
18-500 Final Project Report: D4 Synesthesia - May 5, 2023 Page 1 of 16

Synesthesia
Authors: Abhishek Agarwal, Parth Maheshwari, Rachana Murali Narayanan
Affiliation: Electrical and Computer Engineering, Carnegie Mellon University

Abstract—This project aimed to create a system ca-
pable of producing immersive light shows in response to
audio inputs. Given the time and resource constraints
of the course, we built a system to control four types
of lights - par, laser, derby, and strobe - both in unison
and independently while processing audio samples and
mapping them to dynamic lighting values. The goal
was to develop scalable audio processing algorithms
and customization options for lighting shows, enabling
small performers to reduce costs and setup time. We
were able to deliver a pilot version of the system, show-
casing the required functionality. The project has been
completed successfully, and the system has been tested
and demonstrated to work as intended.

Index Terms—Audio Processing, Change Points,
Derby, Expressive Lighting Engine (ELE), Feature Ex-
traction, Laser, Lighting Logic, Lighting Queue, Light
Set, Par, Performance, Real-time, Recommendation
System, Show, Strobe, User Interface (UI)

1 INTRODUCTION

Stage lighting plays a crucial role in engaging the au-
dience during musical performances. Performers use stage
lighting that is controlled using sophisticated audio inter-
faces, which often comes with a large time, money, and re-
source expense to the performers. [1] These interfaces have
audio active modes that use basic decompositions such as
volume thresholds or require extensive manual program-
ming and lighting engineers to activate and control the
lights during a performance [2]. While software such as
QLC+ allows some stage setting and lighting customiz-
ability [3], performers are expected to spend a significant
amount of time programming light behavior ahead of the
performance, increasing their setup time.

To address these challenges, our project developed a dy-
namic lighting system that analyzes audio inputs to con-
trol lights aligned with the music. By decomposing audio
into key components, identifying features, and synchroniz-
ing lights with music from multiple genres, our system en-
ables performers to automate the lighting process and cus-
tomize their shows without the need for extensive manual
programming or costly equipment.

2 USE-CASE REQUIREMENTS

The aim of the system is to control one set of light pairs
that included Pars, Derbies, Lasers, and Strobes using fea-
tures extracted from the audio and user’s manual inputs.
For the scope of this project, the use-case requirements can,

therefore, be divided into three distinct categories: latency
and setup time, audio processing and feature extraction,
and manual adjustments.

2.1 Latency and Setup Time

For any light show to be fun and engaging, it is essential
that it is reflective of the audio being played by the per-
former. To achieve this, our system must be able to play the
input audio and communicate with the lights in almost real
time to achieve synchrony. According to previous analyses
[4], if the lighting is within 185 ms of the audio on average,
the two are indistinguishable to the human brain, so that is
the chosen amount of permissible latency for this system.
Further, user testing and anecdotal evidence reveal that on
average it takes a performer about an hour to set up the
equipment for a performance. Hence, to ensure that the
system can be seamlessly integrated into traditional work-
flows with minimal effort, this system strives to be less than
5 minutes to the overall setup time. Finally, without any
significant cost in latency, this system should be able to
control different lights both independently and in unison,
throughout different points of the song.

2.2 Audio Processing and Feature Extrac-
tion

The decomposition of the input audio determines the
behavior of the lights at any given point of the chosen au-
dio. Hence, it is important that relevant features of the au-
dio are extracted. The signal processing subsystem should
be able to detect and extract more than 90% of the au-
ditory changes as compared to a hand-labeled waveform.
This ensures that there is enough data for the lights to
reflect all the major and minor inflections in a song. Ad-
ditionally, the quality of audio processing can be broken
down into two major components: the diversity and ac-
curacy of the features extracted over the duration of the
song and the associated latency during the extraction of
these features. Modern audio processing tools can extract
multiple auditory features, such as frequencies, amplitudes,
energies, beat onsets, and vocal detection. Moreover, they
can extract up to 44,100 samples per second, creating data
with an average latency of 20 ms per second of process-
ing on modern devices [5]. Therefore, it is reasonable to
expect our system to extract these auditory features for a
given song and process them with low enough latency to
create lighting decisions synchronized with the music.



18-500 Final Project Report: D4 Synesthesia - May 5, 2023 Page 2 of 16

2.3 Manual Adjustments

While automating the light shows can save a significant
amount of time for performers, it is crucial for the system to
provide some customizability so performers may choose to
make adjustments to the lights to fit their style and require-
ments. To accomplish this, the system must allow users to
override automated execution made available by our sys-
tem during playback. Furthermore, the system must also
allow the user to pick their next set of tracks from a list of
recommended songs generated using meta characteristics of
the current audio track, as described in Table 2, or choose
to record, search or upload a song they desire. While users
can use these overrides as frequently as they want, we want
the system to be automated, and it should not require any
manual inputs from the user other than the music in or-
der to function. Therefore, the system should not require,
on average, more than 3 manual overrides per minute, as
tested across different users. Given that it is difficult to
quantify how many times a user will actually bypass the
automation, this is an important qualitative metric for the
project that will be incorporated into user testing.

3 ARCHITECTURE AND PRIN-
CIPLE OF OPERATION

For the overall architecture of the project, we decided
to divide our systems into five main subsystems, as seen in
Figure 1. This was done to facilitate the division of tasks
and allow for unit testing of smaller parts of the project.
Together these components will cover all the functionality
that we require of the entire system.

3.1 Main and Hardware

The Main component functions as the central shared
system that interacts with the other subsystems and sched-
ules and allocates tasks that need to be completed before
the song is played. It contains information regarding the
audio source and fetches the audio into a file and plays it
from there. It also stores the current musical parameters
for each of the other subsystems to view. Additionally, it
contains information about the current Light Set, a soft-
ware representation of the hardware available to us. This
subsystem is a modification of the Show subsystem we pro-
posed in the design, but it simplifies data management and
is able to communicate more efficiently with the different
subsystems. For this project, we also used a light rig called
the GigBar2 connected using a Digital Multiplex (DMX)
protocol as seen in Figure 12, located in the appendix.

3.2 Feature Query

The Feature Query subsystem allows us to identify a
song and extract the musical parameters of the song. It
performs the song detection using the Shazam API and
then performs a song name query using the Spotify API.

From that, we extract a few global musical parameters such
as danceability, valence, energy, tempo, loudness, and live-
ness. We use these parameters to set a default mood for
the light show and generate recommendations for similar
songs that users may want to play next.

3.3 Web Application and User Interface

The Web Application is the only subsystem visible to
the user to interact with the project. The User Interface
(UI) is designed to be simple and intuitive to allow the
user to produce seamless light shows without needing to
pre-program any behavior. The user can search for songs
that they wish to play or select from an expansive list of
recommended or previously played songs for even quicker
processing. Once a song is playing, the user can also manu-
ally override the automated light show at any instant with
an effect of their choice. This subsystem differs in func-
tionality from the subsystem we had initially designed, as
rather than making users change the overall look of the
show, we were able to provide them with more granular
control over the commands that are executed on the lights.

3.4 Signal Processing

The Signal Processing subsystem is responsible for
fetching the audio file for the audio that the user requests
and processing it to extract the relevant features. The sub-
system concurrently processes multiple audio files and gen-
erates outputs for each individual file. It decomposes the
audio to first extract the times a beat falls or beat time
stamps, and then extracts other features, such as max-
imum frequencies, and energy values for each individual
beat. These features are logged and relayed to the lighting
logic for further processing.

3.5 Lighting Engine

The Lighting Engine subsystem is divided into two key
components: lighting logic and execution queue. The light-
ing logic takes in the logs produced by the Signal Process-
ing subsystem and processes them for the duration of the
song. Logic interprets the values of the various signal at-
tributes in the context of the song and uses it to find key
change points throughout the music, such as instrument
change, choruses, or voiced and unvoiced areas. The logic
then uses these change points to characterize how the light
should behave at any point during the playback of the song.
These decisions are then passed on to the lighting queue,
which ensures an appropriate functionality is displayed on
the lights at a given time during playback. It also allows
for the UI subsystem to overwrite the value at any point
during the execution with the behavior decided by the user.



18-500 Final Project Report: D4 Synesthesia - May 5, 2023 Page 3 of 16

Figure 1: System Architecture

4 DESIGN REQUIREMENTS

4.1 Latency

To calculate the end-to-end latency of the system, we
need to consider the entire workflow of how sound passes
through the system, and how lighting calls are processed.

This workflow begins at the front end where the user
uploads a file, records a short snippet of a song, or searches
for a song. In each of these three modes of entry, we have
different latencies to account for. The worst-case end-to-
end latency comes from recording a snippet, so that will be
discussed here in detail. Recording a snippet consists of a
user recording an audio file for roughly 5 seconds (record t),
and this is then fed into Shazam API to recognize the song
(recognize song t) and get the name of the song. This is
further used to poll Spotify for a set of global parameters for
the song i.e. its danceability, valence, energy, liveness, and
tempo (features song t). The features help us generate
recommendations for songs that can be pre-fetched and pre-
processed while the current song is still playing. We con-
currently fetch the entire .mp3 file (search mp3 t) based
on the song title generated from the Shazam API for the
signal processing engine (signal processing t) to get more
localized audio features. We run this on a separate thread
to reduce latency. Once we get the local audio features,
we transfer control to the light execution engine. Lighting
logic generates log files that have command queues for the
lighting system to execute based on beat times (logic t).
The time taken to execute logs is negligible, and lighting
call to the lights is also a lightweight operation. Overall,
end-to-end latency for one song after recording:

Since searching for an mp3 and signal processing hap-
pen in one thread and that takes more time than polling
Spotify, we can eliminate feature song t from our calcula-
tion as seen in the above equation.

4.2 Light and Channel Selection

For the scope of this project, we developed around a
specific lighting fixture even though the system is dynamic
and can work with arbitrary sets of light fixtures. We de-
termined that the most cost-effective fixture to purchase is
the Gigbar2 which has various different types of lights and
multiple of each. This would allow us to prove that our
system can work with different types of lights and it can
coordinate the lighting between individual lights as well.

The Gigbar2 comes with two Par lights which shine
washes of RGB and UV. It also comes with two Derbys
which shine many spots on the ground which can be red,
green, and blue individually but does not mix colors. The
Derbys also have motors that can move the spots around
clockwise and counter-clockwise. The Gigbar2 also comes
with a Strobe bar which can strobe white and UV light.
Finally it comes with a laser that shines little laser dots in
green and red and can function similarly to the derby.

With this in mind, we also had to select which channels
we wanted to manipulate. These professional lights have
many channels for manual control and for pre-programmed
controls. We decided to use only the manually controlled
channels so we would have better control over exactly what
the lights are doing. Below is a table with the channels we



18-500 Final Project Report: D4 Synesthesia - May 5, 2023 Page 4 of 16

decided to use, and our system was required to have the
ability to control each of these channels individually at any
point in time.

Table 1: Light Channels

4.3 Intuitive User Interface (UI)

The goal of the UI was to provide an entry point for
users to enter their audio files through different ways, and
allow them to override the existing light execution queue.
The guiding principle of the UI was to keep it intuitive,
easy to follow, and lightweight while still maintaining its
functionality, and its ability to communicate with other
subsystems. For this purpose, we locally hosted our appli-
cation using Django. Django provides for fast and rapid
development, is scalable, and integrates with Python eas-
ily, which was the foundation for the rest of our codebase.
This multitude of reasons motivated us to use Django as our
framework for implementing the (Model View Controller)
MVC architecture that is crucial for a successful UI.

The user is able to stream local audio files, search for
songs, and have microphone input to demonstrate what
their song sounds like, and our system is required to able
to process these inputs effectively to generate light shows
and other recommendations side by side. The application
allows for all audio formats such as .mp3, .wav, .flacc, and
.mp4. To be successful in this operation, our system was
required to have a 100% accuracy in taking user inputs,
which was met.

According to our use-case requirements stated earlier,
taking user input was a qualitative metric that we tested
alongside the ease of UI use, aesthetics of the show, and
the quality of the recommended songs. These requirements
were tested by running user tests on our system, as sum-
marized in the testing section.

5 DESIGN TRADE STUDIES

5.1 Feature Querying Choices

We opted for Spotify as the application to poll our
audio clips because it provided a well-documented, exten-
sive dataset of a variety of audio labels categorizing each
song. Table 2 below summarizes the most important meta-
features that can be used to summarize a song.

Figure 2: Spotify Audio Feature Density by Genre

Based on an R Studio Analysis we found in Table 2 [6],
it was seen that 6 out of the 12 Spotify-based audio fea-
tures - danceability, valence, energy, tempo, loudness, and
liveness - showed maximum variability across different gen-
res. The final features selected are summarized in Table 2
below.

This subset of features made more sense in the context
of the song as this would allow us to get a holistic overview
of the audio. Since these are values that show more vari-
ability, we see that these could be good determiners of the
audio features a user likes in a song. Hence, they were used
to generate and fetch recommended songs for the user to
play next.



18-500 Final Project Report: D4 Synesthesia - May 5, 2023 Page 5 of 16

Table 2: Spotify Audio Feature Descriptions

5.2 Global Feature Extraction: ML Clas-
sifier vs Shazam-Spotify workflow

We initially explored an ML genre classifier to facilitate
the extraction of genre-specific characteristics. We were
going to keep a sample set of 5 songs per genre for 12 gen-
res and extract their audio features based on the genre we
classified them into. The accuracy for genre classification
with respect to the Decision Tree, Random Forest, Con-
volution Neural Networks (CNN), and K-nearest neighbors
(KNN), was around 60%−70% making it less reliable, and
decreasing accuracy when we combine it with the rest of
the workflow [6].

To tackle the accuracy issue, we implemented two
things: detecting the song using the Shazam API, and then
polling Spotify for the audio features associated with the
song we detected earlier. This method made feature de-
tection more accurate because it is dependent on Spotify’s
powerful audio feature extraction. However, we would not
be able to test it effectively on audio clips that are absent
from Spotify’s database. We are assuming that any audio
input when detected by Shazam will have a Spotify coun-
terpart to help us complete the workflow even though in
reality this is not the case. But, if we are not able to find a
Spotify counterpart, we will not be able to generate useful
recommendations. We will have error messages to alert if
the audio input is not recognized by Shazam or cannot be
polled from Spotify to get audio features.

5.3 I/O Communication with Lights: Py-
DMX vs DmxPy

To interface with the lights we wanted to use a library
that would work with the Enttec Pro USB interface. The
first and most commonly used interface that we found was
PyDMX, however, upon initial attempts to make it work,
we realized that it requires a lot of additional packages
and its documentation is not great. We decided because of
that to switch over to DmxPy which is a more bare-bones
version but allows controlling individual channels. We de-
termined that controlling the channels individually is all
we needed given that our logic is done by the software.
This means that the only communication with the inter-
face is when we want to set channel values. Upon testing,
we were able to achieve the desired functionality.

5.4 Feature Selection in Signal Processing

Signal processing attributes were initially divided into
three different types of musical features: Pitch, Timbral ,
and Rhythmic attributes. This was done to ensure we
were holistically analyzing the audio clip and extracting the
maximum possible attributes from a clip. We used Librosa,
an industry-standard audio processing tool in Python to
extract these features. However, upon analysis, we found
that while these metrics were useful for detecting specific
elements in music, such as vocal ranges, they did not gen-
eralize well across different kinds of audio. For instance, we
explored the use of Euclidean distance similarities between
the differentials of the MFCCs (Mel-frequency Cepstral Co-
efficients) to detect instrumental change. We further tuned
the hyperparameters, but it proved to be difficult to si-
multaneously optimize the parameters to produce accurate
inflection points for multiple genres. To tackle the issue
of inflection points, we found that breaking the audio into
different energy divisions gave us a better representation of
the audio data as listeners. Processing of this data will be
elaborated on in the lighting logic section that is used to
make function, light, and parameter selections.

We stuck to extracting Rhythmic features as before be-
cause this was a more intuitive way of analyzing audio data.
The Rhythmic features provide the main beat that spans
the track, and the strength of the track. Using Essentia,
an open-source C++ library for audio analysis and audio-
based music information retrieval, we were able to get all
the times during the song when the beat landed, or beat
time stamps. This maps to a more Spotify’s attributes and
its relevance to rhythmic features has also been explored in
the Design Trade section.

We explored different types of Pitch features including
trying to identify the key notes in any section of the song
using constant-Q transform of the audio signal, and de-
tecting onsets and transforming it to more important pure
tones of the audio signal. This gave us a lot of data to
work with, but we were not able to translate these to val-
ues across different octaves because a few values out of the
range led to a noisy graph. Getting the frequency bins al-



18-500 Final Project Report: D4 Synesthesia - May 5, 2023 Page 6 of 16

lowed us to have a wider range of frequency values that
could be detected easily without too much noise. This also
used the constant Q-transform function, but we avoided fil-
tering out those values more to preserve raw data per the
beat time stamp.

5.5 Real Time vs Pre-processing Signal

Originally, we wanted to process audio in chunks to al-
low for real-time signal processing by the system. After a
few attempts at chunking and streaming audio using dif-
ferent Python libraries, the look-ahead within the audio
file was difficult to predict, and real-time alignment with
the beats of the audio file would have been very difficult
to achieve. Making appropriate lighting decisions based on
local minima and maxima was also very challenging, and
did not capture the entire flavor of the song. There was
an increasing latency overhead because of the time delay in
processing every subsequent audio chunk. This delay added
up cumulatively, resulting in a misaligned set of decisions
with the beats. For fast-tempo songs with a quicker beat,
it became increasingly difficult to do a delay calculation.

We opted for a more adaptive approach that allows us
to bypass the problems with real-time processing, but still
maintain reasonable end-to-end latencies from a user’s per-
spective. We chose to recommend songs based on the user’s
currently playing track and pre-fetch tracks that they could
potentially click on i.e. the recommended songs for a given
song. We got its associated audio features and requested
songs from Spotify API for other songs similar to the cur-
rent one. This method of loading the resource before it is
required to decrease the time waiting for the resource guar-
antees that on consequent iterations, the user waits for a
lesser time. During the buffering period of the first song,
we are looking ahead and fetching these songs. If the song
is not available on Spotify, we cannot generate recommen-
dations for the song, so then we default to showing the
history of playbacks.

The tradeoff because of this is that we store a few audio
files on recommendations generated that might not be ac-
cessed, so storage space is slightly compromised. But, we
keep recommendations to around 3 tracks to balance this
tradeoff as well. We also have a history of playbacks of-
fered for users who want to explore samples of the lighting
execution. These are dynamic so the user never gets the
same show every time, adding to the aesthetic appeal of
the system.

While comparing latencies from the approaches, we
found that our expected latency from this approach showed
significant drops across more number of songs played, mak-
ing it a robust and adaptive approach for the system. We
expect this approach to do better than even real-time sig-
nal processing from a latency standpoint because we also
avoid buffering across chunks.

6 SYSTEM IMPLEMENTATION

Our main subsystems are the Main class, Feature
Query, User Interface (UI), Signal Processing, and Light-
ing Engine. An example workflow of how these systems
interact with each other is shown in the Appendix, in Fig-
ure 12. Find our full project on our GitHub repository:
https://github.com/aasuper1/Synesthesia

6.1 Main

Figure 3: Main Subsystem

The main class consists of the audio input processed
for its global music parameters, local audio outputs ex-
tracted from the Signal-Processor-Lighting Logic workflow,
and recommendations pre-fetched in the background. This
serves as the main point of contact for the UI, Signal
Processor, Feature Query System, and Lighting Engine to
seamlessly access the parameters it needs for process execu-
tion. We schedule tasks from the Signal Processor, Feature
Query System, and Lighting Engine concurrently on se-
quentially depending on which one of the points of entry,
Upload, Record, and Search.

In each of these cases, tasks are scheduled differently.
For the upload method as a point of entry, we send the file
from the User Interface to the main class. Using the Fea-
ture Query system, we recognize the song using the Shazam
API using the first few seconds of the file, and we poll Spo-
tify for features using the title. This runs concurrently
with the Signal Processor as we already have the file, and
we have a way to play the song and interact with the light
execution queue as part of the Lighting Engine as the user
can manually override existing function calls.

For the record method as a point of entry, we send the
recorded snippet. Using the Feature Query System, we rec-
ognize the song using the Shazam API using the first few
seconds of the file, and we poll Spotify for features using
the title. This runs concurrently with searching for the mp3
and the Signal Processor. The rest is similar to the previous
workflow talked about in the above upload method.

For the search method as a point of entry, the system is
able to locate the song and downloads an mp3 if it does not
exist. Since we are polling for the song by title, we do not
need the Shazam API, and we can directly poll for Spotify



18-500 Final Project Report: D4 Synesthesia - May 5, 2023 Page 7 of 16

features as part of the Feature Query System. This runs
concurrently with downloading the mp3. We run the Signal
Processor and the rest is similar to the upload method.

This method of modularizing subsystems, and having
each subsystem access the main class when it needs makes
it easier to debug problems as we can isolate the problem
based on the subsystem’s access point with the main class.
This also allows multiple processes to run in synchrony be-
cause all subsystems are not dependent on each other for
the inputs, and can process inputs concurrently bringing
down latency times.

6.2 Signal Processing

Figure 4: Signal Processing Subsystem

The Signal Processing subsystem initially consisted of
windowing, followed by feature extraction, but since we
are processing the entire audio file before, it consists of
feature extraction after normalizing the audio to remove
background noises, removing unwanted frequencies. This
is followed by feature extraction through a couple of meth-
ods. The main library used to process signals is Librosa, a
Python library for audio processing.

We started off with a couple of different metrics. We ex-
tracted beat time stamps, amplitudes, frequencies, energy
divisions, and voiced and unvoiced parts. For amplitudes,
frequencies, energy divisions, voiced, and unvoiced parts
we were extracting them with a default sampling rate of
22050 samples per second. However, since beat time stamps
aligned with the audio and gave us pre-determined points
to execute lighting calls, we chose to align all our metrics
with these time stamps. This also allows easier execution of
different light groups because they are of the same lengths,
and we can run them concurrently with no delays.

We realized that energy divisions per beat have a signif-
icant contribution to the overall appeal of an audio file, so
we decided to weight energy divisions higher for light pro-
cessing decisions as well. We wanted to see how these fea-
tures would combine together. This led us to find spectral
centroids. Spectral centroids allow us to weigh both fre-
quencies and amplitudes together using Fourier Transforms
to give us the brightness content of an audio file. After find-
ing a frequency for a particular frame, we find the nearest
bin and resample this according to beats. This ended up
leaving some information about voiced and unvoiced parts

which were captured better through changepoint detection
that will be explored in section 6.4: Lighting Engine.

We discussed our other methods of feature selection in
Design Trade Section 5.4: ”Feature Selection in Signal Pro-
cessing” and the trade-offs associated with it. We save the
logs of audio features under a song’s specific directory so
that the Lighting Engine can access these files for further
processing.

6.3 Feature Query

Figure 5: Feature Query Subsystem

The Feature query subsystem consists of a few main
parts: Shazam API is used to detect the song that is passed
through the UI. After the song is uploaded through the UI,
the data from an uploaded file is chunked into smaller bits
to allow songs to be recognized quicker. Since it could be
labeled differently from what the audio file is, we take the
safer route of sending it through the song recognizer to find
the title of the song.

For the record option, we pass the 5-second audio clip-
ping as it is. We use the Shazam API to first read a chunk
of the song passed in, and retrieve a signature generator
object. This signature generator object gives us many pa-
rameters about the song that it identified.

Using the title of the song, we then poll the Spotify API
with a fixed set of client credentials and a secret key with an
access token. Polling Spotify gives us the ability to extract
audio features with respect to the song on the database.
Here we are assuming that whichever song we detect from
the Shazam API is present on the Spotify database. Spo-
tify requests for a global set of parameters are concurrently
executed with the signal processor that finds the main lo-
cal features per the beat time stamp. If it breaks in either
one of these steps, we have certain fail-safe defaults to still
have a history of playbacks presented in the recommended
section. We are still able to run our signal processor, so we
do have local audio features to work with to make light-
ing decisions. We query Spotify with the song title using
the track URI because that’s a unique identifier, and we
get back a data frame with a few audio features stacked.
From this nested dictionary or data frame, we are able to
get the danceability, valence, energy, tempo, loudness, and



18-500 Final Project Report: D4 Synesthesia - May 5, 2023 Page 8 of 16

liveness values. The user has the authority to override these
features, and accordingly control the lighting.

6.4 Lighting Engine

Figure 6: Lighting Engine Subsystem

6.4.1 Lighting Logic

The Lighting Logic is the key component for the func-
tionality of this system. Logic receives arrays of signal pa-
rameter values from the Signal Processor and reads them.
Once the raw values are read, Logic processes each of those
values independently depending on the decision it is trying
to make. For instance, in order to interpret the energy di-
visions, Logic needs to convert negative decibel values to a
positive range, then remove any outliers that may be caus-
ing additional noise. Following this, it normalizes all of
these values on a proportional scale and then runs an ML
classifier to find the critical places where some key compo-
nent of the music is changed. However, this also requires
tuning the hyper-parameters such as the sensitivity, so that
an adequate number of change points are generated. An ex-
ample of detecting such change points for the energy values
is shown in Figure 7 below.

Figure 7: Processing Raw Energy Input and Automatic
Change Point Detection for Teenage Dream by Katy Perry

Once the time stamps for different sections of the song
are generated, this data is used to make decisions about

various attributes for each light. The attributes that the
Logic decides for the GigBar2 can be summarized as fol-
lows:

1. Lights: Logic first selects which lights should be on
at any given point during the song

2. Function: For each light of the rig, the function that
should be executed on the light is selected for every
beat of the song. This process is probabilistic, based
on an elimination scheme, so that the light shows look
dynamic.

3. Color: The colors for each light are selected based on
3 criteria: hues (number of colors and color palette),
saturation (depth of color), and value (brightness of
the color)

4. Rotation Speed: The direction in which the light
should be rotating and the speed of the rotation is
determined

5. Effect Duration: The number of beats for which a
function should last is selected. Effect durations can
range from 1 beat to 4 bars depending on the current
state of the song

6. Effect Frequency: The number of times an effect is
displayed in a given duration is determined

Once all of these parameters are determined for each
light for the entire duration of the song, they are logged
and sent to Main to be relayed to the Execution Queue.

6.4.2 Lighting Communication and Execution
Queue

The lighting library follows an object-oriented model,
where light is defined as an instance of a class. The class
determines the basic functionality of the light and defines
how the light should behave when it is asked to execute
different commands such as fade, rotate, and blackout. Dif-
ferent kinds of lights have different functionalities, so the
lights inherit from a super-class and then define this unique
functionality.

This modular approach to creating a light setup allows
the user to scale the execution library to multiple lights
with ease. Further, lights can be combined into a group
to ensure that the operations of these lights can happen in
sync. This is defined by the library as a LightGroup. The
LightGroups are available if none of their member lights
are currently executing any lighting commands. Once a
LightGroup is chosen, a function is chosen from the avail-
able LightGroup functions. Finally, the parameters for that
function are set. Each of these decisions is influenced by
the values that are sent from the Lighting Logic.

The Lighting Execution Queue then takes these func-
tion calls and places them in a queue that handles any
concurrency. This queue communicates directly with the
light and calls the respective functions in harmony with
the beats.



18-500 Final Project Report: D4 Synesthesia - May 5, 2023 Page 9 of 16

6.5 Web Application and User Interface

Figure 8: Web Application and User Interface Subsystem

The home page has 3 methods of song uploads as visible
here. You can upload a song, search for a song or record a
song.

Figure 9: Home Page of the User Interface

The entry points are broken up into 3 main categories.
In each of these cases, we have different processing meth-
ods.:

• Upload: Upload gives users the ability to upload
any audio file from their local computers. This also
feeds into the recommendation engine that we talked
about.

• Record: Record gives users the ability to feed the sys-
tem what the song they are thinking of sounds like.
They play the song for a sum total of 5 seconds, and
our system is able to generate a playback of the en-
tire song with a dynamic light show within a couple
of seconds.

• Search: Search gives users the ability to poll our sys-
tem for a song title, and a dynamic light show is out-
putted within a few seconds.

Users can manually override existing function calls
sent to the lighting engine. These overrides will hap-
pen through simple button presses of setting a color,
activating a strobe, or putting a hold or a blackout at
a given instance. Overrides are dynamically updated
on the UI and relayed to the lighting execution queue
through AJAX requests.

Figure 10: Recommended Tracks for ”Levitating” by Dua
Lipa

For each time we get the track uri from Spotify, we try
to run recommended songs and pre-fetch the tracks as well.
This way we can pass it through the signal processor, and
retrieve its audio metrics for Lighting Logic to execute, and
generate an execution queue of calls to the Gigbar2. This
helps save time and makes it more tuned to user preferences
as we talked about earlier

7 TEST & VALIDATION

7.1 Lighting Execution

For the lighting execution testing, we focused on ensur-
ing that all the functionality that we intended to be able
to output on the lights was possible. This involved stress
testing each light with each of the functions to ensure that
given arbitrary features from the signal processing units,
the light execution would be able to handle the load and
display the lights effectively.

7.1.1 Functionality

In terms of functionality, we wanted to ensure that each
of the lights could handle all of the lighting functions se-
quentially. To this end, we created a simple testing plan to
ensure that no functionality was missed. In order to execute
these tests, for each light and each function, we randomly
generated parameter values and tested if the lights matched
those parameters. The results of these trials are shown in
the table below. Note that the Blackout function only had
one trial per light because it does not take any additional
parameters.

7.1.2 Modularity

In terms of modularity, we wanted to be able to use
multiple lights in conjunction with each other. To this end
we tested calling functions on pairs of lights at the same
time. This test allowed us to ensure that we could con-
trol multiple light groups simultaneously. For example we
tested a setColor command on the pars and the derbys at
the same time. We did this test for every combination of
lights on the Gigbar 2. We found that every pair of lights



18-500 Final Project Report: D4 Synesthesia - May 5, 2023 Page 10 of 16

were able to execute their respective commands simulta-
neously. This allows for full functionality once the signal
processing functions are passed in.

7.1.3 Concurrency

For some of the light functions, there is the chance of
concurrency issues where multiple light function commands
are requesting the same light resource. To handle these re-
quests, we implemented locking on each of the hardware
light resources so that only the most recent light function
is able to execute their command and any existing com-
mand will be overwritten. In order to test this, I tested the
lighting calls that arrive from the logic on full songs. These
logic files will call all of the different functions available to
each light and test that there are no deadlocks. The dead-
locks would be detected by the system when we can see that
none of the subsequent lighting functions are being called.
We isolated each of the hardware lights since they all hold
unique locks, and tested the diverse set of functions on each
of the lights, and then tested them all together. We were
able to prove the robustness of the system over the course
of 5 different songs where there were 0 deadlocks.

7.2 Latency

Figure 11: End-to-end latency across the number of songs

Based on a few latency tests we ran, we graphed
the worst-case latencies, amortized latency due to recom-
mended songs, and best-case latency if all songs from his-
tory or playback are clicked by the user. We see that
the amortized latency from the recommendations on subse-
quent songs gets better and converges towards the best-case
latency. This allows us to effectively find a feasible alterna-
tive to the issue of chunk processing, while still maintaining
a user-focused approach.

7.3 Change Point Detection

Regarding change point detection, in each song there
are audible change points that are present. In order to
test the accuracy of the change point detection algorithm,
we labeled the song with the timestamps of these changes.

Then we compared those timestamps to the timestamps of
changes that the algorithm came up with. Below we have
a table with the result of the percentage of change points
that the algorithm was able to pick up on.

Table 3: Accuracy of Change Point Detection Across Songs
of Different Genres

7.4 Song Recognition Accuracy

It was important for the robustness of our system to
test the ability of our song recognition algorithm. In order
to do so, we curated a list of 15 different songs and ran the
Shazam detection algorithm on each of these songs to de-
termine if we would be able to recognize them. We played
a 5 second clip of each song and recorded either a success
of fail depending on if the algorithm was able to detect the
song correctly, or either fail to detect the song or detect
the incorrect song. We found that across all 15 songs, the
Shazam algorithm was able to correctly identify the song.

For additional testing purposes, we also tried to sing
the songs that it was able to pick up on to see if the system
could be expanded to detect songs from user voice. This
however failed for each of the 15 songs.

7.5 User Testing

In order to get a feel of how a user would interact with
our product, we asked a group of 5 volunteers to rate their
experience with the project on a scale from 1 to 5. They
ranked the project based on four different criteria listed
below.



18-500 Final Project Report: D4 Synesthesia - May 5, 2023 Page 11 of 16

Table 4: User feedback on a scale of 5

8 PROJECT MANAGEMENT

8.1 Schedule

Our project was ambitious and involved the develop-
ment and integration of multiple subsystems that include
audio processing, communicating with lights, a modifiable
user interface, logic to map lights and feature extraction.
To achieve this, we set up and followed an aggressive time-
line, trying to get a headstart on development and testing,
and saving time wherever possible.

While we tried to follow the schedule we had established
at the beginning of the project, we were cognizant of the
changes we made along the way and were flexible enough
to accommodate them into our workflow. As the project
evolved and increased in complexity, we ended up spending
a lot more time integrating the various subsystems than we
had initially anticipated. Additionally, we spent a lot more
time fine-tuning and optimizing each subsystem than we
had planned. Our final schedule breakdown can be seen in
the Gantt Chart in Figure 14 at the end.

8.2 Team Member Responsibilities

Given the project was divided into multiple subsystems,
each team member was responsible for a different part of
the project as listed below:

• Abhishek worked on integrating logic, representing
physical lights in software, and executing lighting
commands on the lighting hardware.

• Parth was responsible for processing signal parame-
ters and developing the lighting logic to map audio
features to light outputs.

• Rachana gathered audio information from the UI and
decomposed and extracted local signal parameters
and global parameters. She was responsible for the
User Interface, and synchronizing processes with the
different subsystems.

• All members contributed to the testing and integra-
tion of their subsystems into the overall project.

8.3 Bill of Materials and Budget

The bill of materials and budget for our project can
be found in Table 3 below. Procuring the light rig is the
biggest expense, taking up a large proportion of the budget.
All the other equipment, including the 3-to-5 DMX pin,
the DMX-USB interface, and DMX and power cables were
borrowed from the CMU IDeATe lab. The only additional
hardware was a personal computer to run the program on.
Overall, we ended up using all of the equipment that we
had procured at the start of the project.

Table 5: Breakdown of Expenses

8.4 Risk Management

While designing our system, we conducted an initial
assessment of potential risks and developed strategies to
mitigate them. Additionally, we created several internal
checkpoints and test metrics for each subsystem to ascer-
tain the project’s feasibility despite concerns about its com-
plexity and timeline. The list below outlines the risks and
the mitigation strategies that ensured this project’s growth.

8.5 Controlling Lights and Procuring
Equipment

The primary risk for the project was efficient commu-
nication with the lights. Given our team’s inexperience
with using the DMX protocol, it was critical to test if we
could communicate with lights on a smaller scale. To test
this, we borrowed individual pars from the CMU IDeATe
lab and produced various proof of concept demos for con-
trolling different functionality of lights with our program.
Once we were confident in our ability to control lights, we
allocated time to research and procure the light rig that
we used. This was done to ensure that we were using our
budget judiciously and avoiding delays caused by a light
rig that was not suitable for the needs of this project.

8.5.1 Latency and Fail-Safe Defaults

A high enough latency would have caused the light com-
mands to run out of sync with the music. As discussed in
the design trade, we let go of real-time processing of in-
dividual audio chunks in favor of pre-processing the entire
file to combat this. Additionally, we incorporated a light-
ing queue in our design that allowed us to store a set of
lighting instructions, execute them simultaneously for dif-
ferent lights, and replace them with user inputs if needed.



18-500 Final Project Report: D4 Synesthesia - May 5, 2023 Page 12 of 16

Further, we replaced the need for Fail-Safe defaults by pro-
cessing the entire file ahead of time and getting rid of all
real-time behavior.

8.5.2 Scaling and Independent Operation of
Lights

Due to limited time and resources, we were uncertain if
we would be able to make our project work for multiple dif-
ferent kinds of lights present on our light rig. However, con-
tinually testing smaller subsystems ensured that we could
coherently operate each light independently and in sync,
and allowed us to scale without many setbacks. Further,
by using an object-oriented design for our lighting engine,
we were able to make it easily scalable and adaptable to
different kinds of rigs in the future.

8.6 Audio Processing Reliability and Inte-
gration

The final risk for our project was our ability to get use-
ful features from the audio that we could reliably base all
of our lighting decisions. As highlighted in our system im-
plementation, we tried extracting many features across a
wide variety of songs. This was a necessary step because
while some features worked on certain kinds of music, they
were not as reliable for others. Finally, we developed the
lighting logic keeping modularity in mind, so that if in the
future, we decided to add more signal processing features
or replace the existing ones, we could do that without any
additional development time. Such a development style
significantly expedited our integration process.

9 ETHICAL ISSUES

Given that this project was designed keeping the needs
of entertainers and musical performers in mind, the ethical
quandaries that might arise are minimal. However, there
are still some important implications to consider.

9.1 Displacement of Light Engineers

While automation offers the benefits of speed and pre-
cision, it may result in job loss for people who previously
performed these tasks manually. This may be particularly
concerning for individuals who have invested time and re-
sources in developing their skills as light engineers. While
our system is relatively simplistic to cause such a disrup-
tion, a future system with enough customizability might re-
move the need for a human. To mitigate this impact, it may
be important to offer training opportunities for these indi-
viduals so that they can create even more engaging shows
and performances with the supplemental aid of automation
as opposed to competing with it.

9.2 Public Health and Safety

Strobe lights or rapidly changing colors can trigger
seizures in individuals with epilepsy or other neurological
conditions. In addition, exposure to bright or flashing lights
can cause eye strain, headaches, and other discomforts. A
sudden failure or malfunction of the lighting system could
also put performers and audience members at risk of acci-
dents or injuries. To mitigate these risks, it is important to
provide warnings about the potential risks of the light show
and to include fail-safe defaults and bypass mechanisms to
quickly shut down lights in the event of an emergency. Ad-
ditionally, it may be important to conduct extensive test-
ing and quality assurance to ensure that the product meets
safety standards.

9.3 Public Welfare

The environmental impact of the lighting system is an-
other consideration. In addition to the extensive compu-
tation required to automate light shows, certain types of
lighting can consume large amounts of energy, contribut-
ing to carbon emissions and climate change. To address
this, it is important to consider the environmental impact
of the lighting system in the design phase. This may in-
volve selecting lights with low power consumption and de-
veloping an efficient program that requires low computation
power and does not do unnecessary calculations. It may
also involve balancing economic and environmental consid-
erations, where cheaper lights may be less environmentally
friendly. By prioritizing sustainability in the design phase,
it may be possible to reduce the environmental impact of
the lighting system and promote public welfare.

10 RELATED WORK

There are a variety of systems available in the market
that address the need for customizable lighting in different
circumstances. The closest match to our project is a new
startup, MaestroDMX, that aims to produce automated
light shows for live audio using artificial intelligence [7].
Other projects have tried to tackle scenarios other than
performances. For instance, Protopixel has developed dy-
namic lighting systems for fully reactive light-art installa-
tions [8]. Another system focuses on mood lighting that
expresses the emotions evoked by the audio [9]. This type
of system analyzes the emotional impact of music and color
and seeks to maximize their impact when used together.

Our project was inspired by the real-time element of dy-
namic lighting, which is used to reflect tension in gaming
[10]. We examined the possibility of creating our Light-
ing Engine using this approach. Games, like performances,
simulate elements of traditional media such as plot, char-
acters, sound, music, and lighting. The interactive experi-
ence in games presents player challenges that are similar to
audience-performer interactions.



18-500 Final Project Report: D4 Synesthesia - May 5, 2023 Page 13 of 16

11 SUMMARY

We started development on this project with the goal
of creating automated light shows that were as engaging
as manually programmed shows but took a fraction of the
time. By creating classes for lights and translating audi-
tory features to lighting logic, we are able to create systems
that are modular, testable, and scalable. Having an inter-
face that allowed the user to modify the light show, this
project successfully demonstrated the capabilities of such
a system at a smaller scale, with four light pairs.

11.1 Future work

The complexity this project was able to achieve in a
short time span is impressive, but there are ways to ex-
pand it in the future.

11.1.1 Machine Learning for Logic

Currently, our lighting logic relies exclusively on the
signal parameters that we extract from the songs. The ac-
curacy and complexity of logic can be improved by incor-
porating machine learning models trained on manual light
shows. This would enable the system to learn from the in-
tricate and nuanced lighting techniques of experienced light
engineers. However, the lack of good-quality data that the
model can be trained on remains a challenge.

11.1.2 Added Customizability

The system currently allows the user to modify the cur-
rent command that is executing on the light. However, dif-
ferent performers might prefer different lighting aesthetics,
and for that purpose, may require added customizability
options. For instance, allowing the user to select a color
palette or modifying the overall speed and energy of the
show can be an improvement.

11.1.3 Improved Latency and Scaling

Our system in its current state is already orders of mag-
nitude faster than any manual light show. However, there
are still significant improvements to be made that will al-
low the system to be able to listen to live music and make
decisions on the fly. Further, while our system is scalable,
it can be further tested on different types of lights and light
rigs, and can potentially allow users to specify their own
equipment.

11.2 Lessons Learned

If anyone wants to explore the domain of automated
light shows for live music, they should be aware of the
limited documentation and resources that are available for
public use. Most of the signal-processing libraries are in-
accurate and slow. These libraries often require a lot of
bloatware to function and are not kept up to date, causing
compatibility issues. Further, the signal parameters are not

very transferable and may only work for a limited subset
of musical genres.

Another roadblock to keep in mind while working with
DMX is the scalability and power constraints. Many light
rigs on the market often require a lot of power and may need
a dedicated controller to communicate and daisy chain.
This is not feasible for a mobile workstation such as a lap-
top. Furthermore, communicating with multiple lights in
real-time requires knowledge of concurrency and may cause
the system to break abruptly.

Finally, integrating signal processing with a web appli-
cation and a lighting engine requires a lot of moving parts,
and is a challenging task to accomplish on a strict time-
line. It is essential to over-allocate time for integrating and
testing various subsystems, as interactions between the dif-
ferent subsystems are very likely to produce unanticipated
results.

Glossary of Acronyms

• API – Application Programming Interface

• ACPS – Average Calls Per Second

• AJAX – Asynchronous Javascript and XML

• CNN – Convolutional Neural Nets

• CSS – Cascading Style Sheets

• DMX – Digital Multiplex

• ELE – Expressive Lighting Engine

• KNN – K Nearest Neighbors

• MFCC – Mel-frequency cepstral coefficients

• MVP – Minimum Viable Product

• PCPS – Peak Calls Per Second

• QLC+ – Q Light Controller Plus

• UI – User Interface

• UV – Ultra Violet

References

1. Moody JL, Dexter P. Concert Lighting the Art and
Business of Entertainment Lighting. New York:
Routledge, Taylor amp; Francis Group; 2017.

2. Henrie J. How long does it take to set up
a stage for a concert? Ennui Magazine.
https://ennuimagazine.com/how-long-does-it-take-
to-set-up-a-stage-for-a-concert/. Published March
1, 2020. Accessed May 5, 2023.



18-500 Final Project Report: D4 Synesthesia - May 5, 2023 Page 14 of 16

3. Wiebe DA. 8 best DMX stage light control soft-
ware amp; hardware 2023; for clubs, churches,
djs amp; more. Music Industry How To.
https://www.musicindustryhowto.com/best-dmx-
stage-lighting-control-software/. Published April 10,
2023. Accessed May 5, 2023.

4. Biamp. Video and network latency. Biamp Corner-
stone.https://support.biamp.com/Tesira/Video
/Video and network latency. Published May 24,
2018. Accessed May 5, 2023.

5. Minotto VP, Jung CR, da Silveira LG, Lee
B. GPU-based approaches for real-time sound
source localization using the SRP-phat algo-
rithm. The International Journal of High Perfor-
mance Computing Applications. 2012;27(3):291-306.
doi:10.1177/1094342012452166

6. Kaylin Pavlik. Classifying genres in
R using Spotify Data. Kaylin Pavlik.
https://www.kaylinpavlik.com/classifying-songs-
genres/. Published January 3, 2020. Accessed May
5, 2023.

7. Kickstarter. https://www.kickstarter.com/projects/
limbicmedia/maestrodmx-a-game-changing-technology-
for-djs-and-musicians. Accessed May 6, 2023.

8. Events. ProtoPixel. https://www.protopixel.io/showcase/
events Published April 1, 2020. Accessed May 5,
2023.

9. Moon CB, Kim HS, Lee DW, Kim BM. Mood
lighting system reflecting music mood. Color
Research amp; Application. 2013;40(2):201-212.
doi:10.1002/col.21864

10. Game studies. Game Studies - Dy-
namic Lighting for Tension in Games.
https://gamestudies.org/0701/articles
/elnasr niedenthal knez almeida zupko.Accessed
May 5, 2023.



18-500 Final Project Report: D4 Synesthesia - May 5, 2023 Page 15 of 16

Figure 12: Complete Setup and Example Execution Workflow for a Song



18-500 Final Project Report: D4 Synesthesia - May 5, 2023 Page 16 of 16

Figure 13: Completed Task Breakdown and Schedule


