D4 - Synesthesia Final Presentation

Abhishek Agarwal Parth Maheshwari Rachana Murali Narayanan

Use Case & Requirements

Automating light shows for performers using minimal equipment and signal processing

Our sandbox visualization

Requirement	Target Metric	
Pre-processing latency	<10-15 seconds of the song	
Setup time	< 5 mins of 1 hr performer setup time	
Signal Processing	Signal ProcessingExtract > 90% of the auditory features of hand labeled audio fi	
Manual adjustments	< 3 adjustments per minute per song	

Demo Videos

Video 1

Changing brightness values of the light according to the amplitudes of a standardized soundtrack

Video 2

Detecting the beat timestamps in a soundtrack and changing functions on the beat

Testing and Validation

Subsystem	Tests	Testing Process	Results
Setup time	 Efficiency test Processing load test 	Efficiency: Ensure that the setup time for a performance is below 5 minutes Processing load: Ensure that the song recommender can generate recommendations and play for over an hour	<i>In Progress</i> Group members take < 5 minutes. Additional participants must be tested <i>In Progress</i> We must finish song recommendation integration
UI and Manual adjustments	Performance tests	Performance: Test on a sample audio with different genres and determine how many adjustments are needed	<i>Not Applicable</i> User manual adjustments are the stylistic choice of the user and should not be limited
Lighting	 Functionality testing Concurrency testing 	Functionality: Blackout, SetColor, Fade, Rotate, Strobe, ColorCycle, Hold with different timers Concurrency: simultaneous threads and overwrites	Pass! 100% successful with different hold intervals, and negligible delays

Testing and Verification

Subsystem	Tests	Testing Process	Results
Signal Processing	 Functionality testing Stress testing (different audios, isolate features) 	Functionality: Extracting features, hand labeled reference, different window frames/sampling rates Stress: isolating amplitude, frequency, and beats. Test distortion or clipping of files, load on Shazam-Spotify workflow	<i>Fail!</i> Real time windowing unsuccessful with librosa <i>Pass!</i> 100% successful extraction
Feature Query	 Song recognition accuracy 	Recognition Accuracy : We tested 15 different songs from Billboard's top 100 playlist and the song recognition was able to accurately identify each of them	<i>Pass!</i> 15/15 songs were accurately identified within 5 seconds each
Integration Test	 UI-Light integration Signal-Light integration 	UI-Lighting: Real time synchronization stress test of user commands across the song, error handling when UI-Light connection breaks Signal-Light: Each set of signal parameters translated to lighting deterministically, high processing load of big files handled quickly	Pass! 100% successful except on overlapping user commands at the UI

Testing : Initial Audio Metrics

Figure 1: Frequency against beats for a pitch modulated file

Figure 2: Amplitudes against beats for a loudness modulated file Figure 3: Beat positions across time for a 20 second audio clip of "Teenage Dream"

Testing : Processing Data

Figure 3: Change point detection with normalized energies on "Teenage Dream"

Figure 2: Normalized Energy with Outlier Removal overlaid with strobe color decision

Trade Offs

- ML Genre Classifier vs Shazam-Spotify recommendation system
 - Genre classifier: Simplistic information on genres
 - Spotify: danceability, valence and other features
- Linear command queueing vs Concurrent execution on threads
 - Linear commands: Code simplicity
 - Concurrent execution: simple workflow + enhanced functionality
- Deterministic vs probabilistic based elimination
 - Deterministic: less variation + more hardcoded mappings
 - Probabilistic: creates unique light shows for the same audio
- Better extraction of audio features vs real time chunk processing
 - Real time: information generated on the fly with user streaming, look ahead is difficult
 - Pre-processed: Enables lookahead in song to anticipate song changes, but initial delay

System Performance and Metrics

Subsystem	Performance metric	
Gigbar or Lighting Engine	 Blackout, SetColor (RGB value), Fade, Rotate, Strobe, ColorCycle, Hold 100% functionality implemented Channels used: 4 channels per light, 24 channels overall Range: 0-255 for R, G, B, UV, and Rotation 	
Shazam-Spotify	 5 second based song recognition with minimal latency Concurrent processes: Shazam : 2 seconds + Spotify: 2 seconds Signal Processing: ~7 seconds Singular songs, and medley songs (2 or 3 songs in a single audio file) 	
Signal Processing	70%-88% accuracy on Rhythm Extractor library, Essentia. High hand-inspected accuracy for energy detection where energy levels lined up with different parts of the song Pitch and amplitude detection lined up with test files created in Ableton	
User Interface	Capacity to upload, search or record an audio file for synthesis ~2 second Ajax calls to dynamically refresh the page and update recommendations from Spotify to enhance user experience	

Final Gantt Chart

Conclusions

- **Concurrent control** of different lights with user input is difficult
- Mapping signal processing parameters to lighting outputs is subjective and requires aesthetic decisions
 - Artist input and **feedback necessary** for custom shows
- Integration and testing breaks stuff always over-allocate time
- **Teamwork** and **risk analysis** critical to the tremendous progress we made over the last **13 weeks**