
Team D5
Eli Wirth-Apley, Sachit Goyal, Vedant Bhasin

Listening Experience

Use Case
Our product will allow users to experience an in house orchestra of AI generated
music produced by a state-of-the-art generative neural network. Users will also be
able to customize their listening experience by applying EQ and other effects
individually to each generated instrument with a custom remote control. Our
movable, distributed speaker system will immerse users in rich music experience of
an orchestra hall. Whether you’re an artist trying to find inspiration for new
compositions, or just a passionate music listener looking to experience AI
generated music, our product has something for you.

ECE areas: Signals, Hardware

https://teenage.engineering/products/choir

Use Case Requirements

Requirement Goal

Size and weight of Controller: 8x4x2in, 250g

Controller Inputs: 3 Potentiometers and 3 function buttons

Remote response to user input: ~150ms

ML inference for generating music: ~100ms

Distributed networking to speakers: 1 Mbps Baud Rate

Battery Life: Remote 10 hours

Battery Life: Speaker 4 hours

% empty bars 30.00*

Benchmarked from Deng et al. MuseGAN: Multi-track Sequential Generative Adversarial Networks for Symbolic Music Generation and Accompaniment, with a 25% margin on piano performance

Qualitative Use Case Requirements

Requirement Goal

Genre of music Three distinct genres

Pleasing sound experience User score of 4/5, above average

Easy of use: remote control User score of 4/5, above average

Easy of use: distributed speakers User score of 5/5, very easy

Similarity to human generated music User score of 4/5, above average

Technical Challenges

● Generating music with multiple instruments is a complex design challenge which

requires intricate networks to model dependencies across different instruments as well

as previous melodies of the same instrument.

● Even with certain objective metrics to measure the quality of the generated music, it has

hard to quantify if the model is producing good or bad music.

● Deep learning models can be memory intensive, requiring 100’s of MB to store the

learned parameters.

● Achieving 1Mbps baud rate to distribute music files between Raspberry Pis using

nRF24L01 transceiver modules.

● Designing a PCB which affords an easy to use controller interface.

● Seamless experience when applying effects to generated music and changing genre

given multiple latencies of hardware, communication between chips.

● Compact, durable remote with multiple chips, power supplies will be tricky and will

require careful design choices

Solution Approach

Solution Approach
● ML: The main advantage that a GAN has is that it learns by trying to make it’s

generations indistinguishable from a trained discriminator, thus to the human

ear it should be indistinguishable from human made music.

● ML: The model will be trained on data from the Lakh Pianoroll Dataset (LPD),

There will be a different model trained for each genre, to ensure coherence in

the music.

● ML: The generator will be approx 300,00 parameters, which is significantly

lower than what an attention based approach would have.

● Distributed: Using RasPi and nRF24L01 transceiver modules.
● Controller: Using RasPi for inference, Arduino for inputs housed in a custom

PCB.

Testing, Verification and Metrics

● Each individual component i.e. ML model, remote control and distributed

communication will be tested individually to meet requirements and

then integrated.

● ML: The performance of the model will be evaluated based on Tonal

Distance between the instruments, % empty bars and the user survey.

● Distributed communication: unit tested with different protocols and

both latency and throughput will be measured. As music files are usually

3-4 Mb, testing will be based on sending large files infrequently.

● Test breadboarded hardware design with oscilloscope over full range of

inputs to ensure signal propagates through potentiometers to arduino

=

Tasks and Division of Labor
Remote control design: Eli

Distributed networking: Sachit

ML Model: Vedant

Communication between hardware and Arduino/RasPi: Sachit and Eli

Schedule

Questions?

