
D4 - Synesthesia

Abhishek Agarwal
Parth Maheshwari

Rachana Murali Narayanan 

Final Presentation



Use Case & Requirements
Automating light shows for performers using minimal 
equipment and signal processing

Requirement Target Metric

Pre-processing 
latency <10-15 seconds of the song 

Setup time < 5 mins of 1 hr performer setup 
time

Signal Processing Extract > 90% of the auditory 
features of hand labeled audio file

Manual adjustments < 3 adjustments per minute per 
song

Our sandbox visualization



Design vs Solution Approach



Demo Videos

Video 1

Changing 
brightness values 

of the light 
according to the 
amplitudes of a 
standardized 
soundtrack 

Video 2

Detecting the 
beat timestamps 
in a soundtrack 
and changing 

functions on the 
beat 

https://docs.google.com/file/d/19WwFPkL3hYk79kNYXnQDN1QfdnixE6Cg/preview
https://docs.google.com/file/d/17mYTU-zmABUI9Pm3aNhI0PX8_6EnPvCS/preview


Testing and Validation
Subsystem Tests Testing Process Results

Setup time ● Efficiency test
● Processing load test

Efficiency: Ensure that the setup time for 
a performance is below 5 minutes

Processing load: Ensure that the song 
recommender can generate 
recommendations and play for over an 
hour

In Progress
Group members take < 5 minutes. 
Additional participants must be tested

In Progress
We must finish song recommendation 
integration

UI and Manual 
adjustments ● Performance tests

Performance: Test on a sample audio with 
different genres and determine how many 
adjustments are needed

Not Applicable
User manual adjustments are the 
stylistic choice of the user and should 
not be limited

Lighting ● Functionality testing
● Concurrency testing

Functionality: Blackout, SetColor, Fade, 
Rotate, Strobe, ColorCycle, Hold with 
different timers
Concurrency: simultaneous threads and 
overwrites

Pass!
100% successful with different hold 
intervals, and negligible delays



Testing and Verification
Subsystem Tests Testing Process Results

Signal 
Processing 

● Functionality testing 
● Stress testing 

(different audios, 
isolate features)

Functionality: Extracting features, hand labeled 
reference, different window frames/sampling rates 
Stress: isolating amplitude, frequency, and beats. 
Test distortion or clipping of files, load on 
Shazam-Spotify workflow

Fail!
Real time windowing 
unsuccessful with librosa
Pass!
100% successful 
extraction

Feature Query ● Song recognition 
accuracy

Recognition Accuracy: We tested 15 different songs from 
Billboard’s top 100 playlist and the song recognition was 
able to accurately identify each of them

Pass!
15/15 songs were 
accurately identified 
within 5 seconds each

Integration Test
● UI-Light integration
● Signal-Light 

integration 

UI-Lighting: Real time synchronization stress test of 
user commands across the song, error handling when 
UI-Light connection breaks
Signal-Light: Each set of signal parameters 
translated to lighting deterministically, high processing 
load of big files handled quickly

Pass!
100% successful except 
on overlapping user 
commands at the UI 



Testing : Initial Audio Metrics

Figure 1: Frequency against beats for a 
pitch modulated file

Figure 2: Amplitudes against beats for a 
loudness modulated file

Figure 3: Beat positions across time for a 20 
second audio clip of “Teenage Dream”



Testing : Processing Data

Figure 2: Normalized Energy with Outlier Removal 
overlaid with strobe color decisionFigure 1: Beat timestamps vs Standard Deviations in Energy 

for 4, 8, and 16 beat windows

Figure 3: Change point detection with normalized 
energies on “Teenage Dream”



Trade Offs
● ML Genre Classifier vs Shazam-Spotify recommendation system

○ Genre classifier: Simplistic information on genres

○ Spotify: danceability, valence and other features

● Linear command queueing vs Concurrent execution on threads

○ Linear commands: Code simplicity

○ Concurrent execution: simple workflow + enhanced functionality

● Deterministic vs probabilistic based elimination

○ Deterministic: less variation + more hardcoded mappings

○ Probabilistic: creates unique light shows for the same audio

● Better extraction of audio features vs real time chunk processing

○ Real time: information generated on the fly with user streaming, look ahead is difficult

○ Pre-processed: Enables lookahead in song to anticipate song changes, but initial delay



System Performance and Metrics
Subsystem Performance metric

Gigbar or Lighting Engine

Blackout, SetColor (RGB value), Fade, Rotate, Strobe, ColorCycle, Hold 
100% functionality implemented

- Channels used: 4 channels per light, 24 channels overall 
- Range: 0-255 for R, G, B, UV, and Rotation

Shazam-Spotify 

5 second based song recognition with minimal latency
Concurrent processes:

1. Shazam : 2 seconds + Spotify: 2 seconds
2. Signal Processing: ~7 seconds

Singular songs, and medley songs (2 or 3 songs in a single audio file)

Signal Processing

70%-88% accuracy on Rhythm Extractor library, Essentia.
High hand-inspected accuracy for energy detection where energy levels lined up with 
different parts of the song
Pitch and amplitude detection lined up with test files created in Ableton

User Interface
Capacity to upload, search or record an audio file for synthesis
~2 second Ajax calls to dynamically refresh the page and update recommendations 
from Spotify to enhance user experience



Final Gantt Chart



Conclusions
● Concurrent control of different lights with user input is difficult

● Mapping signal processing parameters to lighting outputs is subjective 

and requires aesthetic decisions

○ Artist input and feedback necessary for custom shows

● Integration and testing breaks stuff – always over-allocate time

● Teamwork and risk analysis critical to the tremendous progress we 

made over the last 13 weeks


