
ac·com·pa·ny·Bot

Made by Aden Fiol, Rahul Khandelwal, and Nora Wan

/əˈkəmp(ə)nē bät/ noun

A piano playing robot that scans and parses sheet music and 
reproduces the notes by pressing keys on a piano



Use-Case Requirements

● Parsing sheet music to XML accuracy: > 95% accuracy of note pitches 
and note values

● Tempo Limit: Limit tempo and smallest note values such that the time 
between any two notes is greater than 100 ms

● Tempo variability: Ability to speed up/slow down playback tempo with 
exact BPM accuracy

● Low latency between UI and piano player: start/stop playing within 150 
ms of pressing the start/stop button

● Key press frequency: Limited to 6 key presses per second
● Reasonable power consumption: < 60W average power



Solution Approach

● Local application on user’s computer handles file input and UI to play/pause 
device

● Raspberry Pi embedded in the device accepts data through serial 
communication from computer and parses text to scheduled times for when to 
turn mapped GPIO pins high or low (for pressed or not pressed keys)

Recent Discoveries: 

● MusicXML is readable yet lengthy and complex
● Further Conversion through music21 for python (handy for note scheduling)

Safety considerations: 

● Solenoids accelerate rather quickly, without dampeners can be hazardous and 
noisy

● Keep open wires enclosed



System Specification

Audiveris OMR

Translation Path:

Scheduling Path:

Execution Path:



Block Diagram

Local Application

Raspberry Pi 4

Audiveris
OMR 

Parser 

music21 
XML Parser

Note 
Scheduling 
Function

Physical Interface
(Piano Mount)

Solenoids

Power Regulating 
Circuit

User Interface

Play/Pause 
Tempo Slider

Music Preview

File 
Upload

PWM GPIO Pins

Transistors
.txt file

Main Control 
Function



Implementation Plan (Software)

● Build a Python application for the user 
interface

● Optical Music Recognition through 
Audiveris (open source OMR engine) that 
converts sheet music into a MusicXML file

● Data transmission and file coordination 
with Raspberry Pi.

● Introduce communication signals for 
commanding the execution of the 
Raspberry Pi.



Implementation Plan (Hardware)

Raspberry Pi 4 processes MusicXML data and schedules using steps below:

● music21 parse function converts XML into a Stream object
● Iterate through the list of notes and set bit masks that correspond to 

which GPIO pins are high or low at each time instance

pigpio library: can read and write to a bank of GPIO pins simultaneously and 
has hardware timed PWM on all GPIO pins

Solenoids assembled on a chassis and hooked up with transistors to a shared 
power supply. Gates of transistors are attached to GPIO pin outputs from RPi



Test, Verification and Validation

● OMR Accuracy → Reconvert back to pdf and compare visually
● Note pressing accuracy → Compare to music21 MIDI conversion
● Other tests → Direct timing and measurement of process

Setting Preconditions:

● OMR - Keep pdf scores as black/white files (minimal grayscale variation)
● Note Presser - Calculate range of notes needed, adjust start position 

accordingly
● Tempo Limiter - Physical solenoids should not be instructed to play 

faster than movement threshold



Design Mockups
Hub Application UI Physical Implementation Model



Schedule


