the signal to increase
the amount of noise. After looking at the transcripts, the
system seemed to be innacurately detect notes when the
SNR was less than 60dB.

SNR Comparison

7.2 Results for Rhythm Processor

The most important value to decide on for the rhythm
processor was the height of a peak in a signal. This height
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represents the value at which a sound starts to be consid-
ered a note, instead of a rest. All sounds with an amplitude
that is less than this height are considered a rest, otherwise
they are considered a note. Before processing the signal
through the rhythm processor, it is put through a normal-
izer which normalizes its values from the range 0 to 1. It
seems like most sounds tend to get relatively low and fall
to a rest quickly when they reach a value of 0.1 or less. We
also tested trying to increase the height value to be 0.2,
0.3, etc and it seemed to be the most accurate when set
to 0.1 or less. This was striking to us since we expected
the height value to be somewhere around the 0.2-0.3 range
when we had not tested it.

To test the rhythm processor as whole we decided to
count the number of notes and rests that it was producing.
For example, given the array [1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1]
we would have at least 3 notes and two rests. One note is
seen as a sequence of 1s, while a rest is a sequence of 0s.
We can determine the rhythm accuracy by counting the
number of notes detected in our system and the number
of rests. Therefore we can divide the number of detected
notes over the number of expected notes, and do the same
thing for rests. Finally, we can average the value out to get
the accuracy. If the number of detected notes or detected
rests is greater than the expected amount, then we would
just do the inverse division.

Onset Accuracy

7.3 Results for Pitch Processor

Below are the results for a variety of user input audios.
The Pitch Accuracy was detected by inspecting the keys
detected in the output of the pitch processor and compar-
ing them to the keys we knew were in the input. If a key
was skipped over or measured inaccurately, the score is de-
creased.

Pitch Accuracy

Observe that the C-scale where the user manually se-
lected a tempo and used a metronome to ensure that tempo
was met, resulted in 100% accuracy. This is the ideal input,
as each note is of equal duration and the slow speed means
errors in the windowing process are less notable compared
to the overall size of the audio.

Major errors come up when dealing with inputs of quick,
varying tempos. The Ascending C-scale and Descending C-
scale inputs started at a slow tempo and sped up as time
went on. The system defaults to the slowest tempo de-
tected, meaning these faster notes took up less than one-
half a beat and were discarded in the Vexflow Formatting
subsystem.

The Happy Birthday input receives 100% accuracy,
demonstrating that longer audio lengths don’t affect the
pitch detection sub-system, and that it can handle pieces
where the rhythm varies between notes shorter and longer
than a single beat.

8 PROJECT MANAGEMENT

8.1 Schedule

Our project was able to stay fairly on schedule through-
out the course of the Spring 2023 semester. We began by
working on the signal processing of the rhythm and pitch
processors in Matlab while front-end development was un-
derway. The project then moved into converting the Mat-
lab progress in Python, and tweaking the functionality and
accuracy of the pitch processors. Finally, sending the in-
formation to the front-end and displaying it visually was
completed, followed by testing.

8.2 Team Member Responsibilities

Alejandro was the primary team member working on
the rhythm processor, while Aditya was the primary team
member for the pitch processor. Kumar was the point per-
son for the front-end Django web application. Once this
was completed, all three team members worked on con-
verting the backend data into a displayable format through



18-500 Final Report Template Page 8 of 13

the Javascript library Vexflow as this was a harder than an-
ticipated task. All team members were involved in record-
ing and testing various audio files. Written documentation
and presentations were distributed evenly throughout the
team. All team members were involved in debugging of the
rhythm and frequency processors as well as any frontend
issues.

8.3 Bill of Materials and Budget

No materials were used or purchased during the course
of this project besides a piano owned by one of the team
members.

8.4 AWS Usage

No AWS credits were requested as our project runs on
a private account of one of the team members using free
credits for a T2 micro EC2 instance.

8.5 Risk Management

Our primary risk was that we wouldn’t know enough
about the audio signal to accurately analyze it. Our so-
lution was to assign key values that were a part of our
detection algorithm, such as the size of the sliding windows
of analysis, to be based on the tempo of the piece. This
solved the problem of our algorithm potentially only work-
ing well on pieces in the middle of the ideal tempo range
of 60-100 bpm, and can now handle tempos across this re-
alistic spectrum.

In regards to scheduling througout the semester, we
mitigated falling behind by starting work on the rhythm
processor, pitch processor, and front end web app immedi-
ately, and split this between each of the three group mem-
bers. In our schedule we accounted for a couple weeks for
integration and debugging for issues such as incorrect file
format, and more. Besides this we did not face any major
risks or concerns in regards to budget and personnel.

9 ETHICAL ISSUES

While no one is particularly vulnerable to failure of this
project,a person with less music knowledge is more reliant
on the product’s accuracy while others can cross verify any-
thing that seems wrong.

Public health and safety are not at risk for our project.
Public welfare is the only aspect that is under consideration
in the context of our project. This is due to data privacy.
With millions of individuals putting out content and up-
loading it to the Internet, protecting intellectual property
is a concern. This is a potential issue for our project if
we were to go commercial, as musicians would need assur-
ances that their uploaded audio file and its corresponding
transcription would not be stolen or misused. This would
hypothetically involve encryption from the developer’s end
to ensure nothing is directly visible to those on the backend.

However, given the scope and time frame of this project,
and that we are not deploying it into production anywhere,
we will not be able to and are not planning to address these
concerns.

Economic and social factors were under consideration in
our project, as the products already out there in the market
for music transcription are behind a heavy paywall. This
is why our product is free to use. Socially, those who have
extensive resources of time and money often find it easier to
learn a new instrument, and we aim to reduce this gap by
making the process of generating sheet music free, quick,
and non-stressful. Those who have the time and money for
music lessons, or attend a school with a well-funded mu-
sic program are the only ones who will know how to write
accurate sheet music quickly. Therefore, we believe our
project, ethically, has no concerns in its current scope and
is helping aspiring musicians by reducing their barriers to
access to become better skilled.

10 RELATED WORK

There are several tools online that do a similar job of
converting audio files into sheet music. Some are listed be-
low. It is important to note that these products are not
available for free, and are behind expensive pay walls for
subscriptions or expensive one time purchases.

AnthemScore is probably the most commonly known
software to transcribe audio files to sheet music. It also al-
lows the user to edit the sheet music generated and export
it in various formats. Another tool is Transcribe!, which
helps a user transcribe their own sheet music by slowing
down the audio, altering the pitch, and having a spec-
togram that helps the user visualize the piece. It is a tool to
assist musicians in transcribing. ScoreCloud uses machine
learning to transcribe, edit, and arrange various music files.
Musitek Smartscore is the final well known product, as it
uses Optical Character Recognition technology to generate
sheet music which can be edited. None of these products
are very successful and accurate, and are behind immense
pay walls, causing our project to have a use case and target
audience of helping those who cannot afford the time and
money for such expensive tools.

11 SUMMARY

To summarize, our project is relatively successful given
the use case and design requirements outlined at the be-
ginning of the project. Musician’s Scribe is able to take in
audio files of high and medium sound quality, and generate
sheet music which can be downloaded for the user. As it
is still only roughly 75% accurate in rhythm and pitch ac-
curacy on some pieces, further fine tuning will be required
to meet the high standards of success we have self-defined
and anticipate musicians would also have.
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11.1 Future work

The system still requires optimization in order to meet
the testing metrics for all audio files. Our first step will
be to continue fine-tuning certain elements of the program
(Window size, Fourier transform parameters, onset thresh-
olds, etc.) until we achieve our desired metrics.

After this, the project can be expanded upon greatly by
adding user options and improving the specifications. We
are currently constrained to detecting notes of 1/2-beat du-
ration or more, but the same techniques can be applied in
order to achieve smaller orders, such as 1/4- or 1/8-beat.
This allows for more complex musical pieces to be tran-
scribed.

To make the system usable by a broader range of instru-
ments, such as piano and guitar, we can include options for
polyphonic audio.

If this project were to be put into production and
launched, we would have to address privacy concerns. As
discussed in the ethics section, it is important that up-
loaded files cannot be stolen from the backend, meaning
encryption would be necessary to protect intellectual prop-
erty rights.

11.2 Lessons Learned

Over the course of the project, our group learned many
lessons. As outlined in our design trade studies, we learned
a lot about the merits and applications of using Short Time
Fourier Transforms, Discrete Fourier Transforms, and us-
ing various sliding windows. In addition this, we had to
figure out how to use SciPy and Librosa as libraries which
helped us in our signal processing and tempo detection.
We learned the hard way that not all online tools and li-
braries have great documentation, as the Javascript library
Vexflow didn’t have complete end-to-end documentation,
and we had to alternatives, so it took longer than antic-
ipated. Lastly, in our testing, we realized that musicians
weren’t sure how to rank and score our system on a holistic
100 scale, so we altered our testing have only quantitative
results for onset and note detection. It has been an ex-
tremely enriching experience.

Glossary of Acronyms

Any acronyms used are defined in-line.
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