
18-500 Design Review Report: D4 Synesthesia - March 3, 2023 Page 1 of 13

Synesthesia
Authors: Abhishek Agarwal, Parth Maheshwari, Rachana Murali Narayanan
Affiliation: Electrical and Computer Engineering, Carnegie Mellon University

Abstract—This project aims to create a system
capable of producing immersive light shows for novel
audio inputs in real-time. Given the time and resource
constraints of the course, we will build a program to
control four types of light pairs - par, laser, derby, and
strobe - both in unison and independently. To achieve
this, we will build a signal processing system to process
audio with a latency of less than 185 ms. We aim to
develop scalable algorithms for audio processing, light
show customization, automation, and communication
that will allow small performers to reduce the need for
expensive equipment and reduce setup time.

Index Terms—Audio Processing, Derby, Expres-
sive Lighting Engine (ELE), Feature Extraction, Laser,
Lighting Logic, Lighting Queue, Light Set, Par, Perfor-
mance, Real-time, Show, Strobe, User Interface (UI)

1 INTRODUCTION

Stage lights are a paramount tool to engage the audi-
ence during musical performances. Performers use stage
lighting that is controlled using audio interfaces, but they
often have limited customizability [1]. These interfaces
have audio active modes that use basic decompositions
such as volume thresholds or require extensive manual pro-
gramming and lighting engineers to activate and control
the lights during a performance [2]. While softwares such
as QLC+ allow some stage setting and lighting customiz-
ability [3], performers are expected to spend a significant
amount of time programming light behavior ahead of the
performance. This capstone project proposes a dynamic
lighting system that automates this process by analyzing
audio inputs to control lights. This project will involve de-
veloping a system that can take in an audio input, decom-
pose it into key components, identify features, and control
a set of light pairs in close to real-time for multiple genres.

2 USE-CASE REQUIREMENTS

This project aims to control one set of light pairs that
include Pars, Derbies, Lasers, and Strobes using features
extracted from the audio and user’s manual inputs. For
the scope of this project, the use-case requirements can,
therefore, be divided into three distinct categories: latency
and setup time, audio processing and feature extraction,
and manual adjustments.

2.1 Latency and Setup Time

For any light show to be fun and engaging, it is essential
that it is reflective of the audio being played by the per-
former. In order to achieve this, our system must be able
to process the inputted audio and communicate with the
lights in almost real-time. According to previous analyses
[4], if the lighting is within 185 ms of the audio on average,
the two are indistinguishable to the human brain, so that
is the amount of permissible latency for this system. Fur-
ther, user testing and anecdotal evidence revealed that on
average it takes a performer about an hour to set up the
equipment for a performance. Hence, this system strives to
add less than 5 minutes to the overall setup time, in order
to minimize costs. Finally, without any significant increase
in latency, this system should be able to control different
lights both independently and in unison, throughout differ-
ent points of the song.

2.2 Audio Processing and Feature Extrac-
tion

Decomposition of the inputted audio will determine the
behavior of the lights at any given point in time. Hence,
it is important that relevant features of the audio are be-
ing extracted. In order to achieve this, the signal processing
subsystem should be able to detect and extract over 90% of
the auditory features as compared to a hand-labeled wave-
form. This is done to ensure that there is enough data for
the lights to reflect all the major and minor inflections in a
song. Moreover, audio processing efficiency can be broken
down into two major components: Latency for simple and
complex audio tasks, and the sampling rate at which we
can process them. Several state of the art real time audio
processing systems can achieve latencies as low as a few
milliseconds with processing times of 1-2 ms for simple au-
dios, and 5-20 ms for complex audios. Thus, it is reasonable
to expect that we can achieve processing latencies of 20-30
ms. Recent research shows that sampling rates of 40,000
can be processed at high speeds, [5] showing us that real-
time audio processing of several thousand audio samples
with minimal lag is possible using modern hardware.

2.3 Manual Adjustments

While automating the light shows can save significant
amounts of time for performers, it is crucial for the system
to provide some customizability so the performer may fine
tune the lights. In order to accomplish this, the system al-
lows the users to modify meta characteristics of the audio,
as described in Table 2. However, given the selling point of



18-500 Design Review Report: D4 Synesthesia - March 3, 2023 Page 2 of 13

this project is automation, the system should not require
more than 3 manual overrides per minute, which was deter-
mined as per the windowing of the audio chunks for signal
processing. Further, these modifications are meant to mod-
ify the overall feel of the lights. The system aims to produce
noticeable changes in light behavior when users adjust the
slider, making it an important qualitative requirement.

3 ARCHITECTURE AND PRIN-
CIPLE OF OPERATION

For the overall architecture of the project, we decided
to divide our systems into five main subsystems. We de-
cided that it would be easier to split the work and unit test
functionality by doing so. Together these components will
cover all the functionality that we require of the system as
a whole.

3.1 Show

The Show component will function as the main shared
system that interacts with each of the other subsystems. It
will contain information regarding the audio source, and it
will be streaming audio from either a microphone or file. It
will also store the current musical parameters for each of
the other subsystems to view. Additionally, it will also con-
tain the Light Set, a software representation of the lighting
rig we have available to us. For testing and demonstration
purposes, it will be a Gigbar 2. Show will also contain
functionality to communicate with the lights and execute
lighting changes.

3.2 Feature Query

The Feature Query subsystem will allow us to identify a
song and extract the musical parameters of the song. It will
perform the song detection using the Shazam API and then
perform a song name query using the Spotify API. From
that we will be able to detect some global musical parame-
ters such as danceability, valence, energy, tempo, loudness,
and liveness. If we are able to detect the song, we can use
these parameters. Otherwise, the user’s inputted values
will be used. The user will also have the option to manu-
ally override these parameters with their inputted ones.

3.3 User Interface and Manual Overrides

The UI subsystem will be how the user interfaces with
the program. It is designed to be simple yet enable full
functionality of the system without the user needing to
touch any code. It will include a way to select an au-
dio source, initialize the LightSet to match the available
hardware, adjust and display the global musical parame-
ters, and indicate when they want to override the Feature
Query subsystem.

3.4 Signal Processing

The Signal Processing subsystem will be responsible for
ingesting real-time audio and outputting the real-time mu-
sical features. It has two main components. The first is the
sampling and windowing component which will be respon-
sible for reading in chunks of live audio bits and feeding it
to the next component for processing. The real-time fea-
ture extraction will analyze the chunks and generate fea-
tures from these chunks that will be used as cues for the
Lighting Engine.

3.5 Lighting Engine

The Lighting Engine overall will be ingesting the real-
time audio features, the current LightSet state, and the
global parameters. It will output lighting function calls.
This will contain lighting logic that will make decisions of
what functions to call and when to call them. It will then
send these calls to the execution queue which will store an
ordered list of all the function calls that are pending and
handle the execution of these function calls.

4 DESIGN REQUIREMENTS

4.1 Latency

To calculate the latency of the system, we need to con-
sider the entire workflow of how sound passes through the
system, and how lighting calls are processed. Time through
the feature query system is omitted as songs can be de-
tected, features can be extracted from Spotify, and they
can be passed to the UI as sliders in parallel along with the
major chunk of audio processing, and lighting changes.

Chunk processing time (chunk time) as calculated in
the Design Trade Section, Audio Chunk Size: Latency vs
Feature extraction. At any point in time for our lighting
engine, we need two reference chunks - the current chunk
and the previous chunk - to detect deflections for the light-
ing engine. Extraction of features (feature extraction time)
adds to this time as we have to process three types of fea-
tures for each chunk.

With respect to the lighting engine, we need to factor
in time to make lighting calls (lighting call time) which in-
clude eliminating incompatible function calls, and finding
which calls work for a certain chunk of audio. Lighting
execution (lighting execution time) is the communication
facilitated with the DmxPy controller, and how we talk to
the Gigbar lights.

We want to be able to subtract the time taken for au-
dio chunks to reach the speakers we are looking to minimize
the difference between when the lights show up compared
to when the audio reaches the listener’s ears.



18-500 Design Review Report: D4 Synesthesia - March 3, 2023 Page 3 of 13

Figure 1: System Architecture



18-500 Design Review Report: D4 Synesthesia - March 3, 2023 Page 4 of 13

4.2 Signal Processing Attributes

We are breaking signal processing attributes into three
different types of musical features: Pitch, Timbral , and
Rhythmic. This is to ensure we are holistically analyzing
the audio clip and extracting the maximum possible at-
tributes from a clip.

Timbral features are used to characterize sound by
properties. These properties relate to instrumentations or
sound sources such as music, speech, or environmental sig-
nals. The audio features that we can extract to get a bet-
ter representation of timbral features are not limited to
Zero crossing, Spectral centroid, Spectral rolloff, and Mel-
frequency cepstral coefficients (MFCC)

• Zero crossings: This gives us a sense of amplitude
inflections, and we can adjust the intensity of light
flashes accordingly

• Spectral centroid: This indicates where the center of
the mass of the spectrum lies, and it has a robust
connection with the brightness of the sound. We can
correlate this with the brightness of lighting or our
color choices.

• Spectral rolloff: This indicates the nth percentile in
the power spectral distribution. This is useful in dis-
tinguishing voice, and unvoiced aspects of the sound
where most of the energy for voiced speech is con-
tained in the lower bands of the spectrum. This al-
lows us to differentiate between the background mu-
sic, and stanzas, giving us scope to adjust lighting for
the score.

• Mel-frequency cepstral coefficients: This allows us to
differentiate between certain voice features including
true voice, tolerance voice, and false voice. These
features will allow us to identify and act on melodic
features within the voice itself

Rhythmic features provide the main beat that spans the
track, and strength of the track. Beat extraction, and Spo-
tify’s energy attributes can help isolate these features for
further processing.

• Beat extraction: This helps us identify positions
where dynamic inflections occur within the song with
respect to the base sounds. This helps with flashing
lights rhythmically as well.

• Feature Querying: Spotify’s attributes and their rele-
vance have been explored in the Design Trade Section

Pitch features explore the pitch histograms generated
by the audio clip, and help analyze the overall melody of
the song.

• Pitch Histograms: This helps us to represent the
pitch content of music signals both in a symbolic and
an audio form. Symbolic features are similar to mu-
sical scores where we get the start, duration, volume,

and instrument type of notes of a musical piece. This
distribution of pitches helps us get genre-specific at-
tributes too through which we can tag lighting out-
put.

• Melody extraction: This is done using pitch contour
characteristics. Pitch contours represent a series of
consecutive pitches which are continuous in both time
and frequency. Using sinusoid extraction and salience
attributes, this can help us get the pitch contours.
Melodies help isolate lull points in a song to enact
fades, and transition to different colors.

4.3 Light and Channel Selection

For the purposes of the project we wanted to build based
around a specific lighting fixture even though our end goal
is to have the system be dynamic and work with arbitrary
sets of light fixtures. We determined that the most cost-
effective fixture to purchase is the Gigbar 2 which has var-
ious different types of lights and multiple of each. This
would allow us to prove that our system can work with
different types of lights and it can coordinate the lighting
between individual lights as well.

The Gigbar 2 comes with two Par lights which shine
washes of RGB and UV. It also comes with two Derbys
which shine many spots on the ground which can be red,
green, and blue individually but does not mix colors. The
Derbys also have motors that can move the spots around
clockwise and counter-clockwise. The Gigbar 2 also comes
with a Strobe bar which can strobe white and UV light.
Finally it comes with a laser that shines little laser dots in
green and red, and can function similarly to the derby.

With this in mind we also had to select which channels
we wanted to manipulate. These professional lights have
many channels for manual control and for pre-programmed
controls. We decided to use only the manually controlled
channels so we would have better control over exactly what
the lights are doing. Below is a table with the channels we
have decided to use.

Table 1: Light Channels



18-500 Design Review Report: D4 Synesthesia - March 3, 2023 Page 5 of 13

4.4 Lighting Call Rate

The Lighting Engine will need to make many lighting
calls throughout a performance, and may end up being
overloaded with requests. For this reason it is important
to set targets regarding how many lighting calls our sys-
tem should be able to handle in a given time frame. This
will be measured by two metrics. The first will be average
calls per second (ACPS) and the second will be peak calls
per second (PCPS). ACPS will be measured as the 10 sec-
ond moving average of the rate of calls that are performed.
PCPS will be the 1 second moving average of the rate of
calls that are performed.

The goal is to be able to tolerate up to 150 BPM music
with an ACPS of 2.5, in order to change the lights at ev-
ery beat potentially. And for extremely exciting points in
the music we should also be able to support a PCPS of 5
to support changing lights with respect to an eighth note
during exciting points.

4.5 User Interface (UI)

The primary goal for the UI is to take in two types of
inputs from the user: the audio file and the global param-
eter modifications. Hence, the guiding principle for the UI
is to keep it as lightweight as possible while still being able
to communicate between the other subsystems. For this
purpose, we are using a locally hosted web application that
is built using Python and Django.

The specification for the audio input dictates that user
will be able to access local audio files and stream them from
the webapp one at a time. To achieve this, the application
will allow audio inputs in the form of .mp3 and .wav files
as they are the most commonly used file formats for audio.
A post-MVP reach goal would be to also allow a direct
microphone input to control lights for a live performance.

As per our use-case requirements, the user is not ex-
pected to modify the global parameters more than 3 times
in a minute. These modifications will be taken in using
CSS sliders, and the changes in the slider values will be
tracked using 5 second AJAX calls. Keeping the update
time 5 seconds will allow us to still meet the use-case re-
quirement, while still allowing the user to update the sliders
more frequently if they wish. Also using a slower AJAX call
will make the UI more lightweight, and hence improve the
latency.

5 DESIGN TRADE STUDIES

5.1 Feature Querying Choices

Based on an R Studio Analysis we found Figure 2, it
was seen that 6 out of the 12 spotify based audio features
showed maximum variability across different genres.

We opted for Spotify as the application to poll our au-
dio clips because it is a well-known, and well-used app with
a large database of audio clips. From the graphs, we can
make out that danceability, valence, energy, tempo, loud-
ness, and liveness.

Table 2: Spotify Audio Feature Descriptions

This subset of features made more sense in the context
of the song as this would allow us to get a holistic overview
of the audio. These are also features that an audience can
relate to, so we are programming our sliders on the User
Interface (UI) to first reflect the initial values for these fea-
tures polled from Spotify, and then further allow the users
to make changes to these sliders to change lighting as they
wish.



18-500 Design Review Report: D4 Synesthesia - March 3, 2023 Page 6 of 13

Figure 2: Spotify Audio Feature Density - by Genre

5.2 Genre Detection: ML Classifier vs
Shazam-Spotify workflow

We initially explored an ML genre classifier to facilitate
extraction of genre-specific characteristics. We were going
to keep a sample set of 5 songs per genre for 12 genres, and
extract their audio features based on the genre we classi-
fied them into. The accuracy for genre classification with
respect to the Decision Tree, Random forest, and Convo-
lution Neural Networks (CNN), and K-nearest neighbors
(KNN), was around 60%−70% making it less reliable, and
increasing the uncertainty when we combine it with the rest
of the workflow.

To tackle the accuracy issue, we implemented two
things: detecting the song using the Shazam API, and then
polling Spotify for the audio features associated with the
song we detected earlier. This method made feature de-
tection more accurate because it is dependent on Spotify’s
powerful audio feature extraction. However, we would not
be able to test it effectively on audio clips that are absent
from Spotify’s database. We are assuming that any audio
input when detected by Shazam will have a Spotify coun-
terpart to help us complete the workflow. We will have
error messages to alert if the audio input is not recognized
by Shazam or cannot be polled from Spotify to get audio
features.

Spotify’s audio feature data frame consists of 12 fea-
tures. From an R Studio analysis of genres on Spotify, and
their audio features, we saw that there is maximum vari-
ability among 6 of these 12 features across different genres:
Danceability, Valence, Liveness, Loudness, Tempo, and En-
ergy. We went over a description of the features in the
previous Feature Query section

We extract these features for a particular audio, and
we want to allow users to adjust these slider values and
accordingly visualize changes in the lights.

5.3 I/O Communication With Lights: Py-
DMX vs DmxPy

In order to interface with the lights we wanted to use
a library that would work with the Enttec Pro USB in-
terface. The first and most commonly used interface that
we found was PyDMX, however upon initial attempts to
make it work, we realized that it requires a lot of addi-
tional packages and its documentation is not great. We
decided because of that to switch over to DmxPy which is
a more bare bones version but allows controlling individual
channels. We determined that controlling the channels in-
dividually is all we need given that our logic will be done
by the software. This means that the only communication
with the interface is when we want to set channel values.
Upon testing we were able to achieve the desired function-
ality.

5.4 Audio Chunk Size: Latency vs Feature
extraction

We are in the process of exploring an optimal chunk
size. To choose an ideal chunk size, we are considering
two different factors: the end-end latency to trigger light-
ing, and the maximum feature extraction possible from an
audio clipping.

Our chunk size affects lighting changes because we want
to be able to enact lighting calls in real-time. We want to
process chunks in such a way that each chunk takes min-
imal time to process and pass to the Expressive Lighting
Engine (ELE). Currently, we are testing with a 1000ms
chunk size to even the Shazam API, and if we get the same
song title with two chunks, we should be able to confirm
the song easily. We might need to explore different chunk
sizes for genre detection and signal processing engines as
they have different use cases. Genre detection requires a
quick way to confirm the song is the right one by compar-
ing two chunks. Signal Processing requires us to extract
timbral, pitch, and rhythmic features from each chunk and
transform them into lighting changes.

For simple calculation purposes, we are going to use
a live sampling rate of 44.1KHz. Typical buffer or chunk
sizes range from 128 to 256 for processing purposes. Low
buffer sizes help us handle data quicker, which results in
an increased demand for processing power. We can start



18-500 Design Review Report: D4 Synesthesia - March 3, 2023 Page 7 of 13

with a buffer size of 256, and see if we can scale up our
compute power to handle a smaller buffer/chunk size. A
smaller value for latency does not affect sound quality but
might require quicker processing.

5.5 Input to Lighting Mapping: De-
terministic or Probabilistic based on
Elimination

One of the biggest challenges of this project is to map
auditory inputs to specific lighting function calls. We de-
cided that there were two routes we could’ve gone. The first
would have been to discretize the input space and have each
of the input partitions map directly to a specific lighting
call. The second was to treat the entire set of function calls
as an output space, and use the auditory input to narrow
down the input space. We would then use random number
generated inputs to select an output from the reasonable
options.

We found the second approach a lot more interesting
because it would leave a bit of variability in the actual out-
put of the show allowing for more dynamic and interesting
lighting. Also, we reasoned that there are clear types of
lighting that would not be acceptable given certain audio
variations, however, there is not really any specific lighting
that is optimal given audio i.e., how optimal the lighting
is depends on interpretation, and for the purpose of this
project we will minimize subjective choices and rather fo-
cus on an accessible solution that avoids pre-programming
lights.

6 SYSTEM IMPLEMENTATION

Our main subsystems are the Show class, Fea-
ture Query, User Interface (UI), Signal Processing,
and Lighting Engine. Our current implementa-
tions with respect to the Lighting Engine, and Fea-
ture Query can be seen in our github repository:
https://github.com/aasuper1/Synesthesia

6.1 Show

Figure 3: Show subsystem

The Show subsystem will house the Audio Stream, the
Global Musical Parameters and the Light Set. The Audio
Stream will have a variable storing the input source. It
will then use Librosa to stream the audio. We will make
sure, for concurrency reasons, that the audio stream is read
only so that other subsystems can look at the values of the
stream without causing hazards. The global musical pa-
rameters will be stored in an array of size 6 with the fol-
lowing values: valence, liveness, loudness, tempo, energy,
and danceability.

The Light Set will be an object of the LightSet class. It
will include a list of all the hardware lights that are avail-
able. These lights will be represented by the Light class.
There are currently four types of Light subclasses. There
is Par, Derby, Laser, and Strobe. There will be one Light
object in the LightSet corresponding to a unique hard-
ware light. From the Light classes that are available the
user can create LightGroups. These are groups of lights
that will function in a synchronized manner. There are
three types of LightGroups: UnionGroup, MirrorGroup,
and LineGroup. UnionGroup will enable all lights in the
group to function in unison. MirrorGroup will enable lights
to mirror each other’s movements. A LineGroup will en-
able lights to create patterns across multiple lights. Each of
these LightGroups will contain a function list which allows
the Lighting Engine to determine a list of viable lighting
calls.

6.2 Feature Query

Figure 4: Feature Query Subsystem

The Feature query subsystem consists of a few main
parts: Shazam API is used to detect the song that is passed
through the UI. After the song is uploaded through the UI,
the data is chunked into smaller bits to allow lower latency
through the different engines. We use the Shazam API to
first read a chunk of the song passed in, and retrieve a sig-
nature generator object. This signature generator object
gives us a million parameters about the song that it iden-
tified. In a continuous loop, we compare chunk x to chunk
x-1, and if we identified the same song in both chunks we
can exit out of the song detection phase for the time being
as we can confirm that we have received the right song.



18-500 Design Review Report: D4 Synesthesia - March 3, 2023 Page 8 of 13

However, we do need to send a heartbeat every now and
then to the audio data to detect any musical changes. If
there is a musical change detected, we call the song de-
tection API once more, and get the current song we are
in.

Using the title of the song, we then poll the Spotify API
with a fixed set of client credentials, and secret key. Polling
spotify gives us the ability to extract audio features with
respect to the song on the database. Here we are assum-
ing that whichever song we detect from the Shazam API is
present on the spotify database. If it errors in either one
of these steps, we can alert the user to try a new song, or
have certain fail safe defaults that they can listen to their
audio clip with. We query Spotify with the song title us-
ing the track uri because that’s a unique identifier, and we
get back a dataframe with a bunch of audio features and
data pertaining to the song. From this nested dictionary
or dataframe, we are able to get the danceability, valence,
energy, tempo, loudness, and liveness values. The user has
the authority to override these features, and accordingly
control the lighting.

Additionally, we have also used the GeniusLyrics API
to extract the lyrical content of the song we polled from
Spotify using the title we got from the Shazam API. Using
the NLTK library, we can do a simple sentiment analysis
to determine positive, neutral or negative values the lyrics
suggest, and this is an additional parameter that is passed
into our engines to allow for the artistic flourish in lighting
choices.

6.3 User Interface and Manual Overrides

Figure 5: UI Subsystem

The UI is broadly divided into three major components:
light identification and light set selection, audio source
selection, and global parameter output and slider value
modification. These components are implemented using a
Python-Django web-app. Although in a real world system,
the web-app will be hosted on a server or would use a na-
tive application, for the constraints of this project, it will
be hosted locally. This will allow us to minimize latency

in a small-scale environment as the application is designed
to support individual performers. Further, the web appli-
cation will follow a Model-View-Controller (MVC) design
protocol.

The first component is the light identification. To
achieve this the web application defines a model for the
lights. This model communicates with the I/O using Show
subsystem, and looks for a signal from the USB ports for a
lighting accessory to be connected. At our scale, once the
lights are connected, they will be recognized from an ex-
haustive subset. Here, users will be able to group the lights
creating new Light Sets of their choice, specify the channels
they would like to access, and determine the daisy-chaining
of the lights. However, as we are only using a singular gig-
bar for the project, we will have a preset to save setup time.
This initialization will be communicated to the ELE sub-
system through Show and Show will send packets back to
the web-app for the lighting queue.

Figure 6: Mockup of the UI main page

Figure 6 (above) shows a mockup of the second and
the third components of the UI. For the audio source se-
lection, the UI will have access to the local directories on
the computer. Here, the user will be able to select .mp3
or .wav files, and this constraint is enforced within the in-
put model on the webapp. Once the audio file is selected,
the user will be able to play/pause/replace the file using
HTML form buttons on the interface. These buttons will
send POST requests to the backend to trigger said actions.
Once the file is uploaded, the data will be first relayed
to the Feature Query subsystem via Show, which will re-
spond back with the song title, genre, and values for the
global parameters. These outputs will be processed in the
web-app views to update the element reference tags on the
interface. Simultaneously, the audio will also be sent to
the Signal Processing subsystem via Show, which will start
sending back a continuous data stream for the outputs.

Finally, the last component of the UI is the CSS slid-
ers for global parameters. These parameters will default to
zero values, until they are communicated from the previous
component. Then using a reference tag again, these values
will be updated to refer to the processed global parame-



18-500 Design Review Report: D4 Synesthesia - March 3, 2023 Page 9 of 13

ters. Further, the slider object will consist of a button,
which will look for mouse inputs. If the button is dragged,
these changes will be communicated to the backend 5 sec-
onds later. This is to allow enough time for the user to
change all the global parameters. These sliders will thus
act both as an input source from the user, and an output
from the Feature Query subsystem.

6.4 Signal Processing

Figure 7: Signal Processing Subsystem

The Signal Processing subsystem consists of two major
parts: Sampling, and Windowing, and Feature extraction.
This process starts with normalizing the audio that helps
us to remove background noises, and unwanted frequencies.
This is followed by segmentation that allows us to break the
audio signals into windows. These windows or chunks in
our case help us continuously process audio signals and re-
duce lag. It allows us to make comparisons between two
chunks, and make appropriate changes from the current
state as well.

Using the Python library, Librosa, we first take a brief
overview of the audio after loading the file in an mp3/wav
format. We get the audio length, and the total samples. We
use a default audio sampling rate of 44.1KHz. We separate
the audio samples into harmonics, and percussive signals
to allow us to see which parts of the audio include both as-
pects, a single aspect. This dictates how powerful the light
is going to be for a certain chunk of time. Along with the
percussive and harmonic split, we also want to isolate beats
specifically. In Librosa, beat extraction uses a hop length
(number of samples between two windows) of 512, and it
centers the frames so that the kth frame is centered around
a sample k, making it easier to measure the peaks in a
single onset strength (Onset strength is done by measur-
ing the frame-based increase in energy in a window). This
is relevant for determining the timing for flashes, and the
intensity of light we want to trigger.

Figure 8: Separation of percussive and harmonic frames for
a snippet of Teenage Dream

As explained in the Signal Processing Attributes sec-
tion, we also want to take the Mel scale cepstral coeffi-
cients, the spectral centroid, spectral rolloff, and the zero-
crossing rate features for each audio chunk. This way we
compute coefficients from each of these metrics, and con-
struct a dataframe for each chunk. This is sent into the
lighting engine to determine what changes can be made to
the current state.

Figure 9: Beat extraction for a snippet of Teenage Dream

Figure 10: MFCC analysis for a snippet of Teenage Dream



18-500 Design Review Report: D4 Synesthesia - March 3, 2023 Page 10 of 13

Figure 11: Zero crossings for a snippet of teenage dream

6.5 Lighting Engine

Figure 12: Lighting Engine Subsystem

The Lighting Engine is composed of two main parts: the
Lighting Logic, and the Lighting Execution Queue. The
Lighting Logic is responsible for determining the light call
that needs to be made, and the Lighting Execution Queue
is responsible for sending the requests to the LightSet to
actually change channel values.

With regards to the logic, there are a couple main com-
ponents: timing, and selection. Timing will determine a
trigger for when to actually execute some lighting call. This
will be determined mainly by the real time audio features
that are coming from the signal processing unit. There will
be beat detection, and based on beat detection and the en-
ergy of the piece we will call functions twice a beat, once a
beat, every other beat or even less frequently. Once we have
decided that we are going to change the lights, we have to
decide what function to call. The first step of this process
is to pick an available LightGroup. The LightGroups will
be available if none of their member lights are currently
executing any lighting commands. Once a LightGroup is
chosen, a function will be chosen from the available Light-
Group functions. Finally the parameters for that function
will be set. Each of these decisions will be influenced by
the global musical parameters and the real time audio pro-
cessing values.

The Lighting Execution Queue will then take these

function calls and place them in a queue that will han-
dle any concurrency. This queue will speak directly with
the LightSet and call the respective functions.

7 TEST & VALIDATION

7.1 Test for Latency

We broke latency into many individual parts
into the chunk processing time, audio feature pro-
cessing, and time through the lighting engine in
Design Requirements: B. Latency section. We want to
first record the difference in timestamps as audio is up-
loaded into the UI, and as lighting functions are executed.
According to our calculations, we can find the breakdown
per system, and robustly test the latency of each subsys-
tem. This way we can assess bottlenecks, and also find out
where we can reduce time or be more flexible. We want to
have an upper bound of 185ms for all of this processing.

7.2 Tests for Setup Time

We can test for setup time for the system with focus
groups of performers. If the current setup time for per-
formers is 60 minutes, we want to be able to reduce it to ¡5
mins of the setup time to significantly free up time for them.
Setup time accounts for loading the system, and uploading
the compiled tracks. A focus group of 5 diverse performers
will help us evaluate whether our system is customizable
and adaptive enough for different kinds of performers. If
setup times for different performers are different, we should
aim for reducing their time to less than 1/10th of the time.

7.3 Tests for Signal Processing Efficiency

We can test for signal processing efficiency by evaluat-
ing if we can get more than 90% of the auditory features
as compared to hand labeling a file. The reference point is
a hand-labeled file with a waveform and looking at all the
features. We should also be able to handle a live sampling
rate of 44.1KHz, and a chunk size of 256 through our signal
processing systems.

7.4 Tests for Light Response

We have already achieved the metrics for light response
tests. This includes being able to control the lights through
a python library without the QLC+ interface. We were able
to successfully achieve this using the DmxPy controller.

7.5 Tests for Multiple Outputs

We have already achieved the metrics for multiple out-
puts. This includes being able to control multiple lights
using the DmxPy controller. Through the controller, we
are able to control lights independently, and in unison by
making calls to different lights using their unique address
pins.



18-500 Design Review Report: D4 Synesthesia - March 3, 2023 Page 11 of 13

7.6 Tests for Manual Adjustments

We can achieve metrics for manual adjustments by lim-
iting adjustments to less than 3 per minute per song. We
use 3 as a benchmark because this is the most adjustments
musical performers like DJs will have to make per minute
as they shuffle between different song tracks. We can test
for the manual adjustments metric on a sample audio with
different genres, and measure the adjustments performers
will have to make.

7.7 Tests for Overall Appeal

Using focus groups, we want to assess how dynamic our
system is, and how interesting and accurate it is for an
observer.

1. We can use a focus group of 5 people who visualize
the light show without the audio. We should be able
to check if the focus group is able to detect deflections
in genres and recognize ‘vibe’ changes

2. The second focus group consists of performers. We
want to evaluate their overall satisfaction levels with
the system, and whether they are likely to use our
new dynamic system as opposed to their less cus-
tomizable lighting equipment.

3. Lastly, we want to assess the holistic appeal of the
music from an audience’s perspective. We want to
see whether they are happy with the dynamic light
changes, and nuanced reflections of the audio.

8 PROJECT MANAGEMENT

8.1 Schedule

Our project is ambitious and involves the development
and integration of multiple subsystems that include audio
processing, communicating with lights, a modifiable user
interface, and feature extraction. In order to achieve this
we have set up an aggressive timeline, and have tried to get
a headstart on the development and testing, as seen in the
Gantt Chart in Figure 13 at the end.

8.2 Team Member Responsibilities

Given the project is divided into multiple subsystems,
each team member is responsible for a different part of the
project as listed below:

• Abhishek is responsible for the lighting logic and com-
munication with the hardware

• Parth is responsible for the modifiable user interface
and communication between the audio and the lights

• Rachana is responsible for the audio processing and
song feature extraction using various APIs All mem-
bers will work on the integration of the subsystems
and the overall testing of the project

8.3 Bill of Materials and Budget

The bill of materials and budget for our project can
be found in Table 3 below. Procuring the light rig is the
biggest expense, taking a large proportion of the budget.
All the other equipment, including the 3-to-5 DMX pin,
the DMX-USB interface, and DMX and power cables are
borrowed from the CMU IDeATe lab. The only additional
hardware is a personal computer to run the program on.

Table 3: Breakdown of Expenses

8.4 Risk Mitigation Plans

The primary risk for the project was efficient communi-
cation with the lights. However, given the current status of
our project, we are already past the point of early risk eval-
uation. We have produced various proof of concept demos
to show the viability of our different subsystems, which in-
clude demos for controlling different functionality of lights
with our program, using signal processing to extract key
audio features, and allowing user input and modification.
As of the current state of the project, we have the following
risks and risk mitigation plans in place.

8.4.1 Latency and Fail-Safe Defaults

Through our basic signal processing tests we have deter-
mined that windowing the audio signal is the only viable
option to get meaningful data. However, finding the op-
timal window lengths comes with a set of challenges. If
the windows are too long, we run into latency issues as
there is a lag between when the audio is played as com-
pared to when the lights react to it. On the other hand,
if the windows are too small, there is a risk of misclassifi-
cation of attributes, which can make the lights behave in
non-deterministic ways.

To combat this, we have incorporated a lighting queue
in our design that can store a set of lighting instructions.
This allows us to look further ahead into the signal without
any loss of data and with lesser impact on the latency. Fur-
ther, we have established fail-safe defaults in case the audio
processing fails. This means that the user may bypass the
system and simply use the global parameters to control the
lights, in the event that the signal processing system be-
comes unresponsive. These design choices have been made
to minimize the need for user input and to prevent any
abrupt or non-deterministic changes in the behavior of the
lights.



18-500 Design Review Report: D4 Synesthesia - March 3, 2023 Page 12 of 13

8.4.2 Scaling and Independent Operation of
Lights

Due to limited time and resources, we might need to
further constrain the scope of our project. Given we are
trying to build a system that is able to communicate with
4 different types of lights at any point in time, the proba-
bility of facing scaling issues is non-trivial. While we aim
to develop a system that is able to communicate with the
four pairs of lights both independently and in sync, this
can pose a risk to the overall coherence and completion of
the project.

To prevent this from happening, we have been follow-
ing a top-down development approach, where we imple-
ment and test small deliverables every week. This is done
to track our progress and work as an indicator of the need
to rescope. Further, we are following an ambitious devel-
opment timeline to ensure that we have enough time for
thorough real-world testing.

9 RELATED WORK

There are several different systems developed to tackle
the issue of light customizability for musical performers.
There are dynamic lighting systems for fully reactive light-
art installations by Protopixel [6]. Another type of sys-
tem explores mood lighting that expresses emotions elicited
through the audio. [7] Here the system examines the emo-
tional impact of music or color, and this can be maximized
if they are used together. The article presents a mood
lighting system that automatically detects the mood of the
piece of music and expresses the mood through synchro-
nized lighting.

We explored the real-time element through the refer-
ence for Dynamic lighting to reflect tension in gaming [8].
We were inspired to look at a feasible Expressive Lighting
Engine (ELE) through this since games similar to perfor-
mances simulate elements of traditional media such as plot,
characters, sound, and music, lighting. The interactive ex-
perience aspect of games also presents a host of player chal-
lenges similar to audience-performer interactions.

10 SUMMARY

We hope to create a program that is capable of produc-
ing automated light shows in real-time. We will do so by
processing audio and extracting features that can be used
to control the behavior of multiple lights. Using an inter-
face to allow for user inputs and modifications, this project
aims to enable small performers to create seamless light
shows with minimal setup time and equipment.

By creating classes for lights, and translating auditory
features to lighting logic, we are able to create systems that
are modular, testable, and scalable. However, standardiz-
ing lighting equipment is beyond our scope. This project
will thus demonstrate the capabilities of such a system at
a smaller scale, with four light pairs.

Glossary of Acronyms

• API – Application Programming Interface

• ACPS – Average Calls Per Second

• AJAX – Asynchronous Javascript and XML

• CNN – Convolutional Neural Nets

• CSS – Cascading Style Sheets

• DMX – Digital Multiplex

• ELE – Expressive Lighting Engine

• KNN – K Nearest Neighbors

• MFCC – Mel-frequency cepstral coefficients

• MVP – Minimum Viable Product

• PCPS – Peak Calls Per Second

• QLC+ – Q Light Controller Plus

• UI – User Interface

• UV – Ultra Violet

References

1. Concert Lighting: The Art and Business of Enter-
tainment Lighting - James L Moody, Paul Dexter

2. https://ennuimagazine.com/how-long-does-it-take-
to-set-up-a-stage-for-a-concert/

3. https://www.musicindustryhowto.com/best-dmx-
stage-lighting-control-software/

4. https://support.biamp.com/Tesira/Video/Video
and network latency

5. ”Real-Time Audio Effects on Mobile Devices using
GPUs” (published in the Journal of Signal Process-
ing Systems in 2018)

6. https://www.protopixel.io/showcase/events/chagall-
unlocked-lighting-performance

7. Mood lighting system reflecting music mood : Chang
Bae Moon, HyunSoo Kim, Dong Won Lee, Byeong
Man Kim

8. Dynamic Lighting for Tension in Games: Seif El-
Nasr, Magy, Niedenthal, Simon, Kenz, Igor, Almeida,
Priya, Zupko, Joseph



18-500 Design Review Report: D4 Synesthesia - March 3, 2023 Page 13 of 13

Figure 13: Tentative Task Breakdown and Schedule


