
1
18-500 Final Report: Team D7 05/05/2023

accompanyBot
Aden Fiol, Rahul Khandelwal, and Nora Wan

Department of Electrical and Computer Engineering, Carnegie Mellon University

Abstract—For musicians looking to play along with
piano harmony, finding piano accompanists can
sometimes be a difficult and costly task. While
musicians in these situations might be able to turn to
cheap MIDI recordings, the digital sound does not
match the acoustic quality of a real piano. On the other
hand, high-end player pianos are too expensive for the
average person’s budget. With our accompanyBot, we
have created a portable system capable of reading sheet
music and playing the piano parts.

Index Terms—microprocessor, MOSFET, Optical
Music Recognition, piano, power, Raspberry Pi, robot,
solenoid, tempo, time signature, XML.

I. INTRODUCTION

THIS project seeks to improve the playing experience for
musicians who are looking for accompaniment while
practicing and performing alone. Musicians and singers
often rehearse music in ensembles with a pianist to emulate
a performance-like setting. This enables the musicians to
harmonize with each other and get a better sense of group
dynamics and tempo. However, different individuals
naturally operate on different schedules and cannot meet
with others every time they practice. In these cases,
individuals practicing alone would still desire piano backing
to keep time in preparation for group rehearsals.
Additionally, soloists who are performing a piece that
involves piano accompaniment may not always be able to
find a piano accompanist who can practice and play with
them for their big performance. Additionally, the cost to
hire a professional piano accompanist at the average hourly
wage of $38.68/hour [1] may be a barrier for amateur
musicians who are just starting out their solo careers.

The accompanyBot provides a comprehensive solution
to service these goals. From a simple control interface on
the user’s computer, users are able to upload a file of sheet
music and control our custom hardware that is capable of
playing the piano part on a piano. Our portable physical
interface that mounts to the piano will allow users to pick
up and place accompanyBot on various pianos in different
locations. With the overall cost of our entire implementation
being only $226.51, the accompanyBot is more affordable
than hiring piano accompanists after just 7 hours of use.

While there are existing technologies that users may be
able to utilize to meet similar needs, they are not without
their downsides. On the low-budget side, users might turn
to MIDI recordings to play along to during practice.

However, the sound quality of digital recordings cannot
match the acoustics of physical pianos. For soloists who
wish to perform at recitals and in professional settings,
MIDI recordings will not suffice for the formal atmosphere.
On the other side of the spectrum, high-end player pianos
that have actuators embedded within the piano may have
the desired sound quality but are also very expensive, with
prices that can reach above $100,000 USD [2]. Moreover,
these player pianos are upright and grand pianos. Thus the
size and weight of these instruments make it impractical for
musicians to move them every time they practice in a
different place or perform at different venues.

II. USE-CASE REQUIREMENTS

There are several use-case requirements that our design
must meet to ensure user satisfaction.

A. Note Playing Accuracy
Since the users will be utilizing our system to

accompany them in performances, the accompanyBot must
play the correct notes. Our note playing accuracy relies on
many different factors, such as the sheet music parser, the
note scheduler, and the circuitry being built properly. Since
each area can introduce some small error that propagates
down to the piano, we cannot guarantee complete accuracy.
However, integrated together, these three major components
of our project must still be able to maintain a degree of high
note playing accuracy such that there are no mistakes
noticed by the average listener.

B. Tempo Variability
Since the accompanyBot is used for both practice and

performance, the user should be able to adjust the tempo of
the piano player so that they can start practicing a piece at a
slower pace and work their way up for the final
performance.

C. Tempo Accuracy
Due to the importance of timing in music, the user will

demand high accuracy with respect to the accompanyBot’s
playing tempo. This allows the musician to keep time with
the piece and stay synchronized if their goal is to eventually
play along with others. Thus we have set the requirement
for the tempo accuracy to be 100% accurate to the tempo
specified by the sheet music or that the user inputs. The
exception to this requirement is the case where the written
tempo exceeds the physical limitations of the solenoid, in
which case tempo accuracy will be guaranteed up until the
max tempo limit derived from the max switching rate of the
solenoids.

2
18-500 Final Report: Team D7 05/05/2023

D. Low Latency
A pleasant user experience is a priority consideration for

the design of our product. Ensuring a fast response between
the user interface and the physical system is very important.
We have decided to guarantee a response time within 150
ms. According to the NIH, the average human response
time to auditory stimuli is around 140-160 ms [3].
Guaranteeing 150 ms will allow for a seamless transition
from pressing play to hearing the piano being played.
Another area of latency we had to address was the time
between music upload and when the system is ready to play.
Since the OMR time is variable with the number of pages
and the result of the computation can be cached for reuse,
this was not a factor in this latency metric. Rather, after the
OMR has processed sheet music into XML, we sought to
reduce the file transfer time of the XML from the computer
running the application to the RPi. Since this transfer is
being done via internet packets, we constrained the file
latency to the maximum reasonable time a human typically
will wait for a webpage to launch. This limit is
approximately 2 seconds [4].

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

In order to operate efficiently and accurately, our system
is divided into three distinct subsystems:

1. Local Application
2. Signal Coordination
3. Physical Interface

The block diagram in Fig. 1 depicts the three subsystems
and their interconnects.

The Local Application (1) provides the user interface
where users insert pdf or png files of high resolution1 music
scores. Additionally, user actions, such as playing or
pausing the accompanyBot, modifying the music playing
tempo, and jumping to an alternative region or measure of

the piece, are received via the local application and sent to
the rest of the system. Once users insert their music score,
the app is directly responsible for making use of Audiveris,
an open source Optical Music Recognition software, to read
the notes from the score into an XML file that is then sent
downstream through secure file copy over the internet.

The Signal Coordination stage (2) is composed of an
Arduino Uno and Raspberry Pi 4. The Arduino acts as a
proxy to facilitate USB-to-UART data communication
between the GUI and Raspberry Pi. The Pi acts as a
responsive piano-playing controller, taking in raw or
transformed data from the user and responding by
transmitting signals to control the hardware within the
physical interface. The necessity for this separation is for a
couple of reasons. Firstly, the Audiveris software is best
built and run in a Windows environment which is
incompatible with Raspberry Pi’s native operating system.
The RPi 4 is responsible for running the note scheduling
algorithm and ON/OFF signal delivery to the hardware
solenoids. Note scheduling is conducted via the
manipulation of data constructed by the music21 library.
Specifically, music21 is used to preprocess the XML
received so that the Raspberry Pi can easily extract the note
pitches and octaves. Alongside handling music notes, the
RPi 4 accepts requests from the local application
corresponding to specific dynamic actions the user makes.
These actions flow through the main control function to the
GPIO pins of the RPi 4.

The electrical signals sent across the GPIO pins are
received by 12 transistors from within the physical interface
(3). Low pin signals at the gates of the transistors put them
in cut-off, while high pin signals above the threshold
voltages turn the transistors on. Based on which transistors
are on or off, current will flow from the power supply to the
corresponding solenoids, thereby inducing a magnetic field

3
18-500 Final Report: Team D7 05/05/2023

that actuates a shaft to press down notes on the piano.
Notable changes to the architecture from our design

report include the addition of the Arduino Uno,
modification to the XML transmission method,
modification to the chassis design, and elimination of one
solenoid and transistor from the physical interface. The
Arduino Uno was a necessary component as the RPi does
not transmit and receive data over USB easily. By
connecting the Windows computer to the Arduino over
USB and connecting the UART TX and RX pins on the
Arduino to the RX and TX pins respectively on the RPi,
end to end communication is achievable. While we can
transmit small byte messages like start/stop/tempo change
commands from the app or measure changes from the RPi
in a few milliseconds, it takes much too long to transmit full
XML files of songs that are hundreds of kilobytes in size.
We decided to transmit the XML instead wirelessly via scp,
which drastically reduced the number of seconds taken.
Furthermore, we initially planned on having the chassis
suspended over the piano keys using two metal rods.
Unfortunately there were too many variables to account for,
so instead we used the characteristics of the keyboard as
support rather than adding our own support beams. This
caused us to change the shape of the chassis which was not
too much of a hassle fortunately. Lastly, we chose to restrict
the number of solenoids to cover only twelve keys in a
fixed arrangement over one octave as our keyboard did not
have enough space between black keys such that an
additional solenoid could fit. This change is the main reason
that we had to limit our playing range to one octave that
specifically starts on a C.

Fig. 2 below shows the entire system with all the
subsystems integrated together.

Fig. 2. Overall System

IV. DESIGN REQUIREMENTS

A. OMR Parser Accuracy
In order to take advantage of pdf/png inputs, the

accompanyBot must be able to parse music scores with high
accuracy. We are using OMR software to handle the
parsing. Though perfect note parsing would be ideal, there
is some room for error as the primary function of
accompanyBot is to provide accompaniment. For this
reason, our users would find a minimum of 95% accuracy
in note parsing to meet their standards for practice or
performance. An accurately parsed note is defined as a note
whose parsed pitch and duration match the original note.

B. Note Scheduling Accuracy
Once the OMR parser accurately translates the sheet

music to an XML file, the note scheduling algorithm should
convert that into correct and properly timed signals that are
sent to the physical circuitry. This is imperative for the
validity of our system since music is all about timing and
pitch correctness. Without a high accuracy of note
scheduling, the users of our product would never be able to
practice and perform with our accompanyBot. Since note
scheduling accuracy is of significant importance we are
setting this requirement to be 100% accurate in tempo and
rhythm. Furthermore, this requirement assumes that the
tempo and shortest length note fit within the constraints of
our system. This requirement is relative to the output of the
OMR parser since the note scheduling algorithm has no
control over the accuracy of the upstream parsing.

C. Power Consumption
Larger chords and simultaneous note presses will

demand more electrical work to induce the solenoid
motions. Since each of the key pressing solenoids will draw
a non-negligible amount of power, we must maintain our
system to be safe for the average individual to attach to
their piano or keyboard. We found that the average
electronic keyboard can draw up to 60 watts of power [5].
For this reason, the hardware component of the robot has a
quantitative requirement to never consume more than 60
watts of power. This will ensure users have a safe playing
experience while also not overcharging their power bill.

From the data sheets of our solenoids, an activated
solenoid requires a max of 12V and 1A. Based on
measurements we gathered from initial testing, we were
able to operate the solenoid with 10V and 0.65A. However,
to provide a buffer, we will use the maximum values for
power calculations. Thus the power required to activate one
solenoid is P = IV = (12V)(1A) = 12W. Therefore our
system only supports five or fewer solenoids pressed at
once.

In cases where the number of notes played at one time
exceeds five, which will cause the power to exceed the
safety threshold, the additional notes simultaneously
scheduled to play should be omitted from playing. This
restriction will be enforced by the scheduling algorithm that
decides which solenoids to activate. Additionally, the power
supply we are using only outputs a maximum current of 5A,

4
18-500 Final Report: Team D7 05/05/2023

so by ensuring that the voltage input is only 10V, we can
keep our maximum power below the threshold.

V. DESIGN TRADE STUDIES

A. OMR Framework Selection
We opted for Audiveris as opposed to other OMR

frameworks primarily due to its high accuracy of
identifiable notes, ability to segment multiple parts as
opposed to other frameworks available, and capacity to
recognize and parse polyphonic music. Initially, we had
considered using an openCV and tensorflow based ML
model built for Python. This was so that our UI hub
application, which has also been built with Python, could
directly process the music scores without needing to contact
an external application. Early on we tested a pre-trained
model developed by researchers in Montreal, Alicante, and
Valencia [6]. Overall parsing time for a single page was no
more than 10 seconds. However, the model was built to
process strictly monophonic scores, which did not
completely satisfy our use case. Another Python based
solution we tested was Oemer [7], which could be easily
installed and used via pip and import statements. Oemer
met our requirement of processing polyphonic scores but
failed to meet our note accuracy and processing time
requirements. Initial testing yielded close to 50% of correct
notes placed in the XML file structure, and also the time to
parse a single page of notes from two staves exceeded a
minute.

Eventually we settled for the Audiveris OMR toolchain.
Despite having a complicated build process, Audiveris
proved to be the best open source solution for our project.
Testing its OMR engine on multiple page scores yielded an
average time of 20 seconds per page, not unreasonable for a
user to wait the one time cost. Additionally, the outputs it
produced had seamless integration as input to the music21
Python library, a framework that was essential for us to
schedule notes on the hardware. The traditional usage of
Audiveris is through its own GUI. However, since we will
build out a separate GUI for the accompanyBot user
interface, we are making use of the developer command line
usage of Audiveris as referenced in its documentation [8].
To further confirm the effectiveness of Audiveris, we
played back the MIDI equivalent of XML generated from
Chopin and Scott Joplin scores. Aside from the digitized
sound of the player and a few odd notes over the course of a
~3 minute piece, the audio matched the written notes.

The last option for us was to build an OMR engine from
scratch. Manually crafting an ML model or framework
would have gone out of the scope of our goals. From our
understanding, many researchers have spent years
developing and improving the models for the machine
learning and optical classification of notes. They have not
yet reached a complete solution, though a good
approximation is achievable. Overall, integrating Audiveris
allowed us to give better attention to the other subsystems
of the accompanyBot.

B. XML File Transfer Method
We initially planned on using the serial communication

channel between the computer and RPi to also send the
parsed XML files. However, after initial testing of sending
an XML file over UART, we measured a 13 second latency
for sending a one-page 36 KB file. This would scale
linearly with the number of pages in the sheet music. We
decided that this delay was not sufficient for our low
latency use case requirement. Thus we switched to sending
the XML files via secure copy over the network, which
resulted in file transfer taking less than 2 seconds on
average. The downside of this approach is that the RPi must
be connected to the same network as the computer running
the local application. Ultimately we decided it was worth
switching to scp since the desire for a fast response every
time a new file is uploaded is worth the one time cost of
setting up the wireless connection.

C. Scheduling Microcontroller Selection
When choosing a specific microcontroller to act as the

note scheduler and mediator between the software and
physical circuit of our project, we prioritized two
characteristics: compute power, and ease of integration with
other parts of the project. We originally considered a high
number of GPIO pins to be a criteria as well, although our
choice to limit the project’s scope to just one octave made it
so that the number of pins available was no longer a
limiting factor. The three options we considered using were
the Arduino Uno, STM32F4, and RPi 4. The former two
candidates were considered because members of the group
had used them for previous projects and classes, while the
latter was considered due to its solid reputation for being a
reliable general-use microprocessor.

Due to the need to parse the XML file into usable data
and schedule signals at specific times, we required a
component that had significant computing power and
memory available to store the data. This led us to choose a
microprocessor over a microcontroller like the Arduino Uno
that is more specialized for specific tasks, so we ruled out
the Arduino Uno as the agent to run our scheduling
algorithm, although later on we still made use of its UART
capability.

The second criterion was crucial in deciding which
microprocessor to use for the accompanyBot. Since we
were developing the user interface in Python, we felt that
having the coding environment on the microprocessor also
be in Python would make it easier to handle the
communication between them through libraries such as
pySerial, which we also have experience with. In addition
to this, we found through our initial search that there were
many Python packages relating to analyzing music, so we
could fall back on them when performing the XML parsing
and note scheduling (This is precisely what we did in the
end with our choice to utilize the music21 library). Thus,
for the reasons specified above, we chose to use an RPi 4
from the class inventory.

D. Solenoid Selection
There is a large variety of solenoids on the market. They

5
18-500 Final Report: Team D7 05/05/2023

vary in terms of force, size, type, and electrical
requirements. We decided to purchase three different
solenoids that varied across each category: a 5N Adafruit
Small Push-Pull solenoid, a 25N Adafruit Large Push-Pull,
and a 25N Pull Type Open Frame Solenoid Electromagnet
Linear Motion JF-1039.

During our testing of the three solenoids, we noticed
major downfalls for two of the solenoids which resulted in
us choosing the 25N Adafruit Large Push-Pull solenoid.
The 5N Adafruit Small Push-Pull solenoid struggled in
three categories: stroke length, force output, and power
consumption per unit of force. Our project needed solenoids
that would be able to reach the keys from a reasonable
distance away and with enough force to depress the keys
while also not consuming too much power. Constructing a
mechanism that would hold the weight of all the solenoids
and circuitry close enough to the keyboard without falling
over would be difficult. Thus, a stroke length that is too
small would be difficult to design around. Additionally,
from our initial testing, 5N was not enough force to depress
an average piano key. Furthermore, it consumed the same
amount of power as the large push-pull solenoid, but the
power consumption per unit of force was much higher, so
for those reasons, the 5N Adafruit solenoid would not work
within the constraints of our system. The 25N Pull Type
Open Frame Solenoid was lacking in one major area: the
fact that it was a pull type rather than a push-pull solenoid.
When researching solenoids we were not aware that the pull
type solenoid would not be fixed in place. When we
received the part, we discovered that the ferromagnetic rod
for depressing a piano key was free to fall out of its exterior
metal casing. This was not what we desired. Instead, we
preferred the 25N Adafruit solenoid since its ferromagnetic
rod was fixed and did not fall out of the external metal
casing.

Overall, the design shortcomings of two out of the three
solenoids led us to conclude that the 25N Adafruit
Push-Pull solenoid was the best option for our
accompanyBot. We are able to get a lot of force per watt
and a high stroke length without the internal rod falling out
of the external metal casing, making it the logical option to
use. The final factor that solidified our decision was the
price point of the 25N Adafruit Large Push-Pull solenoid.
Since Adafruit offered a discounted per unit price when
buying in bulk, the price of each solenoid was cheaper than
other similar solenoids on the market.

VI. SYSTEM IMPLEMENTATION

Our system can be broken down into three domains: a
translation path, notes scheduling path, and execution path
depicted in Fig. 2. Subsections A and B make up the
translation path, C describes the intermediate path between
translation and notes scheduling, D goes into depth
regarding the RPi operation for scheduling, and E lays out
our setup and connection of the moving parts and
electronics built in-house.

Fig. 3. Visualization of subsystem flows

A. Computer GUI Interface
The user will have the ability to control the

accompanyBot over the GUI software on their computer.
The necessity for ease of use and visual appeal is important
here, so we used the pyGame library in Python to build out
this application interface. Fig. 3a illustrates the early model
of our application’s GUI, while Fig. 3b shows one view of
the completed implementation that showcases the different
features of the app.

The user is able to choose their input sheet music file
and output source through buttons labeled “Import Music
PDF/PNG” and “Connect to Player Device” respectively.
The user can manually specify the beats per minute in the
tempo window of the application. Additionally, a play
button and slider allow the user to direct the RPi to
start/stop playing or change measures respectively. For
convenience, a current measure playing slot shows what
measure the notes scheduler is currently on.

Fig. 4a. Early Model of GUI Application

Fig. 4b. AccompanyBot Python Application

6
18-500 Final Report: Team D7 05/05/2023

After building out the sketched design, some noticeable
changes are apparent. Firstly, the sheet music of the score is
still displayable within the app. The difference now is that
before displaying the score, the application checks its local
cache to see if it has already processed a score. If so the
user is prompted with the purple message block in Fig. 3b.
Additionally, the initial design did not incorporate buttons
to increase the tempo, relying on just “up” and “down”
keypresses to modulate the tempo. The finished app makes
accessibility a priority and provides two sky blue tempo
buttons in supplement of keypresses. Lastly, some display
changes were made to the change measure buttons, current
measure indicator, connection button, and the incorporation
of a fading out alert message.

B. Music Score Reader
When a music score is imported into the hub

application, if a corresponding music XML transcription is
not found within the application cache then the software
begins a subprocess to execute the Audiveris OMR engine.
Due to the limitations of Audiveris dependencies, it must be
run only on Windows. Additionally, an install of Java 17 is
required to enable Audiveris. For this reason, the hub
application executes a PowerShell script to launch
Audiveris and process the music score image into an XML
file. This XML file then gets saved to a desired output
location and also gets added to the application cache for
repeat usage efficiency.

C. Computer to Microprocessor Communication
We will be handling the communication between our

laptop and the RPi 4 through a serial USB connection with
an Arduino piping the communication stream between
devices. We believed this was the simplest method of
implementation for communication since the user can
directly connect the finished product to their computer with
a single cable. The connection between the Arduino and
RPi will already come pre wired so that no additional setup
is necessary there. We have utilized the pySerial library for
transmitting the files and command bytes that will let the
RPi 4 know to prepare for a file, start playing, stop playing,
or change the tempo. In the event there is a disconnection
between the computer and Arduino, the simplicity of the
pySerial library enables a simple reconnection of the wire
for the system to continue operating as intended.

Before building out this serial solution, we considered
the possibility of the latency for the XML file transfer being
too high. This became a reality after some initial tests, so
we had to switch to a wireless SSH protocol. We opted to
scp the file from the computer over to the RPi, bypassing
the Arduino Uno in the middle. This was effective as both
Windows and Linux support this methodology. Traditional
scp requires the user to enter the login password of the
receiving device. This would become cumbersome and
unintuitive for our ideal user. We therefore had to ensure
that the public and private RSA keys were appropriately
distributed between subsystems to eliminate the password
stage. Since scp simply copies the XML file into a directory
on the Raspberry Pi, we still use the serial line to
communicate the name of the file to be played, since the

program needs to know when to switch pieces or when a
new file has been sent by the user.

D. Note Scheduling
The first step of the note scheduling process involves

parsing the XML file to extract the key signature, time
signature, tempo, and individual notes. To aid in the
scheduling task, we have employed the Python library
music21 to convert the XML file to a data structure that is
more readable and allows for easy access to the musical
data. Through the parse method of the library, we can
extract the essential information needed for scheduling: the
clef, tempo, key signature, and an iterable array of notes.
Additionally, the note object includes information about
their pitches, durations, and octave. Fig. 5 illustrates an
example of the type of output achievable by using music21.
When the snippet of sheet music shown in Fig. 4 is
converted to its XML representation, the entire file consists
of 184 lines of code. However, after a simple parsing with
music21, all the necessary information is condensed into a
20 line Stream object. An important detail to note is that the
offset, which is the number in curly braces, indicates the
distance in quarter notes that a note or musical feature is
located from the beginning of the Stream. The offsets are
used by our scheduling algorithm to determine where in the
piece a note is played.

The general approach to scheduling is to convert the
array of notes in a piece into a data structure that holds
information about which notes to press down or lift up at
each specific measure and where in the measure that note
action occurs. Specifically, this data structure is a dictionary
with measure number as the key and dictionaries as the
value. The keys of the nested dictionary are the offset in the
measure while the values are a set of notes to play at that
specific offset in the measure. When the scheduler iterates
through the array of notes mentioned above, it extracts the
note’s measure and computes its fractional offset in the
measure using the offset. It then creates a note object
containing the pitch, octave, and state (for if the note’s
corresponding GPIO pin should be on or off at that time
instance) and places it into the appropriate set.

Fig. 4. Quarter note C scale in 4/4 time signature at 60 BPM

7
18-500 Final Report: Team D7 05/05/2023

Fig. 5. Example of the compact data structure that is produced from
parsing the C scale below using music21

In a loop in the main control function, when a piece is
playing, the RPi computes the current measure and the
offset within the measure based on the startTime and
startMeasure variables. To change the location in the piece
that the piano player starts playing at, the local application
sends a byte command that indicates the new measure
number. The RPi reads this command, updates the starting
measure and start time, and then continues executing the
loop. Based on which measure is computed, the RPi reads
the data structure to see if there are any notes at the specific
measure and offset. If it finds a set of playable notes, the
control function will output the correct digital output of the
GPIO pins based on the state of the notes in the set. During
this process, if more than five notes are scheduled, the
function will only turn on five GPIO pins and prevent
additional ones from turning on.

The main timing parameter that is relevant to the
scheduler is the duration of one measure. Equation (1)
shows how to calculate the duration in nanoseconds of one
measure. This is computed in nanoseconds because the RPi
control function uses the system time in nanoseconds for

the highest degree of precision. The beats per measure value
is found from the beatCount attribute of the time signature
parsed by music21.

(1)𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 60,000,000 𝑛𝑠/𝑚𝑖𝑛𝑢𝑡𝑒
𝑇𝑒𝑚𝑝𝑜 (𝑏𝑒𝑎𝑡𝑠/𝑚𝑖𝑛𝑢𝑡𝑒) × 𝑏𝑒𝑎𝑡𝑠/𝑚𝑒𝑎𝑠𝑢𝑟𝑒

With this process, the scheduling algorithm only needs
to run once to create the data structure. To change the speed
of the playback, the RPi simply recomputes the duration of
a measure with a new tempo value using the formula
mentioned earlier.

We found the physical switching limitation of the
solenoid to be about four times per second, which
corresponds to 125ms to depress the solenoid and 125ms to
retract it. As a result, notes cannot have a duration smaller
than 125 ms. This places a cap on the max tempo our piano
player can play at since two successive presses of the same
key cannot be scheduled in a smaller interval than this time
interval. Thus during the note scheduling process, we find
the value of the smallest note and calculate the max tempo
using Equation (2). From this, we can determine whether or
not the piece is playable at the specified tempo. If it is not,
we communicate the calculated max tempo back to the local
application so that users cannot input anything higher than
the max. In the case where the sheet music’s tempo is
higher than the max, the piano player defaults to the
calculated maximum.

(2)𝑇𝑒𝑚𝑝𝑜 = 60,000,000 𝑛𝑠/𝑚𝑖𝑛𝑢𝑡𝑒
𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑛𝑜𝑡𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 × 𝑏𝑒𝑎𝑡𝑠/𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑛𝑜𝑡𝑒

E. Physical Components
The physical circuitry consists of multiple components,

such as GPIO inputs, an array of MOSFETs, solenoids,

8
18-500 Final Report: Team D7 05/05/2023

diodes, and a power supply. Each component provides an
essential role in making the system able to move and play
the piano correctly.

The power source provides the voltage and current
needed to actuate the solenoids. The power source has a
voltage rating of 30V and a current rating of 5A. With each
solenoid drawing at most 1A at 12V, this should be all that
we need to power the system since no more than 5 keys will
be pressed at a single time.

The output GPIO pins from the RPi 4 are connected to
the gates of our MOSFETs. The gates will receive a high or
low signal depending on the output of the scheduling
algorithm. When high, this signal will force the MOSFET
out of cut-off and allow current to flow from the source to
the drain and through the solenoid since they are in series.
This will power the solenoid and actuate the piano keys
when properly scheduled.

The power source will be supplying the current for the
25N Adafruit Large Push-Pull solenoids when the
MOSFETs are not in cut-off. The solenoids are large
inductors that have a metal rod fixed inside of the coil.
Once current is flowing through the inductor, it induces a
magnetic field that causes the metal rod to move. The
solenoid retracts once the current is cut from the inductor,
hence the push-pull name. These solenoids will be pushing
on the piano keys depending on the signals it receives from
the microprocessor after the notes have been scheduled.

The last major component of the circuit are the 1N4004
diodes. The diodes are placed in parallel with the solenoids
to prevent flyback voltage spike when the MOSFETs are
turned off and the current supplied to the inductor is cut off.
These diodes are needed so that we do not damage our
power supply or microprocessor.

Lastly, we have constructed a chassis to house the
solenoid controlling circuit as well as the solenoids. The
chassis suspends the solenoids above the correct piano keys
and once a solenoids’ respective MOSFET turns on, the
piano key is played. The chassis was designed using
Solidworks and constructed out of four parts: the base
where the solenoids sit, the walls that encase the solenoid
and protoboard, a support beam to hold the chassis over the
piano keys, and a top cover that closes the chassis.
Additionally, the keyboard has been modified with some
adhesive velcro which sticks to velcro strips placed on the
outside of the chassis in order to stabilize it while the
solenoids are moving. All of these components and
modifications help successfully play the piano.

Fig. 7. Chassis Implementation

VII. TEST, VERIFICATION AND VALIDATION

Table I below shows a compilation of the test results for
our design requirements and quantitative use case
requirements.

TABLE I. QUANTITATIVE TEST RESULTS

Quantitative Metric System Performance

> 95% OMR accuracy of
note pitches and note values
for 400+ DPI music scores

~99% accuracy for easy to
moderate playing difficulty
scores of 240 DPI

100% tempo accuracy 100% accurate between
30 BPM-150 BPM

< 150 ms latency between
pressing the start/stop button
and hearing a response

Round trip communication
latency of ~70ms

< 60W average power
consumption

Max power of 46.8W

Table II below provides a compilation of the results for
the more qualitative use case requirements we had.

TABLE II. QUALITATIVE TEST RESULTS

Qualitative Metric System Performance

Note Playing Accuracy Pieces played on the
accompanyBot sound the same as
the MIDI file to our ears

Tempo Variability User is able to change the piano
player tempo from the app

Latency No delay noticeable to our ears
when starting and stopping a piece

9
18-500 Final Report: Team D7 05/05/2023

A. Results for OMR Parser Accuracy
Our use case was to process relatively simple to

moderately complex scores of piano music. For those, we
desired at least 95% of accurate note values and lengths.
Still we ran tests on all types of sheet music to determine
results.

For each score tested, after the OMR Parser completed
and produced an XML file, we used the music21 library to
convert the XML file back to a pdf of the sheet music or
MIDI file and compare the original sheet music to the
newly generated sheet music/audio. Counting the number of
correctly parsed notes and features and dividing by the total
number of notes and features will show how much of the
music matches the original, determining the OMR parser
accuracy. For exceedingly large and complex scores like the
aforementioned Chopin piece, accuracy was determined by
taking the ratio of time where the song sounded correct after
playback through MIDI. Scores with a countable amount of
notes were manually verified for accuracy. The following
Fig. 9 details the OMR testing results.

Fig. 8. OMR Testing Results

B. Results for Note Scheduling Accuracy
In order to test and measure the note scheduling

accuracy, we tested the tempo played and rhythm of the
notes played by our solenoids. Since the solenoids are
aligned directly above the correct keys and are turned on
based on the notes parsed, we believed we did not need to
test that the correct pitches of notes were pressed since the
correctness is based on how accurate the XML file is parsed
by the music21 library which was out of our control.

1) Results for Tempo Accuracy
In terms of testing the tempo accuracy, we input sheet

music with four quarter notes per measure and varied the
tempo with serial commands. We then measured the tempo
using a metronome app and compared the measured tempo
with our input. From this testing method, we found that the
tempo matched the input from 30 BPM to 150 BPM.

2) Results for Note Playing Accuracy
For evaluating the rhythm accuracy, we qualitatively

compared the sound of the notes played on the piano with
the output of a MIDI file generated by the parsed XML file
for a sample piece (the Charlie Brown Theme). We chose
this method rather than comparing the piano player to a
human-played piece because this mechanism of testing
isolates small errors that may occur earlier on through the
OMR parsing, as both the digital audio and notes played by
the accompanyBot must rely on the transcribed XML. From
this test, we found that the two audio streams sounded
similar in rhythm, so we determined that this was sufficient
for our use case requirement of not having any mistakes
noticeable to the average listener.

C. Results for Power Consumption
After constructing the accompanyBot circuitry, we

tested the maximum power consumption in the worst case
by turning on five of the MOSFETs such that current is
being drawn through all five solenoids. We then measured
the voltage output by the power supply and the total current
through the MOSFET channels and solenoids. The result
was 12V supplied with about 0.81A going to each solenoid.
This netted a maximum power of 48.6 watts. Since our
maximum power is 48.6W, our average power is guaranteed
to be below 60W. Thus we met our design requirement of
maintaining average power less than 60W.

D. Results for Latency
The latency was measured as the time taken from when

the longest user action signal is sent from the hub
application to the microcontroller plus the time until the end
of the longest response is received back by the hub
application from the RPi microcontroller. After we built out
the communication segment of the accompanyBot, we
determined which frequent signal(s) had the longest byte
sequences. These typically did not exceed more than 4 bytes
in length. Then, we wrote test code using timing functions
for python. We observed the longest round trip
communication time to not exceed 72 milliseconds.

10
18-500 Final Report: Team D7 05/05/2023

VIII. PROJECT MANAGEMENT

A. Schedule
The Gantt chart in Fig. 10 below lays out different

deliverables from each of us that we accomplished each
week of the semester. We also have assignment due dates
on the last few rows of the Gantt chart.

We removed the 3 weeks of slack and extended some of
our deliverable timelines throughout those slack weeks.
Prototyping and getting the design right for the chassis was
a major cause of this change. Additionally, integrating
everything into a cohesive product needed more time than
initially planned. Otherwise, our schedule stayed on course
for most of the semester.

B. Team Member Responsibilities
Our team responsibilities were divided into the three

major components of our project: the OMR integration and
application development, the microprocessor interface and
note scheduling algorithm, and the physical circuit
implementation. Rahul was responsible for OMR
integration and application development. Nora was
responsible for the microprocessor and note scheduling
algorithm. Aden was responsible for the physical circuit
implementation. This division of labor remained consistent
with what we laid out in our design review.

Naturally, these three sections of our system relied upon
each other for different input and output information, so we
worked together throughout the project on problems where
our sections intersected. For example, we all relied upon the
note scheduling and microprocessor section of the project,
so we spent significant time working together on the
integration of the RPi to the computer and the RPi to the
physical circuit. Additionally, Aden’s and Nora’s areas of
expertise intersect greatly, so they have both made
contributions to one another's sections of the project in
order to ease the workload and guarantee a working
implementation. Rahul has also helped Nora find Python
libraries that aid in parsing XML files and storing
information in different OOP structures. Rahul and Nora
were also responsible for agreeing upon a common protocol
for the serial communication.

C. Bill of Materials and Budget
All in all, we have spent $455.59 of our total budget. Of

the money we spent, $226.51 is needed for our final
implementation. A detailed breakdown of the bill of
materials for the final product can be found in Table 1 at the
end of this document. The grand total in the table does not
include money spent on the test solenoids and spare parts
we purchased in addition to what is strictly necessary.

While we initially purchased 15 solenoids so that we
could play any octave with any starting key, our finished
project only makes use of 12 to play an octave range
starting on a C. The remaining three solenoids along with
two additional solenoids we bought are now kept as spare
parts in case issues arise during our demo. We also did not
realize an Arduino or some form of UART would be needed
in the design report. Fortunately, the Arduino Uno was of
no additional charge to incorporate.

Some of the new costs incurred since the design report
include a USB-C to USB-A 2.0 cable to power the RPi and
filament for 3D printing the physical solenoid enclosure.
We also bought velcro strips to secure the case to the piano.
The overall construction costs were estimated to not exceed
$200 in total at the design stage. We stayed within our
estimate by purchasing only $18.99 worth of filament and
avoiding having to use additional materials.

D. Risk Management
One main risk involved in our project is the high degree

of accuracy needed in terms of meeting timing
requirements. Since some music may be rhythmically
complex and very fast-paced, it was difficult to capture
those melodies with our system. To mitigate this risk, we
limited the scope of possible user inputs to a library of sheet
music that does not put strain on the accompanyBot. During
our demo, we will still allow users to select different songs
to upload, but they will all be chosen ahead of time by us.
While planning out the build process, we acknowledged

that physical parts are fragile and often break when
constructing something new. Therefore, we purchased
additional solenoids and MOSFETs to replace anything that
could have broken when building and integrating the whole
system. Even with these precautions, after essentially
completing our product, the transmission pin of the RPi had
stopped functioning, which required us to acquire a new
device from the receiving desk. Our design was very
modular however, so after the delay of having to switch out
the RPi, integrating it only took a few minutes. We also
kept additional room in our budget in case more expensive
regions of the product were to fail.

Once we determined our actuating solution with the
solenoids purchased, we realized that extending the design
to cover the range of the entire piano would go over our
budget. The only way to mitigate this risk was to limit our
design to play one octave of keys. In terms of moving this
project forward, we could extend the design at an increased
financial cost.

For each of the subsystems that we worked on, there
were many risks taken by having to learn new technologies.
This included learning Powershell scripting, Solidworks,
various python libraries, and the Raspberry Pi setup. We
made sure we allocated extra buffer time into our schedules
to permit these stages of initially slower development as
well as to overcome the challenges that would come with
integration. As referenced earlier, only through integration
did we discover the necessity of an Arduino Uno to foster
the communication between the application and RPi. This
brought about another potential risk of the latency time
increasing beyond our desired threshold. With sufficient
testing, we determined that the increased latency was still
within bounds of our requirements.
In general, all of us have stayed on schedule and have

been able to make consistent weekly progress. Since the
design report we overcame the major risks of not having
any working subsystems by completing the local
application with a built-in music reader, the notes scheduler

11
18-500 Final Report: Team D7 05/05/2023

and signal transmission modes, the overall circuitry, and
casing for the accompanyBot.

IX. ETHICAL ISSUES
One ethical issue related to our product is regarding

public health. The accompanyBot is using a GUI to handle
user input and directions to the robot. Depending on a
user’s eyesight, a user could be photosensitive to their
computer screen when launching the application. Usually
music scores are mainly white, so the mostly bright white
pixels that make up the music preview could potentially
disorient the individual viewing the app with their system at
the maximum brightness setting. We attempted to mitigate
this adverse impact by making the GUI application’s
appearance a dark theme.

We also recognize that this project may require a degree
of hand control from the user. Individuals who may be
capable of singing but lack motor control in their hands will
have difficulty operating the accompanyBot. From a social
perspective this would ostracize these individuals or any
musicians without hands. Fortunately, all commands that
will be executable from the application can be producible
via solely mouse drags and mouse clicks. So, if individuals
were to use an eye tracking module for mouse control they
would be able to regain good control of the accompanyBot.

Considering public welfare, one potential impact for
broader social welfare is the concern that the product would
replace the need for professional piano accompanists, which
might contribute to their unemployment if taken to an
extreme. To prevent this possible outcome, we have focused
on providing a light-weight solution mainly aimed towards
musicians who are on the more amateur side of the
spectrum and would not play solo recitals with hired
professionals immediately after starting out. Thus once they
have practiced with the accompanyBot and honed their
skills enough, they would still require professional
accompaniment in their musical careers. Since the
accompanyBot currently only plays one octave and does not
support variable dynamics, there is still a need for
professional accompanists who are more capable of
highlighting the musicians since they themselves are
musicians and can have a better understanding of the music
compared to the accompanyBot.

X. RELATED WORK

We were curious about related projects that make use of
FPGAs. For MIT’s digital design course, undergraduate
students developed their own accompanyBot-like product
that processes audio from .wav files and plays matching
notes on a keyboard from the output of an FPGA [9].
Similar to us, they made use of Python to gather notes into
organized data structures but instead designed an FSM on
an FPGA to control motors connected to beams that would
rotate and strike the keys, whereas we opted for a Raspberry
Pi that would induce solenoids to strike the keys via a linear
motion.

Our inspiration to use solenoids controlled by a
Raspberry Pi originates from a working keyboard player
published in The MagPi, the official Raspberry Pi magazine
[10]. Their project successfully played monotonic melody
lines on a keyboard. We of course sought to improve upon
this project with the power of music21 and our in-built
notes scheduler, which made the accompanyBot capable of
playing polyphonic melodies and harmonies.

XI. SUMMARY

In summation, our design consists of three main
subsystems: the local application, the signal coordinators,
and the physical interface. The local application consists of
an OMR parser that takes the input of a pdf/png from the
GUI and outputs an XML file containing information about
the sheet music. This XML file then gets forwarded to the
RPi 4 via scp for further parsing. The RPi 4 then uses the
music21 library to extract all the vital information about
note pitch, duration, and time stamp of occurrence. Then the
parsed notes get scheduled and await for the user to begin
playing the piece from the GUI. The communication
between the GUI and RPi gets handled by the intermediary
Arduino. Once the user starts the piece from the app, high
and low signals get sent to the MOSFETs that allow the
solenoids to draw current from the power source and press
down or pull up according to the output of the note
scheduling from the RPi.

Individually, each subsystem when tested was able to
meet the design specifications. In general, all of our use
case requirements were fulfilled as well after considering
the constraints we placed on its scope and use. Limitations
that the system has in its current completed state include
processing higher complexity or lower quality scores,
playing faster pieces and notes outside a one octave range,
and having robust functionality without internet. Improving
the OMR capabilities would likely not happen with
additional time, unless the discovery of a better toolchain
than Audiveris was made. Our choices for actuation could
be changed and improved with an increased budget, but
with more time we may wish to explore a more complex
algorithm that can reuse hardware to robotically move
solenoids up and down the piano. Removing the necessity
of the internet could potentially be overcome by looking
into shared memory options or a faster serial mechanism
than one that is buffered by an Arduino.
After working individually on our subsystems, the major

difficulty was integrating all of these subsystems into one
cohesive product. This challenge is inherent with just about
any project that has so many moving parts like ours. The
major lesson we learned was the importance of dedicating
sufficient time to integration. Early on in the process, we
were aware of how time intensive this phase of the design
process would be. However, despite the fact that we
allocated three weeks of slack time in our initial schedule
plan, we still ended up using all of it and more to fully
complete the integration process. Thus our advice to any
teams that wish to pursue a similar project is to keep pace at
the start of your project and potentially try to be ahead of

12
18-500 Final Report: Team D7 05/05/2023

schedule early so that you have more time to deal with
additional issues and challenges that you inevitably
encounter.

FOOTNOTES
1. High Resolution music scores are limited to those

generated via computer software or transcribed to
modern print quality. The accompanyBot will accept
and attempt to parse low quality or handwritten scores,
however, at the cost of lowered accuracy and overall
performance than the metrics outlined in the use-case
requirements.

GLOSSARY OF ACRONYMS

BPM – Beats per minute
FTP – File Transfer Protocol
GPIO – General Purpose Input/Output
GUI – Graphical User Interface
MIDI – Musical Instrument Digital Interface
MOSFET – Metal Oxide Semiconductor Field Effect
Transistor
OMR – Optical Music Recognition
OOP – Object Oriented Programming
RPi 4 – Raspberry Pi 4
SCP – Secure copy
SSH – Secure Shell
USB – Universal Serial Bus
XML – Extensible Markup Language

REFERENCES

[1] “Average piano accompanist hourly pay,” PayScale. [Online].
Available:
https://www.payscale.com/research/US/Job=Piano_Accompanist/Ho
urly_Rate [Accessed: 02-May-2023].

[2] “Edelweisspianos.com.” [Online]. Available:
https://edelweisspianos.com/wp-content/uploads/2022/07/LookBook
_V2-Digital-Final.pdf. [Accessed: 05-May-2023].

[3] A. Jain, R. Bansal, A. Kumar, and K. D. Singh, “A comparative study
of visual and auditory reaction times on the basis of gender and
physical activity levels of medical first year students,” International
journal of applied & basic medical research, 2015. [Online].
Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4456887/.
[Accessed: 02-May-2023].

[4] F. Nah, “A study on tolerable waiting time: How long are web users
willing to ...” [Online]. Available:
https://www.researchgate.net/publication/240624333_A_study_on_to
lerable_waiting_time_how_long_are_Web_users_willing_to_wait_Ci
tation_Nah_F_2004_A_study_on_tolerable_waiting_time_how_long
_are_Web_users_willing_to_wait_Behaviour_Information_Technolo
gy_f. [Accessed: 05-May-2023].

[5] “Do electric pianos use a lot of electricity? [explained],” Piano
Sounds, 21-Jan-2023. [Online]. Available:
https://pianosounds.com/do-electric-pianos-use-a-lot-of-electricity.
[Accessed: 05-May-2023].

[6] I. Ebonko, “Play sheet music with python, opencv, and an optical
music recognition model,” Medium, 05-Oct-2021. [Online].
Available:
https://heartbeat.comet.ml/play-sheet-music-with-python-opencv-and
-an-optical-music-recognition-model-a55a3bea8fe. [Accessed:
05-May-2023].

[7] BreezeWhite, “Breezewhite/oemer: End-to-end optical music
recognition (OMR) system. transcribe phone-taken music sheet

image into musicxml, which can be edited and converted to MIDI.,”
GitHub. [Online]. Available: https://github.com/BreezeWhite/oemer.
[Accessed: 05-May-2023].

[8] H. Bitteur, “Command line interface,” Audiveris Pages. [Online].
Available: https://audiveris.github.io/audiveris/_pages/advanced/cli/.
[Accessed: 05-May-2023].

[9] “Piano Man FPGA piano-playing robot - Massachusetts Institute of
Technology.” [Online]. Available:
https://web.mit.edu/6.111/volume2/www/f2019/projects/brendana_Pr
oject_Final_Report.pdf. [Accessed: 06-May-2023].

[10] P. King, “Piano-playing robot,” The MagPi magazine. [Online].
Available:
https://magpi.raspberrypi.com/articles/piano-playing-robot.
[Accessed: 05-May-2023].

https://www.payscale.com/research/US/Job=Piano_Accompanist/Hourly_Rate
https://www.payscale.com/research/US/Job=Piano_Accompanist/Hourly_Rate
https://edelweisspianos.com/wp-content/uploads/2022/07/LookBook_V2-Digital-Final.pdf
https://edelweisspianos.com/wp-content/uploads/2022/07/LookBook_V2-Digital-Final.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4456887/
https://www.researchgate.net/publication/240624333_A_study_on_tolerable_waiting_time_how_long_are_Web_users_willing_to_wait_Citation_Nah_F_2004_A_study_on_tolerable_waiting_time_how_long_are_Web_users_willing_to_wait_Behaviour_Information_Technology_f
https://www.researchgate.net/publication/240624333_A_study_on_tolerable_waiting_time_how_long_are_Web_users_willing_to_wait_Citation_Nah_F_2004_A_study_on_tolerable_waiting_time_how_long_are_Web_users_willing_to_wait_Behaviour_Information_Technology_f
https://www.researchgate.net/publication/240624333_A_study_on_tolerable_waiting_time_how_long_are_Web_users_willing_to_wait_Citation_Nah_F_2004_A_study_on_tolerable_waiting_time_how_long_are_Web_users_willing_to_wait_Behaviour_Information_Technology_f
https://www.researchgate.net/publication/240624333_A_study_on_tolerable_waiting_time_how_long_are_Web_users_willing_to_wait_Citation_Nah_F_2004_A_study_on_tolerable_waiting_time_how_long_are_Web_users_willing_to_wait_Behaviour_Information_Technology_f
https://www.researchgate.net/publication/240624333_A_study_on_tolerable_waiting_time_how_long_are_Web_users_willing_to_wait_Citation_Nah_F_2004_A_study_on_tolerable_waiting_time_how_long_are_Web_users_willing_to_wait_Behaviour_Information_Technology_f
https://pianosounds.com/do-electric-pianos-use-a-lot-of-electricity
https://heartbeat.comet.ml/play-sheet-music-with-python-opencv-and-an-optical-music-recognition-model-a55a3bea8fe
https://heartbeat.comet.ml/play-sheet-music-with-python-opencv-and-an-optical-music-recognition-model-a55a3bea8fe
https://github.com/BreezeWhite/oemer
https://audiveris.github.io/audiveris/_pages/advanced/cli/
https://web.mit.edu/6.111/volume2/www/f2019/projects/brendana_Project_Final_Report.pdf
https://web.mit.edu/6.111/volume2/www/f2019/projects/brendana_Project_Final_Report.pdf
https://magpi.raspberrypi.com/articles/piano-playing-robot

13
18-500 Final Report: Team D7 05/05/2023

Fig. 9 Gantt Chart

14
18-500 Final Report: Team D7 05/05/2023

TABLE III. BILL OF MATERIALS

Description Manufacturer Quantity Cost Per Unit Total Cost

N-Channel Power
MOSFET - 30V/60A

Adafruit 12 $2.03 $24.36

Large Push-Pull
Solenoid

Adafruit 12 $13.46 $161.52

1N4004 Diodes - 12 $0 $0

Protoboards Adafruit 1 $0 $0

Raspberry Pi 4 - 4GB - 1 $0 $0

Electronic Keyboard - 1 $0 $0

Power Supply 30V/5A - 1 $0 $0

USB to USB-C cable Amazon 1 $5.99

PLA 3D Printing
Filament

(1kg, 1.75mm)

3 $18.99

VELCRO Sticky Back
Hook and Loop

Fasteners

VELCRO 1 $15.65 $15.65

Arduino Uno 1 $0 $0

Grand Total $226.51

