
ac·com·pa·ny·Bot

Made by Aden Fiol, Rahul Khandelwal, and Nora Wan

/əˈkəmp(ə)nē bät/ noun

A piano playing robot that scans and parses sheet music and
reproduces the notes by pressing keys on a piano

Use-Case Requirements

● Note Playing Accuracy: System should not make noticeable mistakes
● Tempo Variability: Ability to speed up/slow down tempo from application
● Tempo Accuracy: Ability to play music with the exact BPM specified
● Low latency between UI and piano player: Have piano player respond to

user inputs within the average human response time to auditory stimuli

Quantitative Design Requirements

● >95% OMR Parser Accuracy
● 100% tempo accuracy
● <150ms latency between user action and piano player response
● <60W average power

Solution Approach

Complete Solution - Software

Complete Solution - Hardware

Design Limitations

● Uploaded files must be high quality
○ OMR parser functions best with black/white scores (compared to grayscale files)
○ Accuracy guaranteed when input scores have resolution above 400 DPI

● Due to scope of project, only plays one octave
○ During note scheduling, determines the octave with highest note count
○ Communicates octave number back to application
○ User must move the accompanyBot over the correct octave

● Only covers C-to-C octave range
○ Black key spacing is irregular
○ Prevents the design of a chassis that can fit over any octave of keys

● Physical solenoids cannot play faster than movement threshold
○ During note scheduling, determines max tempo playable
○ Communicates the max tempo supported back to the application

Design Tradeoffs

● Limited range of keys to one octave black and white keys
○ Save on costs and power consumption

● Chose to use 25N solenoids
○ Larger and more expensive, but generated more force and has a longer

stroke length than alternative
● Used an Arduino Uno to aid in serial communication

○ Needed a way to convert between USB and UART
● Wireless instead of wired file transfer

○ scp to the RPi
○ Serial transmission of one page >13 seconds vs.

vs.

Test, Verification and Validation

● OMR Accuracy → Reconvert back to
pdf and compare visually

● Tempo accuracy → Measure tempo
with a metronome

● Computer/RPi Latency → Function
records system time when start/stop
signals are sent and received

● Power Consumption → Measure DC
power supply output voltage and
current to calculate power

https://docs.google.com/file/d/1p_4avwBPbv276hiyxHR93q1s07_cjLG4/preview

Specifications and Performance

Design Requirement Metric System Performance

> 95% OMR accuracy of note pitches and
note values for 400+ DPI music scores

~99% accuracy for easy to moderate
playing difficulty scores of 240 DPI

100% tempo accuracy 100% accurate between 30BPM-150BPM

Start/stop playing within 150 ms of
pressing the start/stop button

Round trip communication latency of
~70ms

< 60W average power Max power of 46.8W

Specifications and Performance

Use Case Requirement Metric System Performance

Note Playing Accuracy In Progress
Once full system is constructed, compare audio
played by accompanyBot to MIDI output

Tempo Variability Pass
Able to update tempo via UI

Tempo Accuracy Pass
Solenoids keep pace with metronome

Latency In Progress
Determine whether noticeable delay exists
between user actions on app and keyboard audio

Schedule

Conclusions

Challenges

● Costs of materials became a bottleneck
● Open source tools had niche issues that arose deeper into the project

Lessons Learned

● Integration takes time
○ 3 weeks of slack time still was not enough

● Prototyping takes time
○ 3D print smaller parts before scaling up

