
18-500 Design Review Report Template - 18 January 2022 Page 1 of 8

Musician’s Scribe
Authors: Aditya Agarwal, Kumar Darsh, Alejandro Ruiz

Affiliation: Electrical and Computer Engineering, Carnegie Mellon University

Abstract— Musician’s Scribe is a free-to-use web
application that efficiently transforms an audio record-
ing provided by the user into simple, comprehensible
sheet music which can be downloaded as a PDF.

Index Terms—Audio, Beat, Clef, Noise, Note, Oc-
tave, Pitch, Scale, Signal, Transcription

1 INTRODUCTION

Many musicians don’t have the skills to efficiently chart
their musical compositions. For example, bands that per-
form original music will want to share their pieces with
bandmates, and teachers will want to share exercises with
their students quickly and easily. We aim to build a web
application that takes in a monophonic audio recording’s
signal as an input and transcribes the sound into easy-to-
read sheet music for artists. We thought this would be a
good project to do because currently there are applications
being offered with required subscriptions that transcribe
audio files, however we could not find any free versions.
Our software would be useful for people that want to tran-
scribe simple, monophonic audios and do not necessarily
want to spend money in a more complex transcriber sys-
tem.

2 USE-CASE REQUIREMENTS

There are five requirements for our system to work -
frequency reference, pitch accuracy, time signatures, tempo
range, and transcribed note length accuracy.

We also need the input audio signal to be monophonic
with a reference A4, which has a frequency of around 440
Hz. The instrument that plays this audio file should also
always be a piano. The reason we have this requirement is
that different instruments may have different onsets when
being played. Onset is defined as the beginning of a note.
For example, with a violin, it will have a different, more
gradual onset in reaching a volume where the note can be
identified, as compared to a piano which has an relatively
more instant onset when a note is being played. Therefore,
by focusing on just one instrument which we have easy ac-
cess to, we aim to make the transcription as accurate as
possible.

We are also targeting a 90% pitch accuracy based on
user feedback. This will work in two parts which will be
explained in detail later on. We will have experienced mu-
sicians determine whether they believe the sheet music was
over 90% accurate as compared to the input audio file. Sec-

ondly, we will run our frequency processor on the played
recording of the sheet music we generated on an input file
to see if we accomplish 95% accuracy. How this will work
is that we will show to some people with experience in the
music field, an audio file and the music sheet generated
by our transcriber. Then, the users will give our system a
rating out of 100, based on how good they think the pitch
accuracy of our transcriber was. We believe it is important
for the user to hear the right pitch most of the time for it
to be accurate.

Another requirement is that our system will only allow
a subset of time signatures. We will provide the following
commonly-used time signatures: 3

4 ,
4
4 ,

2
2 ,

3
8 ,

6
8 .

The tempo range required for our system is 60 to 100
beats per minute. This is because these are standard tem-
pos that we think an average person might use when play-
ing, which is what our system is targeting. Obviously the
time signatures and tempos offered by our system might
not suit the need of all professional music players, but we
aim to target audience that just want to transcribe simple,
monophonic audios of not very high complexity, and can
produce it quickly for them.

Finally, in terms of rhythm, we aim to ensure that ev-
ery transcribed note is accurate within 1

8 th of a beat. We
think this is a good requirement because we are not trying
to cover very short-duration notes. The least duration of a
note we are trying to cover is 1

8 th of a beat, therefore every
note should be accurate within 1

8 th of a note.

3 ARCHITECTURE AND/OR
PRINCIPLE OF OPERATION

Our whole music transcription system can be split into
different smaller subsystems that when combined together
perform the function of a music transcription system. The
reason we decided to create smaller sub-systems and in-
tegrate them together later on, is because it allowed us
to have multiple people work on different systems concur-
rently. It is also easier to test a smaller system than to
test a bigger system all at once, therefore by splitting our
system into sub-systems we can thoroughly test each sub-
system in an easier way and therefore our whole system
will be thoroughly tested, and more accurate. We decided
to split our system into 5 sub-systems. These include the
user interface, pre-processing system, pitch processor sys-
tem, rhythm processor system, and transcriber system.

First, we have the user interface. This is the first point
of contact that the user will have with our system. They
will connect to our web application by accessing our site
through any web browser of their choice. Then, they will



18-500 Design Review Report Template - 18 January 2022 Page 2 of 8

Figure 1: Overall Architecture



18-500 Design Review Report Template - 18 January 2022 Page 3 of 8

be able to upload an audio that is a .wav or .mp3 file of
length less than or equal to 5 minutes, containing a pi-
ano monophonic melody. The user then should select the
time signature and type of clef for their transcription. Af-
ter all these inputs have been selected, the user will hit a
”Submit” button which will send a HTTP request to the
pre-processing system.

Once the pre-processing system receives the request, it
will compute the Signal-To-Noise Ratio (SNR) of the au-
dio file. If the SNR is less than 60 decibels, this audio file
will not be transcribed by our system and thus the pre-
processing system will send a failure HTTP response back
to the user. In case of a successful SNR, the audio will be
normalized and filtered. The filtered audio will be sent for
processing to the pitch and rhythm processor now.

The pitch processor will receive the filtered audio and
will have to analyze the signal in the frequency domain
in order to detect the adequate notes. We decided t use
a Short-Time Fourier Transform, which will transform in
a sliding method our signal in intervals of length of 1

8 th
of a beat. Each time we Fourier transform the signal, we
can compute the average frequency over this interval and
match it to a note whose frequency range contains the av-
erage frequency we just computed. Then we append to the
note to an array. The pitch processor will output this array
of notes.

The rhythm processor works similarly to the pitch pro-
cessor because it also uses the sliding window processor,
except it does not need to Fourier transform the signal.
This processor will iterate through the signal and only look
at smaller parts of the signal with length of 1

8 th of a beat.
Then, it will use SciPy’s find peaks function with param-
eter width set to 1

8 th of a beat too, to detect if there is a
peak during that subset of the signal. If it detects a peak,
that means there has been an onset and thus it will append
a 1 to an array, otherwise if no peaks are found it will ap-
pend a 0. The output of the rhythm processor should be a
binary array indicating whether there is a new note being
played at that time interval or not. This system with 1s
and 0s will be used to determine the length of the note.

Finally, we have the transcription system which takes
the output of the rhythm processor and the pitch proces-
sor to create a note array. Since we iterated from left to
right of the signal when analyzing it using the same sliding
window length when computing frequencies and whether
an onset occurred or not, we know that the indexes of the
rhythm and pitch processor output arrays align. Therefore,
we can get the frequency of a note by looking at the pitch
processor array and the length of that note by looking at
whether a new note has been played or not from the pitch
processor output. Once the note array is done, it will be
put through Vexflow, a JavaScript library that allows us to
make a music sheet PDF. We can give Vexflow the notes
array, as well as the clef and the time signature specified
by the user input from front-end. Vexflow should be able
to generate the PDF and return it to the user.

4 DESIGN REQUIREMENTS

A. Signal-To-Noise Ratio

Standard music analysis and distribution systems, such
as speakers, mp3 players, and turntables, have a minimum
Signal-to-Noise ratio of 60 decibels. An audio with this
SNR will be readily processed by our software, while more
noisy signals will have too much variance to be accurately
represented in our data structure. To ensure the input au-
dios have the necessary SNR, we will be using an algorithm
we found from SciPy pre-processing library.

def signaltonoise(a, axis=0, ddof=0):

a = np.asanyarray(a)

m = a.mean(axis)

sd = a.std(axis=axis , ddof=ddof)

return np.where(sd == 0, 0, m/sd)

B. Pitch Accuracy

At least 95% of the notes detected in the audio must be
accurate in pitch, with accuracy defined as the frequency
measured at any arbitrary time t will corresponding to the
note played in the input signal. The remaining five percent
will be at most 2-3 notes given the time limits on the au-
dio length, and such errors do not heavily detract from the
purpose of a basic composition. We want the song to sound
almost equivalent to the original audio and we believe that
near-perfect accuracy in terms of frequency is required for
this to be satisfied.

C. Length-Note Duration

We require our design to measure each note and rest’s
duration accurately to the nearest one-eighth of a beat. For
example, a quarter-beat measured as three-eights of a beat
is acceptable, but a quarter-beat measured as a half-beat
is unacceptable. This is because standard musical exercises
and basic compositions will not require notes of any shorter
duration of a sixteenth note. We assign this requirement
this way so that it can be applied to audios of various tem-
pos and time signatures, which wouldn’t be the case if we
measured accuracy in, say, milliseconds.

D. Front-End User Interface

The final technical requirement is that the user should
be able to easily interact with this application through the
front-facing web app. This means a user can easily up-
load their recording, select basic requirements, and receive
a free-to-download PDF of the returned sheet music. The
application will be entirely accessible via the web, not re-
quiring any hardware or software from the user’s side of
things besides their own method of recording themselves.
The intent is for the application to be accessible to those of
limited resources, as well as those with little experience in
the music industry. Anyone can record themselves playing
a piano and upload it to the web, and anyone can download
and share a PDF.



18-500 Design Review Report Template - 18 January 2022 Page 4 of 8

5 DESIGN TRADE STUDIES

5.1 Sliding Window of Discrete Fourier
Transform

To process our audio signal in our pitch and rhythm
processors, we decided to use a sliding window approach.
This way, we can analyze the signal from beginning to end
using this sliding window algorithm and calculate the aver-
age pitch and whether a new onset has occurred during that
time frame. This way we can know what type of note is
being played during a certain instant in terms of length and
pitch. The challenge is to select the most optimal window
to process the signal.

Initially, we were going to use the Short-Time Fourier
Transform method. However, we decided to use a sliding
Discrete Fourier Transform instead because it allowed for
more control and clarity of the window and overlap sizes.
The STFT would be more applicable if we needed to ana-
lyze an entire signal at once, instead of bit-by-bit.

We considered using Hann, triangular, and Gaussian
windows, but as our pulses are transient waves this resulted
in a lot of attenuation at important segments of the signal.
We settled on rectangular windows, which have zero at-
tenuation of the signal. This window design also removes
the need for overlapping the segments, because there is no
attenuation to account for.

Currently, we have decided on using a window size of
1
8 th of a beat. We decided on this value because we want
to detect notes to the nearest 1

8 th of a beat. This means
that for the rhythm processor, it would split the signal into
smaller signals of length of 1

8 th of a beat and any pulses
of shorter length will be overlooked. This is an acceptable
margin of error because most basic musical pieces will not
involve any notes of shorter length.

The size of the window will be dependent on the tempo
of the given audio piece. Based on the user’s desired beats
per minute, we can determine how long a single beat is and
design a window with a length of one-eighth of a beat. To
get the best window-size value we plan on testing different
window sizes and seeing what overall note accuracy we get.
We plan on plotting figures representing on the x-axis the
window size and on the y-axis the rhythm and pitch accu-
racy. This way we can observe which window sizes might
work best.

5.2 Signal-To-Noise Ratio of Input Audio
File

Our system will need to be able to process signals with
decent audio quality. We do not expect it to be able to han-
dle extremely noisy signals where the signal quality present
is very low. Therefore, we decided to impose a restriction
on the minimum signal-to-noise ratio required for audio to
have for our system to accept and process it.

We realize a trade-off in this is that this might be frus-
trating to some users whose microphones do not offer a
good enough quality for them to upload their audio to be

transcribed by our system. Therefore, ideally, we would
want to accept the lowest possible acceptable SNR audio
files.

We did some research and found out that the lowest
SNR that can be handled by a phono-turntable is of around
60 decibels and around 90 decibels for an amplifier or a CD
player. Therefore, we will be trying to accept audio files
with an SNR closer to the 60 decibels value.

We plan on testing this by inputting audio files with no
noise and increasingly introducing noise. This way, we will
see how much worse our music sheets generated get when
more noise is being introduced. This will help us determine
what might be the best SNR for us to accept.

One way we plan on selecting the best SNR, is by plot-
ting on the x-axis the SNR and on the y-axis the pitch and
rhythm accuracy that our system had. The accuracy for
both of rhythm and pitch processor should be greater than
90% , therefore this plotting should allow us to visualize
where the best SNR value lies at.

5.3 Preprocessing of the Signal

We first attempted to apply a bandpass filter, but we
found that the windowing techniques used by most filter de-
sign systems resulted in attenuation and distortion of the
initial signal. Instead, we simply analyzed the frequency-
domain of the signal only within the standard range of mu-
sical notes, 16 Hz to 8000 Hz. Any pitches detected outside
this range are ignored.

We also determined how we needed to remove extrane-
ous samples from our signal, so only the user’s performance
is relevant in the system. We normalized the data based on
it’s maximum magnitude, then applied a threshold to all
values; any samples of magnitude smaller than the thresh-
old were assigned a value of 0, meaning the first non-zero
sample would be the user’s first played note. We initially
attempted a very small threshold on the scale of 10−3 to
minimize loss of data within the relevant portions, but this
proved ineffective as very few samples had this small mag-
nitude. We settled on a threshold equal to one-tenth the
maximum magnitude of the signal; the trade-off was that
each pulse was slightly truncated at it’s end, just before the
next pulse began. We considered this an acceptable loss be-
cause the samples’ small magnitude means they have little
impact on the spectral analysis compared to the samples
that passed the threshold.

5.4 Finding onsets in the input signal

We decided to find the onsets in our signal by looking
at intervals of length of our window size and appending a
1 if an onset is found in that interval otherwise append a 0
if no onset is found to our array. This will return an array

of length
Length of Signal

Window Size
which will match the length of

the array returned by our pitch processor. We apply this
sliding window approach on both the pitch and rhythm
processors so that the elements in the array at a specific



18-500 Design Review Report Template - 18 January 2022 Page 5 of 8

index will match to the same time interval at that index
for the pitch processor. If we look at the values located at,
for example, index 2 in both the output of rhythm proces-
sor and pitch processor we will know whether the note at
that same time interval is being held or a new one is be-
ing played and what pitch it has. It allows us to have the
rhythm and pitch processors output aligned in time, and
greatly simplifying the integration process.

The other alternative we had was to try to find peaks
across the entire signal at once instead of using the sliding
window approach. We realized this approach might lead to
the rhythm processor running a little bit faster, for example
for a 10 seconds audio file it was about 0.000355 seconds
faster. However, the issue is that if we analyze the signal
entirely at once SciPy would return to us an array contain-
ing all the time locations of the onsets that were found.
We would now need to proceed to analyze each time inter-
val of length of the window size and determine if a peak
is found there, so it would not really make sense to do it
this way. Therefore, we think it is better to just call our
find peaks function while analyzing the signal at a specific
window so that we only have to iterate through the signal
once and get an output that is easy to integrate with our
rhythm processor. We also think that the difference in time
of 0.000355 seconds is not significant enough, since at the
end of the day this function call is local and not something
like a RPC function call where it might be more concerning
in terms of time.

6 SYSTEM IMPLEMENTATION

6.1 Preprocessing

After the initial audio signal is read by the application,
it is represented by an N-array in the time domain. In order
to allow for varying input volume, quality, frequency range,
etc. we first normalize the data, dividing each sample by
the size of the largest sample in the array; the result has
a magnitude range of 0 to 1. We can then apply a volume
threshold of 0.1; any samples that don’t meet the threshold
are set to 0 and are considered rests by the system.

6.2 Pitch Processor

The Pitch Processor analyzes the audio in the frequency
domain to determine which notes to transcribe. We imple-
ment it by applying the Sliding Discrete Fourier Transform

algorithm. The result is a KxN array where K is ⌊N/8
fs

⌋ and
row k represents the N-point Discrete Fourier Transform of
each segment of the audio.

n=N−1∑
n=0

Π(
n− k

s
)x(n)e−

j2πkn
N (1)

From this we generate our K-point array of notes, where
K(k) is the index of the maximum value of the kth row of
the DFT array.

We then iterate through the array and determine the
frequency at which K(k) has it’s maximum value. This
frequency is the detected pitch of the note, f . We then cal-
culate the note’s distance in semitones from the reference
note, fA = 440 Hz:

n = 12 log2(
f

fA
) (2)

The number of semitones determines the note played;
for example, n=2 semitones corresponds to a B note.

6.3 Rhythm Processor

The Rhythm Processor analyzes the audio in the time
domain to determine whether an onset has occurred at a
specified time interval. It is implemented by using a sliding
window approach. Our sliding window will be of length of
1
8 th of a beat. The algorithm will look at the part of the
signal that lies in the sliding window and call the function
find peaks from SciPy to try to detect any onsets. The
function find peaks finds peaks inside a signal, with peaks
defined as samples that are larger than their surrounding
samples, having a minimum distance of one-eight beat be-
tween each other and a non-zero magnitude. The properties
that we set are a distance of 1

8 th between peaks detected. If
the find peaks function finds a peak at the current window
time interval it will append a 1 to our rhythm processor
output list, or a 0 if it did not find a peak. After the al-
gorithm is done applying the sliding window throughout
the whole signal we should have a binary array indicat-
ing whether onsets where found at a specific time interval,
where every time interval is of length 1

8 th of a beat. This
will be the binary array returned by our processor.

6.4 Integration System

This system will combine the output of the rhythm and
the pitch processors to form an array of notes.

Below is an example of the outputs of the two sub-
processors based on a short input signal.



18-500 Design Review Report Template - 18 January 2022 Page 6 of 8

#output of pitch processor

noteList = ['A', 'A', 'B', 'B', 'C'];
#output of rhythm processor

beatList = [1, 0, 1, 1, 1];

The noteList array represents the notes played at each
one-eight beat of the audio signal, and the beatList array
represents whether or not a new pulse at each one-eigth
beat. In the above example, we have an A note held for
two-eights of a beat, then two consecutive B’s held for 1/8
of a beat.

The integration step outputs a list of Note objects,
where each note has a corresponding pitch and length field.
The Notes are implemented as a Django Model, which will
be relevant in the Front-end subsystem. Below is the design
structure of the Note class.

6.5 WebApp Interface

We will need a WebApp for the user to access our sys-
tem. We plan on making it accessible through laptops. The
webapp will be built using Django, with React.js as the
framework for the front-end. These frameworks heavily fa-
cilitate the transfer of data between the front and back end,
allowing for repetition and variety on the part of the user.
We will use the React.js tools to provide HTML forms for
the user to upload an audio file and select the previously
stated parameters of the song. Then, the front-end will
send a HTTP Request to our backend system. The request
will be in the format of a Django Form object, containing
the audio file and the user-selected parameters. The Form
calls the functions that implement the Preprocessor, Pitch
Processor, and Rhythm Processor. Each Form sent by the
user will correspond to a new instance of the Note Model.
The response to the form is then passed to the Vexflow
library.

6.6 Vexflow

Vexflow is a JavaScript library that parses the Response
from the back-end of the application, which contains a list
of Note models, and generates the PDF transcription of
our notes. It is implemented entirely within the front-end
of the code.

The following code shows how we would transcribe the
notes detected in the same audio signal from Section 6.4.

1 system.addStave ({

2 voices: [

3 // Top voice has 4 quarter notes with

stems up.

4 score.voice(score.notes('A/4, B/8, B/8, C

/16', { stem: 'up' })),

5 ]

6 }).addClef('treble ').addTimeSignature('4/4');

7 TEST & VALIDATION

We will be testing starting simple and then trying to
get more and more complex. We will test based on the
length of the notes, and frequency of the notes. We need
the accuracy of our pitch processor to be >= 90%. We can
test this by entering simple songs into the pitch processor
system and calculating the number of correct notes that
our frequency processor got.

We use a third-party app to automatically play our
transcription and generate an audio signal, which will be
compare to the user-input signal.

7.1 Tests for Pitch Processor

For testing the pitch accuracy, we apply our sliding DFT
algorithm to both the test and reference signals. At each
segment, we compare the notes detected. If the algorithm
detects the same note in both signals, it is a success. If 90%
of the intervals register a success, the signal passes the test.

7.2 Tests for Rhythm Processor

Similar to the test for the Pitch Processor, we analyze
both signals at sliding intervals and apply the find peaks
method to each signal. At each interval we ensure that
the peaks detected in one signal match those detected in
the other. In this test, the window is of the size 1/4 of a
beat, as we aim for accuracy to the nearest 1/8 of a beat,
meaning an error of any magnitude less than or equal to
one-quarter beat is permissible. For example, if a segment
has two 1/8-beat notes but only one 1/8-beat notes are
detected, the test passes, but if three 1/8-beat notes are
detected, the test fails.

8 PROJECT MANAGEMENT

8.1 Schedule

Our project’s hardest part is the developing an accu-
rate rhythm and pitch processor. Therefore, we put the
main focus of our attention during the first 4 weeks into
researching and starting to implement our frequency and
rhythm processors, as well as developing plans for testing
our systems. A large part of this is fine-tuning the param-
eters, such as the normalization steps, window sizes, and
integration process. In the coming weeks, we will focus on
building the web app as well as integrating the rhythm and
frequency processors.

So far, Aditya has focused on developing the pitch
processor, Alejandro has focused more on developing the
rhythm processor, and Kumar has focused more on de-
veloping the front-end, designed the user-interface and re-
searching the React and Django components required to
build it. Alejandro and Aditya will next work on collabo-
rating together to integrate the rhythm and pitch processor.
Kumar will begin the implementation of the front-end. Our



18-500 Design Review Report Template - 18 January 2022 Page 7 of 8

goal is that after 2-3 weeks we will be able to have a work-
ing project, and start focusing on testing and optimizing
our system. The full schedule is shown in Fig. 2 on page 8.

8.2 Team Member Responsibilities

We will all be working collaboratively on the project,
however each of us will focus more of our time on a sub-
system of the project. Aditya will be focusing more on
developing the pitch processor, Alejandro will be focusing
more on developing the rhythm processor and Kumar will
focus more on developing the web-app. Then, Alejandro
and Aditya will work together on integrating both proces-
sors so that an array of notes can be developed that is sent
to the front-end built by Kumar, which will take the ar-
ray of notes and generate a music sheet using Vexflow and
return it in PDF form to the user.

8.3 Bill of Materials and Budget

Given that our project is entirely software and signal
based, our bill of materials is none. All of the required li-
braries which would need to be installed and any associated
technologies and programming languages will be outlined
in our .README file which will be available to download.

8.4 Risk Mitigation Plans

A primary risk is that we won’t know enough about
the audio signal to accurately analyze it. For example, our
window size may work much better for a slower piece than
for a faster piece. We account for this by assigning the
key values of our detection algorithm such as window sizes,
based on the tempo of the piece.

9 RELATED WORK

There are multiple music sheet generators out there,
that are more complex than ours and can handle poly-
phonic audios of different types of instruments. These tend
to be applications that require a monthly or yearly sub-
scription and might be targeted for people that are profes-
sionals in the field of music. Our application addressed a
different demographic, those focused on instruction, ama-
teur players, or new students.

10 SUMMARY

Our goal is to create a freely accessible online music
sheet generator. The user will record themselves perform-
ing a simple song that they wish to share with others, sub-
mit the recording, and receive a transcription of their per-
formance for both personal use and distribution to similarly
interested musicians.

Our application will focus on accuracy regarding the
notes and rhythm of the piece, as these are the core as-
pects of early musical instruction. This means the primary

challenges are determining a near-perfect accurate analysis
of pitch and rhythm from audios that can vary greatly in
length, tempo, musical range, etc. In order for the project
to be both applicable for all potential users, the applica-
tion works with the users’ chosen parameters and applies a
one-size-fits-all method to determine how to get the most
accurate transcription.

Glossary of Acronyms

Any acronyms used are defined in-line.

References

[1] Francois, What is the signal-to-noise ratio? Can we
improve it and if so, how?

[2] SciPy Documentation https://docs.scipy.org/

doc/scipy/index.html

[3] Vexflow JavaScript Music Notation and Guitar Tab-
lature : By Mohit Muthanna Cheppudira https://www.

vexflow.com/

https://blog.son-video.com/en/2021/03/what-is-the-signal-to-noise-ratio -can-we-improve-it-and-if-so-how/#:~:text=It%20is%20generally%20considered%20that,or%20more%20for%20a%20preamp.
https://blog.son-video.com/en/2021/03/what-is-the-signal-to-noise-ratio -can-we-improve-it-and-if-so-how/#:~:text=It%20is%20generally%20considered%20that,or%20more%20for%20a%20preamp.
https://docs.scipy.org/doc/scipy/index.html
https://docs.scipy.org/doc/scipy/index.html
https://www.vexflow.com/
https://www.vexflow.com/


18-500 Design Review Report Template - 18 January 2022 Page 8 of 8

Figure 2: Gantt Chart


	INTRODUCTION
	USE-CASE REQUIREMENTS
	ARCHITECTURE AND/OR PRINCIPLE OF OPERATION
	DESIGN REQUIREMENTS
	DESIGN TRADE STUDIES
	Sliding Window of Discrete Fourier Transform
	Signal-To-Noise Ratio of Input Audio File
	Preprocessing of the Signal
	Finding onsets in the input signal

	SYSTEM IMPLEMENTATION
	Preprocessing
	Pitch Processor
	Rhythm Processor
	Integration System
	WebApp Interface
	Vexflow

	TEST & VALIDATION
	Tests for Pitch Processor
	Tests for Rhythm Processor

	PROJECT MANAGEMENT
	Schedule
	Team Member Responsibilities
	Bill of Materials and Budget
	Risk Mitigation Plans

	RELATED WORK
	SUMMARY

