18-500 Design Project Report: Team D7 03/03/2023

accompanyBot

Aden Fiol, Rahul Khandelwal, and Nora Wan

Department of Electrical and Computer Engineering, Carnegie Mellon University

Abstract—For musicians looking to play along with
piano harmony, finding piano accompanists can
sometimes be a difficult and costly task. While
musicians in these situations might be able to turn to
cheap MIDI recordings, the digital sound does not
match the acoustic quality of a real piano. On the other
hand, high-end player pianos are too expensive for the
average person’s budget. With our accompanyBot, we
aim to create a portable system capable of reading sheet
music and playing the piano parts.

Index Terms—microprocessor, MOSFET, Optical
Music Recognition, piano, power, Raspberry Pi, robot,
solenoid, tempo, time signature, XML.

I. INTRODUCTION

THIS project seeks to improve the playing experience for

musicians who are practicing and performing alone.
Musicians and singers often rehearse music in ensembles
with a pianist to emulate a performance-like setting. This
enables the musicians to harmonize with each other and get
a better sense of group dynamics and tempo. However,
different individuals naturally operate on different
schedules and cannot meet with others every time they
practice. In these cases, individuals practicing alone would
still desire piano backing to keep time in preparation for
group rehearsals. Additionally, soloists who are performing
a piece that involves piano accompaniment may not always
be able to find a piano accompanist who can practice and
play with them for their big performance. Furthermore, the
cost to hire a professional piano accompanist may be a
barrier for amateur musicians who are just starting out their
solo careers.

The accompanyBot provides a comprehensive solution
to service these goals. From a simple control interface on
the user’s computer, users will be able to upload a file of
sheet music and control our custom hardware that is capable
of playing the piano part on a piano. Our portable physical
interface that mounts to the piano will allow users to pick
up and place accompanyBot on various pianos in different
locations.

While there are existing technologies that users may be
able to utilize to meet similar needs, they are not without
their downsides. On the low-budget side, users might turn
to MIDI recordings to play along to during practice.
However, the sound quality of digital recordings cannot
match the acoustics of physical pianos. For soloists who
wish to perform at recitals and in professional settings,
MIDI recordings will not suffice for the formal atmosphere.

On the other side of the spectrum, high-end player pianos
that have actuators embedded within the piano may have
the desired sound quality but are also very expensive.
Moreover, these player pianos are usually grand pianos.
Thus the size and weight of these instruments make it
impractical for musicians to move them every time they
practice in a different place or perform at different venues.

II. Use-CASE REQUIREMENTS

There are several use-case requirements that our design
must meet to ensure user satisfaction.

A. Note Playing Accuracy

Since the wusers will be utilizing our system to
accompany them in performances, the accompanyBot
should play the correct notes. This note playing accuracy
relies on many different factors, such as the sheet music
parser, the note scheduler, and the circuitry being built
properly. Constructing and integrating these three major
components of our project properly will be integral in
ensuring high note playing accuracy.

B. Tempo Variability

Since the accompanyBot will be used for both practice
and performance, the user should be able to adjust the
tempo of the piano playing so that they can start practicing
a piece at a slower pace and work their way up for the final
performance.

C. Tempo Accuracy

Due to the importance of timing in music, the user will
demand high accuracy with respect to the accompanyBot’s
playing tempo. This allows the musician to keep time with
the piece and stay synchronized if their goal is to eventually
play along with others. Thus we have set the requirement
for the tempo accuracy to be 100% accurate to the specified
BPM from the sheet music or that the user inputs.

D. Low Latency

A pleasant user experience is a priority consideration for
the design of our product. Ensuring a fast response between
the user interface and the physical system is very important.
We have decided to guarantee a response time within 150
ms. According to the NIH, the average human response
time to auditory stimuli is around 140-160 ms [1].
Guaranteeing 150 ms will allow for a seamless transition
from pressing play to hearing the piano being played.
Another area of latency that we must consider is the latency
between when the user uploads the sheet music to when the
system is ready to play it.

18-500 Design Project Report: Team D7 03/03/2023

ITI. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

In order to operate efficiently and accurately, our system
is divided into three distinct subsystems:
1. Local Application
2. Raspberry Pi 4
3. Physical Interface
The block diagram in Fig. 1 depicts the three subsystems
and their interconnects.

The Local Application (1) provides the user interface
where users insert pdf or png files of high resolution' music
scores. Additionally, user actions, such as playing or
pausing accompanyBot operations, modifying the music
playing rate or tempo, and jumping to an alternative region
or measure of the piece will be received via the local
application and sent to the rest of the system. Once users
insert their music score, the app is directly responsible for
making use of Audiveris, an open source Optical Music
Recognition software, to read the notes from the score into
an XML file that can be sent downstream.

The second subsystem is composed of a Raspberry Pi 4
(2). The RPi 4 acts as a middleware controller, taking in raw
or transformed data from the user and responding by
transmitting signals to control the hardware within the
physical interface. The necessity for this separation is for a
couple of reasons. Firstly, the Audiveris software is best
built and run in a Windows environment which is
incompatible with Raspberry Pi’s native operating system.
The RPi 4 is responsible for running the note scheduling
algorithm and ON/OFF signal delivery to the hardware
solenoids. Note scheduling will be conducted via the
manipulation of data constructed by the music21 library.
Specifically, the music21 is used to preprocess the XML
received. Alongside handling music notes, the
microcontroller accepts requests from the local application

(1) Local Application

corresponding to specific dynamic actions the user makes.
These actions flow through the main control function to the
GPIO pins of the RPi 4.

The electrical signals sent across the GPIO pins are
received by 13 transistors from within the physical interface
(3). Low pin signals at the gates of the transistors will put
them in cut-off, while high pin signals above the threshold
voltages will turn the transistors on. Based on which
transistors are on or off, current will flow from the power
supply to the corresponding solenoids, thereby pressing
down notes on the piano. In the unlikely event that too
many transistors are turned on, a circuit breaker will restrict
current flow to all solenoids until the power draw settles
back down to a safe level.

IV. DESIGN REQUIREMENTS

A. OMR Parser Accuracy

In order to take advantage of pdf/png inputs, the
accompanyBot must be able to parse music scores with high
accuracy. We are using OMR software to handle the
parsing. Though perfect note parsing would be ideal, there
is some room for error as the primary function of
accompanyBot is to provide accompaniment. For this
reason, our users would find a minimum of 95% accuracy
in note parsing to meet their standards for practice or
performance. An accurately parsed note is defined as a note
whose parsed pitch and duration match the original note.

B. Note Scheduling Accuracy

Once the OMR parser accurately translates the sheet
music to an XML file, the note scheduling algorithm should
convert that into correct and properly timed signals that are
sent to the physical circuitry. This is imperative for the
validity of our system since music is all about timing and
pitch correctness. Without a high accuracy of note

/ (2) Raspberry Pi 4 '0\

(

3) Physical Interface

User Inputs User Interface PyGame Nore vo \igr\"sif;ply
E @ File Upload '— music21 Scheduling :
library Function Circuit
Music Preview Audiveris XML file 13x GPIO
(OMR Parser) | |- ’ =

Play/Pause/ ‘
Tempo Slider start/stop
commands

b

Main Control Function

Transistors

\

[13x Solenoids }

- /

Key
Purchased/ Newly Integrated From M
Off the Shelf Designed Existing Codebase

Fig. 1.

Block diagram drawing of overall system

18-500 Design Project Report: Team D7 03/03/2023

scheduling, the users of our product would never be able to
practice and perform with our accompanyBot. Since note
scheduling accuracy is of significant importance we are
setting this requirement to be 100%. Furthermore, this
requirement assumes that the tempo and shortest length
note fit within the constraints of our system. This
requirement is relative to the output of the OMR parser
since the note scheduling algorithm has no control over the
accuracy of the upstream parsing.

C. Key Press Frequency

For our accompanyBot to meet timing requirements as
listed in the use-case requirements section, we need to
ensure a quantifiable threshold for the frequency of key
presses that the solenoids must achieve. Initially, we set the
requirement for the solenoids to reach a metric of six key
presses per second. However, based on initial testing of the
solenoids and RPi 4, we found that the solenoids were
physically limited in the frequency that they are able to
push and pull. Since they moved slower than expected, we
lowered the key press frequency requirement to four key
presses per second. This corresponds to a rate of 240 BPM
which we found acceptable for the type of music that a
general user would want to play.

D. Power Consumption

Larger chords and simultaneous note presses will
demand more electrical work to induce the solenoid
motions. Since each of the key pressing solenoids will draw
a non-negligible amount of power, we must maintain our
system to be safe for the average individual to attach to
their piano or keyboard. We found that the average
electronic keyboard can draw up to 60 watts of power [2].
For this reason, the hardware component of the robot has a
quantitative requirement to never consume more than 60
watts of power. This will ensure users have a safe playing
experience while also not overcharging their power bill.

From the data sheets of our solenoids, an activated
solenoid requires a max of 12V and 1A. Based on
measurements we gathered from initial testing, we were
able to operate the solenoid with 10V and 0.65A. However,
to provide a buffer, we will use the maximum values for
power calculations. Thus, according to (1), the power
required to activate one solenoid is (12V)(1A) = 12W.
Therefore our system should only support five or fewer
solenoids pressed at once.

P=1v (1)

In cases where the number of notes played at one time
exceeds five, which will cause the power to exceed the
safety threshold, the least recently played note should be
omitted from playing. This restriction will be enforced by
the scheduling algorithm that decides which solenoids to
activate. In the unlikely case that our scheduling fails, we
will also include a circuit breaker that triggers if the power
goes over 60W.

V. DESIGN TRADE STUDIES

A. OMR Framework Selection

We opted for Audiveris as opposed to other OMR
frameworks primarily due to its high accuracy of
identifiable notes and ability to segment multiple parts as
opposed to other frameworks available. Initially, we had
considered using an openCV and tensorflow based ML
model built for Python. This was so that our UI hub
application, which will also be built in Python, could
directly process the music scores without needing to contact
an external application. Early on we tested a pre-trained
model developed by researchers in Montreal, Alicante, and
Valencia [3]. Overall parsing time for a single page was no
more than 10 seconds. However, the model was built to
process strictly monophonic scores. Another Python based
solution we tested was Oemer [4], which could be easily
installed and used via pip and import statements. Oemer
met our requirement of processing polyphonic scores but
failed to meet our note accuracy and processing time
requirements. Initial testing yielded close to 50% of correct
notes placed in the XML file structure, and also the time to
parse a single page of notes from two staves exceeded a
minute.

Despite having a complicated build process, Audiveris
proved to be the best open source solution for our project.
Testing its OMR engine on multiple page scores yielded an
average time of 20 seconds per page, not unreasonable for a
user to wait the one time cost. Additionally, it had seamless
integration with the music21 Python library, a framework
that will be essential for us to schedule notes on the
hardware. The traditional usage of Audiveris is through its
GUI. However, since we will build out a separate GUI for
the accompanyBot user interface, we are making use of the
developer command line usage of Audiveris as referenced
in its documentation [5]. To further confirm the
effectiveness of Audiveris, we played back the MIDI
equivalent of XML generated from Chopin and Beethoven
scores. Aside from the digitized sound of the player and a
few odd notes over the course of a ~3 minute piece, the
audio matched the written notes.

The last option for us was to build an OMR engine from
scratch. Manually crafting an ML model or framework
would have gone out of the scope of our goals. From our
understanding, many researchers have spent years
developing and improving the models for the machine
learning and optical classification of notes. They have not
yet reached a complete solution, though a good
approximation is achievable. Overall, integrating Audiveris
allows us to give better attention to the other subsystems of
the accompanyBot.

B. Microcontroller Selection

When choosing the specific microcontroller to act as the
mediator between the software and physical circuit of our
project, we prioritized three characteristics: compute power,
a sufficient number of GPIO pins, and ease of integration
with other parts of the project. The three options we
considered using were the Arduino Uno, STM32F4, and
RPi 4. The former two candidates were considered because

18-500 Design Project Report: Team D7 03/03/2023

members of the group had used them for previous projects
and classes, while the latter was considered due to its solid
reputation for being a reliable general-use microprocessor.

Due to the need to parse the XML file into usable data
and schedule signals at specific times, we required a
component that had significant computing power and
memory available to store the data. This led us to choose a
microprocessor over a microcontroller like the Arduino Uno
that is more specialized for specific tasks. Furthermore, the
Arduino Uno did not have as many GPIO pins as the other
two options, so we ruled out the Arduino Uno completely.

At this point, we had decided to have the microprocessor
directly control the power switching of the solenoids with
the GPIO pins, with each GPIO output corresponding to
one key. Thus we needed a microprocessor that could
support a large number of GPIO outputs in order for us to
cover all the required keys. When looking at the STM32F4
versus the RPi 4, we found that the STM32F4 had 80 GPIO
pins [6] in total whereas the RPi 4 had 26 [7]. However, we
had also decided to limit the scope of the accompanyBot to
only play one octave, which required a maximum of 13
pins. Thus, both options were still valid since they had an
appropriate amount of pins while also being able to have
some extra pins in case they were needed for other
purposes.

Therefore the last criterion was crucial in deciding
which microprocessor to use for the accompanyBot. Since
we are developing the user interface in Python, we felt that
having the coding environment on the microprocessor also
be in Python would make it easier to handle the
communication between them through libraries such as
pySerial, which we also have experience with. In addition
to this, we found through our initial search that there were
many Python packages relating to analyzing music, so we
could fall back on them when performing the XML parsing
and note scheduling (This is precisely what we did in the
end with our choice to utilize the music21 library). Thus,
for the reasons specified above, we chose to use an RPi 4
from the class inventory.

C. Solenoid Selection

There is a large variety of solenoids on the market. They
vary in terms of force, size, type, and electrical
requirements. We decided to purchase three different
solenoids that varied across each category: a SN Adafruit
Small Push-Pull solenoid that had a 12V requirement, a
25N Adafruit Large Push-Pull solenoid that had a 12V
requirement, and a 25N Pull Type Open Frame Solenoid
Electromagnet Linear Motion JF-1039.

During our testing of the three solenoids, we noticed
major downfalls for two of the solenoids which led to us
choosing the 25N Adafruit Large Push-Pull solenoid. The
SN Adafruit Small Push-Pull solenoid struggled in three
categories: stroke length, force output, and power
consumption per unit of force. Our project needed solenoids
that would be able to reach the keys from a reasonable
distance away and with enough force to depress the keys
while also not consuming too much power. Constructing a
mechanism that would hold the weight of all the solenoids
and circuitry close enough to the keyboard without falling

over would be difficult. Thus, a stroke length that is too
small would be difficult to design around. Additionally,
from our initial testing, SN was not enough force to depress
an average piano key. Furthermore, it consumed the same
amount of power as the large push-pull solenoid, but the
power consumption per unit of force was much higher, so
for those reasons, the 5N Adafruit solenoid would not work
within the constraints of our system. The 25N Pull Type
Open Frame Solenoid was lacking in one major area: the
fact that it was a pull type rather than a push-pull solenoid.
When researching solenoids we were not aware that the pull
type solenoid would not be fixed in place. When we
received the part, we discovered that the ferromagnetic rod
for depressing a piano key was free to fall out of its exterior
metal casing. This was not what we desired. Instead, we
preferred the 25N Adafruit solenoid since its ferromagnetic
rod was fixed and did not fall out of the external metal
casing.

Overall, the design shortcomings of two out of the three
solenoids led us to conclude that the 25N Adafruit
Push-Pull solenoid was the best option for our
accompanyBot. We are able to get a lot of force per watt
and a high stroke length without the internal rod falling out
of the external metal casing, making it the logical option to
use. The final factor that solidified our decision was the
price point of the 25N Adafruit Large Push-Pull solenoid.
Since Adafruit offered a discounted per unit price when
buying in bulk, the price of each solenoid was cheaper than
other similar solenoids on the market.

VI. SYSTEM IMPLEMENTATION

Our system can be broken down into three domains: a
translation path, notes scheduling path, and execution path
depicted in Fig. 2. Subsections 4 and B make up the
translation path, C describes the intermediate path between
translation and notes scheduling, D goes into depth
regarding the RPi operation for scheduling, and E lays out
our setup and connection of the moving parts and
electronics built in-house.

A. Computer GUI Interface

The wuser will have the ability to control the
accompanyBot over the GUI software on their computer.
The necessity for ease of use and visual appeal is important
here, so we will be using the pyGame library in Python to
build out this application interface. Fig. 3. illustrates a
model of our application’s GUI.

o = B

Audiveris OMR

e

Translation Path:

Scheduling Path: J

nd

—"music2l —*~ GPIO1 .

pigpio library

Execution Path:

Fig. 2. Visualization of subsystem flows

18-500 Design Project Report: Team D7 03/03/2023

Import Music PNG

Select Player Device

Device Selected

accompanyBot Raspberry Pi

Tempo: BPM

Current Measure

T

Fig. 3. Model of GUI Application

The user will be able to choose their input sheet music
file and output source through buttons labeled “Import
Music Score” and “Select Player Device” respectively. The
user can manually specify the beats per minute in the tempo
window of the application. Additionally, a slider and play
button will allow the user to direct the RPi to start or stop
playing or change measures. For convenience, a current
measure playing slot will show what measure and notes the
notes scheduler is currently on.

B. Music Score Reader

When a music score is imported into the hub
application, if a corresponding music XML transcription is
not found within the application cache then the software
will begin a subprocess to execute the Audiveris OMR
engine. Due to the limitations of Audiveris dependencies, it
must be run only on Windows. Additionally, an install of
Java 17 is required to enable Audiveris. For this reason, the
hub application will execute a PowerShell script to launch
Audiveris and process the music score image into an XML
file. This XML will get saved to a desired output location
and also be added to the application cache for repeat usage
efficiency.

C. Computer to Microprocessor Communication

We will be handling the communication between our
laptop and the RPi 4 through a serial USB connection. We
believed this was the simplest method of implementation
for communication since the user can easily connect the
finished product to their computer without having to set up
any network connections. We plan to use the pySerial
library for transmitting the files and command bytes that
will let the RPi 4 know to prepare for a file, start playing,
stop playing, or change the tempo. However, if the latency
for the file transfer is too high when sending the XML file
serially, we may have to switch to a wireless method such
as FTP or SFTP.

D. Note Scheduling

The first step of the note scheduling process involves
parsing the XML file to extract the key signature, time
signature, tempo, and individual notes. To aid in the
scheduling task, we have employed the Python library

music21 to convert the XML file to a data structure that is
more readable and allows for easy access to the musical
data. Through the parse method of the library, we can
extract the essential information needed for scheduling: the
clef, tempo, key signature, and an iterable array of notes
and their pitches. Fig. 4 illustrates an example of the type of
output achievable by using music21. When the snippet of
sheet music shown in Fig. 5 is converted to its XML
representation, the entire file consists of 184 lines of code.
However, after a simple parsing with music21, all the
necessary information is condensed into a 20 line Stream
object. An important detail to note is that the offset, which
is the number in curly braces, indicates the distance in
quarter notes that a note or musical feature is located from
the beginning of the Stream. The offsets are used by our
scheduling algorithm to determine where in the piece a note
is played.

The second step in scheduling involves using the data to
determine several timing parameters. The general approach
to scheduling is to divide up the piece into distinct time
intervals starting at fixed time units. The period of each
interval should be the duration of the smallest note value
since we want to be capable of playing notes of that value
one after the other. To find this duration, we first want to
calculate the duration of a quarter note (which is the base
duration that other notes are in reference to) and then scale
it by how many smallest note values are in a quarter note.
For example, if the smallest note in a piece is an eighth
note, then we would find the duration of an eighth note by
finding the duration of a quarter note and multiplying it by
0.5 since an eighth note is half of a quarter note. Equation
(2) shows how to calculate the duration of a quarter note in
milliseconds. Tempo is the numerical value in beats per
minute while the beatToQuarterNoteRatio is the ratio of the
beat type to a quarter note. Different tempo instructions are
shown in Fig. 6. All three cases would have a tempo of 60
BPM. From top to bottom, the beatToQuarterNoteRatio
would be 2, 1, and 0.5 respectively a half note, quarter note,
and eighth note.

duration = 60,000 ms/min (2)

Tempo X beatToQuarterNoteRatio

{@.0} <music2l.text.TextBox 'C Scale'>
{@.0} <music2l.metadata.Metadata object at @xleefbc21e>
{0.8} <music2l.stream.Part Piano>
{0.8} <music21.instrument.Piano 'P1: Piano: Piano'>»
{@.8} <music2l.stream.Measure 1 offset=0.8>
{@.0} <music2l.layout.SystemLayout>
{8.0} <music2l.clef.TrebleClef>
{6.8} <music21.tempo.MetronomeMark larghetto Quarter=6e.6>
{©.0} <music2l.key.KeySignature of no sharps or flats>
{8.8} <music21.meter.TimeSignature 4/4>
{0.8} <music2l.note.Note C>
{1.0} <music2l.note.Note D>
{2.0} <music2l.note.Note E>
{3.8} <music2l.note.Note F>
{4.0} <music21l.stream.Measure 2 offset=4.0>
{@.8} <music2l.note.Note G>
{1.8} <music2l.note.Note A>
{2.8} <music2l.note.Note B>
{3.8} <music2l.note.Note C>
{4.8} <music2l.bar.Barline type=final>

Fig. 4. Example of the compact data structure that is produced from
parsing the C scale below using music21

18-500 Design Project Report: Team D7 03/03/2023

Simple C Scale

“

=60

‘
: | ’
. = 2 :

SR
| HEN|

t
|
o

t
i
-

0
Fig. 5. Quarter note C scale in 4/4 time signature at 60 BPM

At this point in the scheduling process, we will be able
to determine if the piece is playable or not. The max limit of
four key presses per second from our design requirements
means that each note must be at least 250 ms in length.
Therefore if the duration of the smallest note value is less
than that, we will send a signal back to the computer to
notify the user.

If the piece passes the above check, then the scheduling
algorithm will continue. The function will iterate through
the array of notes and determine which notes are being
played at each time unit. Since the time units are based on
the smallest note value, they can be found by taking the
offset of a note in the Stream and multiplying it by the
beatToQuarterNoteRatio of the smallest note value. For
each note that is being played, the corresponding GPIO pin
will need to be set high. For the rest of the notes, they
should be set low. Based on a dictionary mapping of keys to
GPIO pins, a bit mask will be generated for which pins are
high. The mask will be saved to a dictionary where the key
value pairs are time unit and a bit mask. The function will
also check that no more than five notes are at one offset. If
there are more than five, the scheduling algorithm will
choose which note to omit based on previously played
notes. After the function finishes, the RPi 4 will return a
signal to the computer to let it know that the file has
successfully finished scheduling.

J = 6() Each beat is a half note.
J = 6() Each beat is a quarter note.

ﬁ = 60 Each beat is an eighth note.

Fig. 6. Examples of different tempo markings

Then, when the RPi receives the signal to start playing
from a specific measure, it will set the time unit to the
measure number times the number of beats in a measure
scaled by the number of the smallest note value in a beat.
The function will have a while loop in which it retrieves the
notes to play (represented by the bit mask stored earlier) at
the given time unit. The function uses the bit mask to set the
GPIO pins, increment the counter for the time unit, and
delay the function by the duration of time for the time
interval. If the RPi receives a pause signal in between
iterations of the loop, it will simply exit the loop and wait
for the next command.

With this process, the scheduling algorithm only needs
to run once to save the bit masks for the notes at each time
unit. To change the speed of the playback, the RPi simply
needs to recompute the duration of the delays with a new
tempo value using the formula mentioned earlier.

E. Physical Components

The physical circuitry consists of multiple components,
such as GPIO inputs, an array of MOSFETs, solenoids,
diodes, and a power supply. Each component provides an
essential role in making the system move and play the piano
correctly.

The power source provides the voltage and current
needed to actuate the solenoids. The power source has a
voltage rating of 30V and a current rating of SA. With each

Circuit Breaker/
D1

Power Supply [+
12V —

TzT

1N4004

Solenoid1
1N4004

D2

Solenoid2 D13 Solenoid13
1N4004

]
[

M2

L
TTT
L |
T;T

RPi-4 PIN1 RPi-4 PIN13

Fig. 7. Schematic of the physical circuitry

18-500 Design Project Report: Team D7 03/03/2023

solenoid drawing at most 1A at 12V, this should be all that
we need to power the system since no more than 5 keys will
be pressed at a single time. In order to enforce this current
restraint, we are looking into circuit breakers to stop the
current flow if it gets too high, but this might not be
necessary since our power source already maxes out at SA.

The power source will be supplying the current for the
25N Adafruit Large Push-Pull solenoids when the
MOSFETs are no longer in cut-off. The solenoids are large
inductors that have a metal rod fixed inside of the coil.
Once current is flowing through the inductor, it induces a
magnetic field that causes the metal rod to move. The
solenoid retracts once the current is cut from the inductor,
hence the push-pull name. These solenoids will be pushing
on the piano keys depending on the signals it receives from
the microprocessor after the notes have been scheduled.

The output GPIO pins from the RPi 4 are connected to
the gates of our MOSFETs. The gates will receive a high or
low signal depending on the output of the scheduling
algorithm. When high, this signal will force the MOSFET
out of cut-off and allow current to flow from the source to
the drain and through the solenoid since they are in series.
This will power the solenoid and actuate the piano keys
when properly scheduled.

The last major component of the physical circuitry is the
IN4004 diodes. The diodes are placed in parallel with the
solenoids so that when the MOSFETs are turned off, the
voltage spike caused by the inductor in the solenoid does
not damage our power supply or microprocessor.

Lastly, we will be constructing a chassis to support the
aforementioned circuitry components so that they can hover
over the piano keys and press them from a stationary
location. Although our chassis design may be subject to
change, our preliminary implementation will involve a
sturdy beam that will clamp or stand along the edge of the
piano paired with a sliding box containing all of the
solenoids. Fig. 8 displays a preliminary design. This box is
adjustable to allow the user to select their octave range of
pressable keys. Once the octave is selected, the user can
proceed to upload their desired piece and the accompanyBot
will perform.

Adjustable length

Adjustable
height {

Grid of
transistors
o]

= '1 Solenoids
actuate up/down
to play keys

~ GPIO pins
control ON/OFF
state of solenoids

Powered by DC
power supply

Fig. 8. Potential implementation design

VII. TEST, VERIFICATION AND V ALIDATION

A. Test for OMR Parser Accuracy

After the OMR Paser has completed and produced the
XML file associated with the sheet music passed in, we will
use the music21 library to convert the XML file back to a
pdf of the sheet music and compare the original sheet music
to the newly generated sheet music. Counting the number of
correctly parsed notes and features and dividing by the total
number of notes and features will show how much of the
music matches the original, determining the OMR parser
accuracy.

B. Test for Note Scheduling Accuracy

In order to test and measure the note scheduling
accuracy, we will observe and record two things: the timing
of the key presses and the notes that are pressed. Once the
XML file has been sent to the RPi 4 and our note
scheduling algorithm has been run, we will observe and
record all the notes that the accompanyBot presses and
compare that to the notes parsed by the OMR. Additionally,
we will take the output of the tempo accuracy test to ensure
enough delay was put in between notes such that it is
correct according to a metronome.

C. Test for Key Press Frequency

In order to test the key press frequency, we will use a
metronome set to 240 BPM, or four beats per second. If the
solenoid can press the piano key at the same rate as the
metronome, it will meet our use-case requirement of four
key presses per second.

D. Test for Power Consumption

Once the circuitry is constructed, we will turn on five of
the MOSFETs such that current is being drawn through the
solenoid. We will then measure the voltage across each of
the five solenoids, as well as the current through each, and
do some calculations by hand to determine the total power
consumed by the solenoids when they are all on at once.

E. Test for Latency

The latency will be measured as the time taken from
when the longest signal is sent from the hub application to
the microcontroller plus the time until the end of the longest
response is received back by the hub application from the
RPi microcontroller. As we build out the communication
segment of the accompanyBot, we will figure out which
signal(s) will have the longest byte sequences. Then, to
determine latency we can write a simple helper function to
run from the app as described in Fig. 9.

() :

= time.time ns ()

Fig. 9. Latency Measurement Pseudocode

18-500 Design Project Report: Team D7 03/03/2023
F. Test for Tempo Accuracy

In order to test for tempo accuracy, we will use a
metronome application and set it to the BPM of either the
piece or what the user has determined is an appropriate
tempo. We will then audibly determine whether or not the
accompanyBot is striking the piano keys at the correct time
according to the metronome.

G. Test for Note Playing Accuracy

A reasonable way to test for the accuracy of notes
played would be to compare sound output quality to a
human or digital source. The music21 library is capable of
playing back an XML converted score through the
computer speakers. We will contrast this digital output with
the audio playing from the solenoids to qualitatively rate the
note playing accuracy. This mechanism of testing better
isolates small bugs that may occur earlier on through the
OMR parsing, as both the digital audio and notes played by
the accompanyBot must rely on the transcribed XML,
whereas a human demonstration would introduce a variable
music recognition process that may skew the pure note
playing test results.

VIII. PROJECT MANAGEMENT

A. Schedule

The Gantt chart in Fig. 10 and Fig. 11 below lays out
different deliverables from each of us every week of the
semester. The last two weeks of slack are reserved for
issues that may pop up from the integration of the three
subsystems. We also have assignment due dates on the last
few rows of the Gantt chart.

B. Team Member Responsibilities

Our team responsibilities are divided into the three
major components of our project: the OMR integration and
application development, the microprocessor interface and
note scheduling algorithm, and the physical circuit
implementation. Rahul is responsible for OMR integration
and application development. Nora is responsible for the
microprocessor and note scheduling algorithm. Aden is
responsible for the physical circuit implementation.

Naturally, these three sections of our system rely upon
each other for different input and output information, so we
have all collectively agreed to work together on problems
where our sections intersect. For example, we all rely upon
the note scheduling and microprocessor section of the
project, so we will all make contributions to ensure that
there is a seamless transition from the user interface all the
way down to the circuitry, which is impossible without the
proper implementation of the microprocessor. Additionally,
Aden’s and Nora’s areas of expertise intersect greatly, so
they have both made contributions to one another's sections
of the project in order to ease the workload and guarantee a
working implementation. Rahul has also helped Nora find
Python libraries that aid in parsing XML files and storing
information in different OOP structures. As our project
heads to completion, some of these responsibilities may
change, grow, or intersect more since the project could
change, but as it stands this is the current division of labor.

C. Bill of Materials and Budget

So far, we have spent $289.43 of our total budget. A
detailed breakdown of the bill of materials for the final
product can be found in Table 1 at the end of this document.
The grand total in the table does not include money spent
on the test solenoids and spare parts we purchased in
addition to what is strictly necessary.

Although we have not yet purchased the material for the
physical piano mount, we are currently planning on using
3D-printed material for the casing that covers the
electronics and 80/20 aluminum T-slots for the adjustable
framing that will support the hardware above the piano
keys. We estimate that altogether these should not exceed
$200 total, so we will still be within the $600 budget.

D. Risk Mitigation Plans

One main risk involved in our project is the high degree
of accuracy needed in terms of meeting timing
requirements. Since some music may be rhythmically
complex and very fast-paced, it may be difficult to capture
those melodies with our system. To mitigate this risk, we
are limiting the scope of possible user inputs to a library of
sheet music that does not put strain on the accompanyBot.
During our demo, we will still allow users to select different
songs to upload, but they will all be chosen ahead of time
by us.

Physical parts are fragile and often break when
constructing something new. Therefore, we have purchased
additional solenoids and MOSFETs to replace anything that
may break when building and integrating the whole system.
We also have additional room in our budget in case some of
our parts break and we need to purchase more.

In general, all of us have stayed on schedule and have
been able to make consistent progress. At the moment we
have a working music reader, file handler, digital audio
output mechanism, and solenoid motion from the RPi. In
the worst case of the application being incomplete, the notes
scheduler left undeveloped, and the chassis build being
unsuccessful, we can still put together an effective proof of
concept demonstration of solenoids pressing down on a
paper representation of a keyboard with digitally interpreted
audio from piano scores we choose beforehand.

IX. RELATED WORK

We were curious about related projects that make use of
FPGAs. For MIT’s digital design course, undergraduate
students developed their own accompanyBot that processes
audio from .wav files and plays matching notes on a
keyboard from the output of an FPGA [8]. Similar to us,
they made use of Python to gather notes into organized data
structures but instead designed an FSM on an FPGA to
control motors connected to beams that would rotate and
strike the keys, whereas we opted for a Raspberry Pi that
would induce solenoids to strike the keys via a linear
motion.

Our inspiration to use solenoids controlled by a
Raspberry Pi originates from a working keyboard player
published in The MagP1i, the official Raspberry Pi magazine

18-500 Design Project Report: Team D7 03/03/2023

[9]. Their project successfully played monotonic melody
lines on a keyboard. We of course seek to improve upon this
project with the power of music21 and our in-built notes
scheduler to be capable of playing polyphonic melodies or
harmonies.

X. SumMMARY

In summation, our design consists of three main
subsystems: the local application, the Raspberry Pi 4, and
the physical interface. The local application consists of an
OMR parser that will take the pdf/png from the GUI and
output an XML file containing information about the sheet
music. This XML file will then be forwarded to the RPi 4
via USB for more parsing. The RPi 4 will then use the
music21 library to extract all the vital information about
note pitch, duration, and time stamp of occurrence. Then the
parsed notes will be scheduled and await for the user to
begin playing the piece from the GUI. Once the user
decides to begin the piece, high and low signals will be sent
to the MOSFETs that will allow the solenoids to draw
current from the power source and press down or pull up
according to the output of the note scheduling from the RPi.

As we progress individually on our subsystems, an
upcoming challenge will be integrating all of these
subsystems into one cohesive product. This is a challenge
with just about any project that has so many moving parts
like ours. Some other challenges might arise out of the
physical limitations of our parts since they are bound by
natural phenomena. Our solenoids, MOSFETs, and diodes
are not ideal, so dealing with those issues might prove
challenging. Additionally, our solenoids are bound by
different time constants that might prevent them from
moving as fast or as slow as we desire. Hopefully, testing
and verification of our systems can reveal these issues early
on so we have time to address them in our implementation.

The accompanyBot aims to improve the quality of
isolated practice for singers and other instrumentalists.
After rehearsing with our technology, musicians will realize
more productive practice sessions without their ensembles.
Wherever there is a piano, the accompanyBot can perform.
With a compact product that is perfect for practice and
performance, users of the accompanyBot will be able to
experience an enhanced playing experience that furthers
their love of music.

FooTNOTES

1. High Resolution music scores are limited to those
generated via computer software or transcribed to
modern print quality. The accompanyBot will accept
and attempt to parse low quality or handwritten scores,
however, at the cost of lowered accuracy and overall
performance than the metrics outlined in the use-case
requirements.

GLOSSARY OF ACRONYMS

BPM — Beats per minute
FTP — File Transfer Protocol
GPIO — General Purpose Input/Output

GUI — Graphical User Interface

MIDI — Musical Instrument Digital Interface

MOSFET — Metal Oxide Semiconductor Field Effect
Transistor

OMR - Optical Music Recognition

OOP — Object Oriented Programming

RPi 4 — Raspberry Pi 4

SFTP — Secure File Transfer Protocol

USB — Universal Serial Bus

XML — Extensible Markup Language

REFERENCES

[1] “A comparative study of visual and auditory reaction
times on the basis of gender and physical activity levels
of medical first year students” National Library of
Medicine, Accessed on Feb 27, 2023, [Online].
Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC44568

[2] “Do Electric Pianos Use a Lot of Electricity?
[Explained].” Piano Sounds, Accessed on Feb 27,
2023, [Online]. Available:
https://pianosounds.com/do-electric-pianos-use-a-lot-of

[3] Ebonko, Israel, “Play Sheet Music with Python,
Opency, and an Optical Music Recognition Model.”
Medium,

Heartbeat, 5, Oct. 2021,
https://heartbeat.comet.ml/play-sheet-music-with-pytho
n-opencv-and-an-optical-music-recognition-model-a55
a3bealfe

[4] Github, BreezeWhite,
https://github.com/Breeze White/oemer

[5] Bitteur, Hervé. “Command Line Interface.” Audiveris
Pages, Hervé Bitteur,
https://audiveris.github.io/audiveris/_pages/advanced/cl
i/

[6] “Exploring GPIO Port and Pins of STM32F4xx
Discovery Board.” FastBit EBA, 18 Nov. 2022,
https:/fastbitlab.com/exploring-gpio-port-pins/

[71 “Raspberry Pi and General-Purpose Input/Output.”
FutureLearn,
https://www.futurelearn.com/info/courses/robotics-with
-raspberry-pi/0/steps/75878

[8] Ashworth, Brendan, et al. Piano Man FPGA
Piano-Playing Robot - Massachusetts Institute of
Technology. 11 Dec. 2019,
https://web.mit.edu/6.111/volume2/www/f2019/project
s/brendana Project Final Report.pdf

[9] King, Phil. “Piano-Playing Robot.” The MagPi
Magazine,
https://magpi.raspberrypi.com/articles/piano-playing-ro
bot

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4456887/#:~:text=A%20study%20was%20carried%20out,is%20around%20140%E2%80%93160%20ms
https://pianosounds.com/do-electric-pianos-use-a-lot-of-electricity
https://pianosounds.com/do-electric-pianos-use-a-lot-of-electricity
https://heartbeat.comet.ml/play-sheet-music-with-python-opencv-and-an-optical-music-recognition-model-a55a3bea8fe
https://heartbeat.comet.ml/play-sheet-music-with-python-opencv-and-an-optical-music-recognition-model-a55a3bea8fe
https://heartbeat.comet.ml/play-sheet-music-with-python-opencv-and-an-optical-music-recognition-model-a55a3bea8fe
https://github.com/BreezeWhite/oemer
https://audiveris.github.io/audiveris/_pages/advanced/cli/
https://audiveris.github.io/audiveris/_pages/advanced/cli/
https://fastbitlab.com/exploring-gpio-port-pins/
https://www.futurelearn.com/info/courses/robotics-with-raspberry-pi/0/steps/75878
https://www.futurelearn.com/info/courses/robotics-with-raspberry-pi/0/steps/75878
https://web.mit.edu/6.111/volume2/www/f2019/projects/brendana_Project_Final_Report.pdf
https://web.mit.edu/6.111/volume2/www/f2019/projects/brendana_Project_Final_Report.pdf
https://magpi.raspberrypi.com/articles/piano-playing-robot
https://magpi.raspberrypi.com/articles/piano-playing-robot

10
18-500 Design Project Report: Team D7 03/03/2023

Gantt Chart accompanyBot

Rahul Project Start: 2/6/2023 Week 1 Week 2 Week 3 Week 4 Week 5
Nora Display Week: 1 Feb 6, 2023 Feb 13,2023 Feb 20, 2023 Feh 27, 2023 Mar 6, 2023
Aden E 7 B 9 10111213 14151617 18 1920 21 22 23 24 2526 2728 1 2 3 4 5 6 7 B 9 101112
M7 |w|T|e|s|s|m|T|w|T|r|s|s|[m|rT|w|T|F|s|s|m|[T|w|[r]|r|s]|s|m|T|w|T|F|s]|s
. Proposal Presentations Design Review x
Deadlines and Events Peer Reusews due 12:30pm e Spring Break

User Interface and Music Parser

Identify toolchain for OMR solution

Build and run final OMR solution

Configure OMR to output XML/MIDI (both may not be necessary)
Modify XML/MIDI output to integration specs

Diagram all application screen layouts with Ul buttons
Implement front end Ul designs into software app

Add functionality to Ul actions, make OMR callable

Aid with circuitry and hardware construction

Integration of Physical and User Interface

Design custom data structure to hold music and note information
Exploration of music21 and GPIO libraries

Convert XML to scheduled GPIO inputs using music21

Test timing accuracy of scheduling

Maodularize GPIQ pin mapping and integrate with actuators
Handle Start/Stop signaling between RPi and computer
Integrate tempo changes from computer

Physical Interface

Test and choose actuators

Design and verify circuit to control actuators

Build and debug the circuit

Design portable chassis to hold the circuitry

Build chassis

Integrate with micracontroller

Documentation

Design Review Presentation Slides ({due Feb 19 @ 11:59pm) -
Design Review Report (due March 3 @ 11:59pm) -

Ethics Assignment (due March 15 @ 11:5%pm)

Final Presentation Slides (due April 23 @ 11:59pm}

Fig. 10 Gantt Chart continued

18-500 Design Project Report: Team D7 03/03/2023

Fig. 11

Gantt Chart continued

11

18-500 Design Project Report: Team D7 03/03/2023

TABLE 1. BILL OF MATERIALS

12

Description Manufacturer Quantity Cost Per Unit Total Cost
N-Channel Power Adafruit 13 $2.03 $26.39
MOSFET - 30V/60A
Large Push-Pull Adafruit 13 $13.46 $174.98
Solenoid
1N4004 Diodes - 13 $0 $0
Protoboards Adafruit 2 $0 $0
Raspberry Pi 4 - 8GB - 1 $0 $0
Electronic Keyboard - 1 $0 $0
Power Supply 30V/5A - 1 $0 $0
Grand Total $201.37

