
1
18-500 Final Project Report: D3 - Meal by Words, 05/05/2023

Meal by Words
Nina Duan, Shiyi Zhang, Lisa Xiong

Department of Electrical and Computer Engineering,
Carnegie Mellon University

Abstract—Inaccurate orders and long wait times are critical
problems that discourage customers from ordering at
quick-service restaurants. With the traditional ordering method,
customers frequently have to raise their voices or even shout to
ensure that the person taking their order can hear and
understand it accurately. Some restaurants provide touch screens
as an alternative which has the potential of spreading harmful
bacteria and diseases. To tackle these problems, we propose the
development of a food ordering system that employs speech
processing technology to facilitate the process of placing orders at
restaurants — Meal by Words.

Index Terms—Design, verification, sensor, embedded system,
signal processing, speech recognition, natural language
processing, cloud database, user interface

I. INTRODUCTION

THE understaffing issue of some fast food restaurants results
in either exhaustive customer wait times, or burnt out
employees shuffling between the kitchen and the counter. The
current approach of having cashiers take orders also heavily
relies on employee training, which consumes both time and
money.
Some fast food restaurants installed touch screen ordering

kiosks to solve these problems; however, after the pandemic,
the public raised health concerns about unsanitized shared
utilities to a new level. Fox News reported that a swab test on
eight random McDonald’s restaurants in the United Kingdom
resulted in the discovery of infection-causing bacteria in every
test[1]. The existing ordering kiosks, with thousands of people
making orders by touching their screens, will carry lots of
bacteria if not sanitized properly on a regular basis.
Kiosks that can take verbal orders will reduce the burden on

fast food restaurant staff and the customers’ health concerns.
The goal of our project is to build a voice-operated ordering
kiosk that processes orders efficiently. The entire process
except payment will be completed verbally. The confirmed
order will be sent to the kitchen automatically, allowing the
staff to start preparing as soon as an order has been placed.
The ultimate goal is to create an ordering experience that
mirrors the one a human employee offers, but with greater
efficiency, accuracy and safety.

II. USE-CASE REQUIREMENTS

Available operations: A regular fast-food order interaction
includes a customer requesting desired items as well as
proceeding to checkout. The system will also provide two
additional features — the ability to remove item(s) from the

order and modify the quantity of items ordered — to ensure
that incorrectly-recognized or incomplete orders will not
progress to later stages of our system.
Service time: According to SeeLevel HX’s 2016 research,

the average service time in the U.S.-based fast-food
restaurants is around 200 seconds[2]. Our system should offer a
similar if not better experience. Hence, we expect the entire
ordering process for one customer to be completed in less than
200 seconds.
Customer-staff communication latency: The kitchen staff

should be able to see a newly placed order within 1 second
after the customer checks out. This will ensure customers’
food is prepared in a timely manner.
Voice reception: To accommodate fidgeting customers, the

microphone should be able to receive inputs from a horizontal
span of 120°, from a distance between 0m to 1.5m. The
microphone and speech processing algorithms should
accommodate all human voice frequencies (80Hz ~ 260Hz), at
normal conversational volume (60dB ~ 80dB).
Noise tolerance: Since most fast-food restaurants have

noisy environments, our system should be able to operate in a
considerable level of background noise. To ensure a
satisfactory experience, the system should reach 100% order
accuracy by the time a customer checks out.
Process termination: The system should be able to

recognize that a customer has left the kiosk, delete the current
order, terminate the ordering process of this order, go into
SLEEP mode, and be ready to start a new order. It should not
terminate the current ordering process under any
circumstances, except when the system’s sensors detect that
the customer has left, and a 30-second timeout period has
elapsed. This is done to prevent accidental deletion of a
customer's order, which could lead to frustration and
inconvenience.
Power conservation: Our system aims to minimize power

consumption to promote an environmentally friendly ordering
experience. Therefore, it should process audio inputs only if a
customer is present. If a customer is not present, the system
goes into SLEEP mode where it only monitors whether a
person is present. Once a person is detected, the system will
switch to ACTIVE mode.
Accessibility: To ensure that our ordering system

accommodates all customers, we need to consider two factors:
the customer's height and how the customer can interact with
our system. Our system should be able to detect the presence
of a customer taller than 70 cm. This will accommodate those
in wheelchairs, because the eye level of a person in
wheelchairs is 109 cm to 129.5 cm[3]. To accommodate
customers with sight disabilities, the system should be able to
read out the instructions and order details during the ordering
process. Similarly, displaying the instructions and order details
on the screen allows customers with hearing disabilities to be
able to interact with our system.

2
18-500 Final Project Report: D3 - Meal by Words, 05/05/2023

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

(a)

(b)

(c)
Fig. 1. Overall system. (a) Customer-side setup. (b) Redis Cloud

Database. (c) Staff-side UI when two orders, #493 and #494, are yet to
be prepared.

On a higher level, our project can be divided into a
hardware component and a software component. The
hardware component is responsible for handling the system's
interaction with the physical world, which involves receiving
physical data such as distance readings and sound waves. It
provides the necessary information for the software
component to process and respond to. The software
component receives the mentioned information, converts them
into meaningful tokens, and stores them in a non-local
location for safekeeping. The software component is also
responsible for fetching and removing stored data in the
future.
In absence of a customer, the system will be in SLEEP

mode and display animation on the monitor. An ultrasonic
distance sensor, driven by an Arduino Uno, is installed on the
edge of the table, horizontally facing the chair on which a
customer should be sitting (Fig. 1a). An interaction with our
system begins when a customer sits down on the chair placed
in front of the kiosk. Once the system picks up the changes in
distance, the system goes into ACTIVE mode and starts a new
order.
We switched from using an RPi4 and infrared sensors to

using an Arduino and two ultrasonic distance sensors. The
switch from an RPi4 to an Arduino was due to the fact that
RPi4 is not compatible with some of our speech recognition
code. We replaced the infrared sensors with ultrasonic distance
sensors halfway through the semester to improve the accuracy
of customer detection. Previously, the infrared sensors would
sometimes detect people passing by the kiosk and falsely
activate the kiosk, and would sometimes detect a customer
when there was actually none, which had resulted in orders
being unable to be terminated. After switching to using the
ultrasonic distance sensors, which produce more accurate
readings, we can limit the detection range and activate the
kiosk only when a person is likely sitting down on the chair,
which reduces power waste and improves efficiency.
Information displayed on the screen includes the food

menu, food items that have been added and their respective
price, the order total, and instructions that are constantly
updated to guide the customer through the ordering process.
For a better user experience and to accommodate people with
sight disabilities, the instructions are also read out by a
synthesized voice. Customers will be prompted to place their
order item by item, instead of providing the entire order in one
long sentence. We made the change after the design report as it
made detecting the end of speech easier, which, in turn,
drastically improved the accuracy of our speech recognition
system.

3
18-500 Final Project Report: D3 - Meal by Words, 05/05/2023

A directional microphone, surrounded by a professional
sound shield, will receive speech inputs from the customer.
This input stream is fed to a signal processing algorithm for
noise reduction. The speech recognition module takes the
sanitized signal and, using a trained machine learning model,
converts it to a text string.
Another distance sensor, in addition to the one installed on

the table, is attached to the microphone to check if the
customer is speaking close enough to the microphone.
Whenever it is the customer’s turn to speak, and the customer
is speaking too far away from the microphone, a warning will
be displayed on the customer-side UI.
Our natural language processing algorithm parses the text

string and extracts necessary order information, including the
food item’s name, the quantity of the item, and the customer’s
desired action (add, remove, check out, or confirm). All of the
parsed menu items and quantities are stored as local objects
before checkout. If the NLP module fails to recognize any
item name in ten seconds, it will notify the UI of this failure.
The customer-side UI will then display an error message and
kindly ask the customer to repeat their request.
To avoid further complicating our NLP system, we decided

to limit checkout and order confirmation keywords to a fixed
set of phrases. Now, the customer simply has to say the
keyword “check out” to checkout. When the NLP system
detects this keyword, our system will instruct the customer to
review their order, displayed on the customer-side UI. The
customer can confirm the order by saying “yes”, “correct” or
“confirmed”. To return to the ordering process, they can either
say anything else or remain silent.
After the customer checks out, the entire order, previously

stored as a local object, will be uploaded to the Redis cloud
database (Fig. 1b). Information in this database is accessible to
the staff-side UI. The database notifies the staff-side UI of the
new order by publishing a notification message. The
customer-side UI will also display the customer’s unique order
number, which they will use to pay for and pick up their order.
After 10 seconds, the customer-side UI will go into SLEEP
mode, waiting for the next customer.
When notified, the staff-side UI (Fig. 1c), used by the

restaurant’s kitchen staff, queries the database for new order
information. For ease of use, the UI sorts, in ascending order,
existing orders based on the time they were placed (i.e. the
oldest will rank first and the newest last). There is a deletion
button for all menu items on the screen to be removed after the
kitchen is done with preparation. When an item entry has been
removed, it both disappears from the screen and gets deleted
from the database. The lifetime of an order ends when the
kitchen staff removes all items in it from the database.

Fig. 2. System block diagram.

4
18-500 Final Project Report: D3 - Meal by Words, 05/05/2023

IV. DESIGN REQUIREMENTS

Customer detection: The sensor subsystem is required to
detect the presence of a customer within 2 seconds since the
customer shows up with 100% accuracy. To account for any
slight movements, the subsystem considers that a person has
left only after a 30-second timeout period has elapsed.
Noise tolerance: In the article “Noise in Restaurants: Levels

and Mathematical Model,” Dr. To states that a typical
fast-food restaurant’s noise level falls in the range of 69.1dBA
to 79.1dBA[4]. Humans’ hearing accuracy drops significantly
when the noise level is greater than 70dBA, measuring a mere
50% average in Raghavan’s paper[5]. Therefore, we expect an
85% speech-to-text accuracy at a noise level < 70dBA and a
50% speed-to-text accuracy at a noise level >= 70dBA. This
will ensure a relatively high success rate for matching
customer speech and order items.
Data storage: As a general design rule, the representational

gap between a physical order and its stored counterpart should
be low. The stored information should be tolerant against
unexpected events such as hardware failures, power outages,
and network disruptions. The data should be accessible from
multiple sources at the same time, as there may be multiple
kitchen staff preparing orders at the same time. Following our
latency requirement, the data storage model should also
guarantee a <= 1s latency between order placement from
customer-side UI and appearance in staff-side UI.
Customer-to-Staff Latency: To ensure that the kitchen staff

sees a newly placed order within 1 second of the customer
checking out, the staff-side UI is subscribed to the Redis
channel where the customer-side publishes orders in to get
real-time notifications. When an order number is received, it
immediately queries the database to retrieve order information
and display it on the screen.
Backend-to-Customer Responsiveness: The backend must

be able to recognize the end of the speech and deliver the
speech to the speech recognition processor. After the speech is
processed by the backend, it must immediately update the
customer-side UI (<= 1 second) so that the UI can confirm the
receival of the speech with the customer by displaying an icon,
letting the user know that the speech has been received and
please wait for further instructions. In addition, we will
increase the customer-side UI rendering speed using AJAX to
improve performance, reducing the traffic from and to the UI.
UI Readability: The customer-side UI should accurately

display the customer’s order items, their respective prices, and
the order’s total price. The texts should be clearly visible to
people with 20/20 vision from at least 0.5m away. The
staff-side UI should display orders in easily readable format,
allowing an average person to comprehend an order’s
information within 3 seconds. The UI should group items
based on order rather than item type, with the oldest order
displayed first.

V. DESIGN TRADE STUDIES
Based on our use-case and design requirements, we made

five key decisions.

A. Customer Detection Trade-Offs
By having two ultrasonic distance sensors, the speech

recognition system is capable of going to SLEEP mode when
there is no customer present and check if the customer is
speaking close enough to the microphone when it is the
speaking period.
Passive infrared sensor vs. ultrasonic distance Sensor: The

infrared sensors would sometimes falsely activate the kiosk,
and ignore a customer under certain circumstances, which had
resulted in orders failing to be terminated. The ultrasonic
distance sensors, which produce more accurate readings, can
limit the detection range and activate the kiosk only when a
person is detected sitting down on the chair, which reduces
power consumption and improves efficiency.
Two distance sensor vs. one distance sensor: we could have

used only one distance sensor to detect both the presence of
the customer and whether the customer is speaking close
enough to the microphone. However, to improve accuracy, we
decided to use one distance sensor to detect the presence of the
customer and a separate one for monitoring the distance
between the customer and the microphone. Otherwise, we
would have to adjust the angle of the only sensor.

B. Speech Recognition & Parsing Trade-Offs
Saying all order information in one go vs. saying entries one

at a time: Our initial plan was to process voice inputs as they
are received, allowing the customers to say all entries in the
order in one go while our system parses the input.
Nevertheless, determining the time to stop recognizing speech
was extremely difficult. Due to the heavy background noise in
restaurants, determining a decibel level as termination cutoff
became unrealistic. Setting a timeout would also lead to
troubles since the time it takes to place an order completely
depends on the customer. If the customers can say item entries
one at a time, the accuracy of speech recognition will be
significantly improved.

C. Front End Technology Trade-Offs
An open-source front-end library or framework will make

our UI visually consistent and appealing. We debated between
the React library and the Bootstrap framework but, ultimately,
chose the latter. Bootstrap not only provides a library of
off-the-shelf components and styles, but also various other
supports that help boot up a standard project quickly. It allows
rapid prototyping of a web application without the design
work React requires. Our UIs do not have complicated
functionalities that need heavy customization, so Bootstrap is
an effective and efficient solution.

D. UI Design Trade-Offs
Digital menu vs. printed menu: There are two options to

choose from: displaying the menu on the user interface or
hanging a printed copy somewhere near the kiosk. Although
printed menus are larger than our UI screen (i.e. laptop
screen), which is easier to read for customers, we proceeded
with the digital menus for easy menu change and
environmental friendliness. The menus no longer need to be

5
18-500 Final Project Report: D3 - Meal by Words, 05/05/2023

reprinted everytime there is a change in the menus, and we can
reduce our paper consumption.
Visual instructions vs. verbal instructions: To improve our

system’s accessibility, we will both display the order
instructions on screen and use a voice synthesizer to read it out
loud. Verbal instructions are more intuitive to our customers
because they simulate the human cashier’s behavior at a
regular counter. If there is no text display, people with hearing
impairment may struggle to understand the instructions or
navigate the UI, which leads to a frustrating user experience.
That was how we decided to include both features in our
customer-side UI.
Web-based UI vs. GUI: When developing the staff-side UI,

the initial solution was to build a web application similar to
the customer-side UI. This would have been a complicated and
time-consuming process, even unrealistic given the short
timeframe allocated for the staff-side UI. We soon realized
that the Pygame library can implement all the desired
functionalities locally, which became our alternative solution
and saved us a lot of time.

E. Data Storage Trade-Offs
We mainly studied two options for customer data storage:

local and cloud storage.

TABLE I. DATA STORAGE TRADE-OFFS

Criteria
Storage Options

Local Storage Cloud Storage

Storage
Formats

JSON file
CSV file
In-program global structures
(e.g. map, set, dictionary,
etc.)

NoSQL key-value pairs
SQL tables (relational)
Documents (JSON-like)

Difficulty

Low.
Uses information team
members have already learnt
in other courses.

High.
Requires extra ramp-up
time.

Network

Doesn’t require network
access for storage.
Requires network access for
querying from a different
machine.

Requires network access
for storage and querying.

Storage
Speed

Fast.
Minimal latency.

Slow, but within
sub-microsecond range.

Query
Speed
From Other
Machines

Slow.
Requires machines to send
local data over the network.

Slow, but within
sub-microsecond range.

Durability

Low.
System failure results in
data being inaccessible or
permanently lost.

High.
Cloud services provide
fail-safe measures.

To reiterate, our main design requirements for data storage
are 1) low representational gap between order and stored
information, 2) high tolerance against hardware failures, 3)
ability to access stored data from multiple machines, and 4) <=
1s latency between order placement from customer-side UI
and appearance in staff-side UI.
Object-oriented programming is a good way to maintain a

low representational gap between physical orders and the
stored order information. Locally, JSON files, CSV files, and

data structures such as dictionaries and sets can all store
custom objects. On the cloud, this requirement disqualifies
key-value storage, as the keys and values are generally both
string or integer values. While the SQL table format supports
mapping between tables (e.g. an entry in the Order table can
contain a field that maps to an entry in the Item table), it
establishes undesirably high coupling between them.
Relational databases also maintain complicated internal data
about the stored objects, which inherently makes insertions
and deletions slower. In the end, the document format emerges
as the most ideal cloud storage solution.
A major shortcoming of local storage is the vulnerability to

hardware failures. If the hardware that stores our order
information drops offline, the data will be inaccessible until
the system goes back on line. If a file becomes corrupted
during reboot, we run the risk of losing the data entirely. By
using cloud storage, we mitigate this risk by creating a backup
copy in a remote location.
Cloud storage also inherently provides the ability to access

data from other locations. It decouples our two UIs, the
customer-side and the staff-side UIs. Both UIs will send and
request information from the database. Local storage, on the
other hand, requires our system to send new order information
from the customer-side UI to the staff-side as we receive them.
Given the benefits of cloud storage, we believe that it is

reasonable to pay the price of slightly higher access latency.
The cloud database we have chosen to work with, Redis,
generally guarantees a sub-microsecond range latency, which
is significantly lower than the one second latency we are
aiming for.
Redis is an open-source cloud database that 1) supports both

the key-value and the document storage models, 2) allows
customizations on data structures, and 3) provides a
notification system useful for communication between our
customer-side and staff-side UIs. The third functionality is
particularly useful, since this eliminates the need of
busy-polling the database for new order information.

VI. SYSTEM IMPLEMENTATION

A. Customer Detection
To detect the presence of a customer, two hardware

components are needed: an Arduino Uno and an ultrasonic
distance sensor (Fig. 3). Whether a customer is present is
determined by the distance reading. The distance is computed
by a Python script running in a process independent from the
main process. This independent process will be constantly
polling the distance readings printed to the serial port of the
arduino, which connects to the ultrasonic distance sensor. The
main process will poll the distance readings from the
independent process once every 1 second. The timeout logic
replies on whether a signal was recently received. Therefore,
the backend will have a loop that constantly validates the
timestamp of the most recently received sensor signal.

6
18-500 Final Project Report: D3 - Meal by Words, 05/05/2023

Fig. 3. HC-SR04 ultrasonic distance sensor.

B. Speech Recognition & Parsing
Our system uses a USB directional microphone, Neat

Bumblebee II, to capture voice inputs. To produce the best
result, a professional sound shield, Moukey Microphone
Isolation Shield, surrounds the microphone and limits its
reception range to <=90° vertically and <=120° horizontally.
Input from the microphone is fed into a signal processing

module, implemented with the open-source library PyAudio.
The listen() function will capture signals from the microphone.
This module uses Active Noise Reduction (ANR) to reduce
background noise in real-time and relays the resulting stream
to the speech recognition module.
The speech recognition system is implemented with the

SpeechRecognition Python library. It calls upon an existing,
trained speech recognition engine and converts the input to
text. A while loop makes sure that our system continues to
take user input when the sound level is above a certain
decibel.
The NLP system is implemented with the spaCy library.

The NLP pipeline first tokenizes all words in the user input
text, and then numerizes the input text string to convert any
numeral words to numbers. The grammar rules used to find
item names, quantities and commands are all written into
dependency matchers, which parse the tokens based on
grammar structure (Fig. 4). After checkout, the information
extracted will be uploaded to the Redis database and
immediately retrieved by the staff-side UI.

Fig. 4. Example spaCy parsing result. The sentence parsed here is “can I
have a chicken burger?”

C. UI & Front-end Framework
The UI regularly retrieves necessary variables from the

backend and populates the reserved fields in the HTML file.
To illustrate, when the speech recognition program finishes
processing the ordered items, it should encode them into
JSON format and send the data to the JavaScript body in the
order summary HTML file to be decoded. JavaScript will then
fill the HTML fields with the decoded variables.

Customer-side UI: On the customer-side UI (Fig. 5), the
customer will be able to see the menu, the items they have
ordered, their corresponding prices, and the total price of their
order. A green microphone icon indicates the speaking period
and that the customer should be speaking at the moment.
When the system is processing, the icon turns red. In the
meantime, a pre-synthesized voice recording of the instruction
will be played. A textbox will display the same message to
accommodate those with hearing disabilities.

(a)

(b)

7
18-500 Final Project Report: D3 - Meal by Words, 05/05/2023

(c)
Fig. 5. Customer-side UI. (a) Left side of the ordering page. (b) Right side

of the ordering page. (c) Checkout page.

Staff-side UI: The Pygame library was used to render the
staff-side UI page. In the main loop, the UI actively listens for
updates in the Redis channel of orders; when a new order has
been placed, the information will be appended to the current
list of orders and be displayed after the current iteration. The
“Done” button after each order entry allows the staff to delete
completed items. When an entry is completed, it is both
removed from the UI and the database; orders with no entries
remaining will be automatically deleted as well.

D. Data Storage - Cloud Database
Our system communicates with the open-source database

Redis to store and retrieve customer order information. The
Redis Object-Mapping (redis-om) module, an open-source
library, maps object-oriented data models in Python to those
on the Redis Stack. Redis also provides a publish-subscribe
(Pub/Sub) functionality that allows the publisher to send
messages to one or more subscribers.
The menu is immutable and stored locally. A menu item’s

name is unique, and the menu contains its corresponding price.
Although Redis offers fast and reliable accesses, frequently

retrieving data from the cloud will still stall the pipeline. In
order to minimize communication with the database, order
information will be kept in local storage before the customer
checks out (Fig. 6).
A local order is responsible for storing and managing

information about an on-going order. Each order is uniquely
identified by an order number. The time the order is created
(system time, in seconds) will be documented as the order
time, which allows the staff-side UI to sort orders based on
processed time. Menu items’ names act as the keys to the local
order’s items dictionary. Their corresponding values are the
ordered quantity. The total price of the order will be updated
as customers add or remove items.

In the cloud, orders are stored in JSON format with models
that are declared through redis-om. There are two models in
total: order and item. Item is an embedded model representing
a menu item belonging to a database order. A database order
consists of attributes corresponding to those of a local order.
To upload a local order to the cloud, the downstream

dependency only needs to call a local order’s checkout
method. This method automatically parses the local order’s
contents and creates its cloud counterpart, database order.

Fig. 6. Object model for local and cloud orders.

Once the order has been stored to the database, the
customer-side UI needs a way to notify the staff-side UI for it
to fetch the new order.
Redis’s Pub/Sub functionality provides exactly this. The

customer-side UI is set up as the publisher for the channel.
When an order has been successfully added to the database,
the customer-side UI will publish a message including the
order’s unique order number. The staff-side UI, subscribed to
the same channel, can immediately query the database with
the received order number and retrieve the new order
information.
The staff-side UI’s only other interaction with the database

is order removal. A successful removal request completely
erases the order information from the database.

VII. TEST, VERIFICATION AND VALIDATION

Since our project is heavily customer-focused, we invited 5
volunteers with varied gender, heights, accents to experience
the ordering process. During testing, we kept track of the

8
18-500 Final Project Report: D3 - Meal by Words, 05/05/2023

following criteria:

A. Results for Customer Detection
Our volunteers of different heights come up to the kiosk and

sit on the chair, adopting postures that they felt comfortable
within the context of the scenario. Our volunteers were free to
move their bodies as long as they stayed on the chair. The
success rate can be measured by (# of times the system
successfully switches from SLEEP mode to ACTIVE mode / #
of attempts made by the volunteers we have tested). The
success rate was 100%.

B. Results for Audio-to-Text Accuracy
Correct audio-to-text transcription is the foundation of our

entire system. Due to the nature of our system, we mainly
focus on the speech recognition system recognizing the correct
word, having some leniency on its verb tense or singularity.
Therefore, verbs of different tenses will be considered as the
same word (e.g. “wake,” “woke,” “waken” are considered the
same). Similarly, we would not distinguish between singular
and plural nouns (e.g. “hamburger” and “hamburgers” were
considered the same).
To test audio-to-text accuracy, we speak phrases commonly

used for ordering (e.g. “I’d like xxx,” “I want to get xxx,”
“xxx, please,” etc.) into the microphone and compare the
transcription against our actual words. Accuracy is then
computed from the number of words correctly transcribed
divided by the number of words spoken.

TABLE II. AUDIO-TO-TEXT ACCURACY

Sentence
Spoken

of
Words
Spoken

Sentence
Recognized

of
Correct
Words

Accuracy

“I’d like two
hamburgers.” 5 “I like to

hamburgers” 3 60%

“I want two
cheeseburgers.” 4 “I want to

cheeseburger” 3 75%

“One beautifully-
packaged
chicken
sandwich,
please.”

6

“1 beautifully
packaged
chicken
sandwich
please”

6 100%

“I want to order
a hundred
cheesecakes.”

7
“I want to
order 100
cheesecake”

7 100%

“Get me two
hamburgers.” 4 “Get me to

Hamburg” 2 50%

“I’d like one
fries and three
fountain drinks.”

9

“I like 1 fries
and 3
fountain
drinks”

8 88.9%

“Check out.” 2 “Check out.” 2 100%

“Hello, let’s go
with four tacos
and three ice
creams.”

11

“Hello let’s
go with 4 taco
and 3 ice
creams”

11 100%

“I’d like one cup
of coffee.” 7 “I like 1 cup

of coffee.” 6 85.7%

“Fifty corn
dogs.” 3 “50 corn dog” 3 100%

Avg. 87.9%

The average accuracy across 10 samples was 87.9%, which
satisfies our use-case requirement of an 85% accuracy.

C. Results for Text-to-Command Accuracy
We fed test string templates into our NLP system to test the

accuracy. For each test case, [menu item] was replaced by all
the item names on our menu. To better simulate the output of
the speech recognition system, all capitalizations and
punctuations were removed. The text-to-command accuracy
was measured by the number of correctly displayed item
entries over the total number of entries in the text input.

TABLE III. TEXT-TO-COMMAND ACCURACY

Text Input Addition
Accuracy

Removal
Accuracy

can I have a [menu item (sg)] please 100% N/A

two [menu item (pl)] 100% N/A

two [menu item (sg)] 100% N/A

five beautifully packaged [menu item (pl)] 100% N/A

a box of [menu item (sg)] please 100% N/A

twenty [menu item1 (pl)] and three [menu
item3 (pl)]

100% N/A

remove [menu item (pl)] please N/A 100%

i will get rid of [menu item (pl)] N/A 100%

one [menu item (sg)] oh wait can i get rid
of a terrible [menu item (sg)] please

80% 100%

i want three [menu item (pl)] can i delete
two [menu item (pl)]

80% 100%

(sg = singular noun, pl = plural noun)

The NLP system was able to reach 96% accuracy on
average for the test commands, which exceeded our goal of
95%. All the simple commands only involving addition or
deletions resulted in 100% accuracy; the only test cases which
went wrong are the ones where addition and deletion
commands appear in the same sentence. Fortunately, based on
our requirement for the users to order item-by-item, the
complicated sentences should not occur in the use case of our
system. The reason why we decided to leave out some
complicated edge cases without fixing was that different menu
items can generate different dependency trees even in the
exact same sentence structure. Accounting for one edge case
often means giving up on another.

D. Results for Order Upload Latency
The latency is measured from the time when order is sent to

the staff-side to when staff sees the actual order. We will
record the system time, in milliseconds, that the order is sent
and compare it with the system time, in milliseconds, that the
order is received.

9
18-500 Final Project Report: D3 - Meal by Words, 05/05/2023

TABLE IV. AUDIO-TO-TEXT ACCURACY

Network: CMU-SECURE (4/12/2023)
Trial
Time Sent (s) Time Received (s) Time

Difference (s)

1 1681311756.920146 1681311757.988204 1.068058

2 1681311787.9240708 1681311788.301242 0.377171278

3 1681312039.466178 1681312040.4595578 0.9933798313

4 1681312140.5965528 1681312144.366512 3.769959211

5 1681312195.167861 1681312197.255147 2.087286

6 1681312260.151395 1681312263.733936 3.582541

7 1681312359.745095 1681312360.1503391 0.405244112

8 1681312407.597444 1681312417.1346428 9.537198782

9 1681312475.726104 1681312478.991681 3.265577

10 1681312525.983286 1681312526.7069042 0.723618269

11 1681743612.060843 1681743612.5518022 0.4909591675

12 1681743614.6954062 1681743615.077455 0.3820488453

13 1681743618.92501 1681743619.474676 0.549666

14 1681743624.654081 1681743625.0546181 0.400537014

15 1681744253.4430232 1681744254.947194 1.504170895

16 1681744293.227913 1681744294.318719 1.090806

17 1681744319.980497 1681744320.395576 0.415079

18 1681744338.203062 1681744338.6219149 0.4188528061

19 1681744356.008338 1681744356.6730611 0.6647231579

20 1681744377.0767202 1681744378.1253068 1.048586607

Avg. 1.683

Median 1.021

The average accuracy across 20 samples, collected over 2
days, was 1.638s. The median was 1.021s. An outlier of a 9s
upload time was present in the tests, which affected the
average significantly. We believe that the median is a better
representation of our system’s performance.
Overall, the latency falls in an acceptable range but

fluctuates depending on the latency of the network.

E. Results for Service Time
The service time is measured from when the customer sits

down on the chair until they finish checking out. We tested
how long the service time is for different volunteers with a
varied number of order items (3, 5, 7, etc.). The expected
average service time is 200 seconds or less.

TABLE V. SERVICE TIME

Volunteer # # of items ordered Time consumed (s)

1

3 53.19

5 76.93

7 116.74

2

3 92.12

5 168.95

7 204.69

3

3 56.1

5 79.57

7 135.08

4

3 77.8

5 94.23

7 103.31

5

3 71.02

5 129.42

7 193.84

Average time
consumed

3 70.046

5 93.906

7 150.732

We were able to keep our average service time below 200
seconds.

F. Results for Noise Tolerance
To test the system’s noise tolerance, we generated

background noise by playing recordings of white noises at the
desired decibel level on loop while ordering. Noise tolerance
is essential for our system since the use setting is fast food
restaurant, a relatively noisy environment. Our system’s
performance under 75dB was 100% overall order accuracy,
exceeding the expected 85%. However, it is important to note
that we did not limit the duration of the ordering process,
which meant our volunteers were able to add or remove items
until the order was fully correct.

G. Results for Order Upload Accuracy
This test checks that the order received by the staff-side is

the same as the order uploaded from the customer-side. We
hard-coded 10 different orders, with varying order items and
quantity, and uploaded them to the database.
The resulting accuracy was 100%. We found no mismatch

between the order received by the staff-side and the order
uploaded from the customer-side.

H. Results for Process Termination
For checkout, we will require volunteers to use the keyword

“check out”. The system should be able to handle checking out
an empty order or a non-empty order. With an empty order, the
system is expected to be able to terminate the ordering process

10
18-500 Final Project Report: D3 - Meal by Words, 05/05/2023

but ignore the empty order (i.e., not upload to the database).
The system should be able to push a non-empty order
(including the total and all the ordered items along with their
corresponding quantities) to the database.
To test for timeouts, our volunteers simulated various

scenarios where an order should be terminated prior to
checkout, including walking away after the system has just
been activated, leaving the kiosk halfway through the ordering
process, and not speaking or speaking in a low voice when it is
their turn to speak. In all of the scenarios mentioned, the
system was able to time out in 30 seconds successfully.

I. Results for Overall Order Accuracy
We use recall as the measurement for order accuracy, that is,

the number of correct item entries seen on the staff-side UI
divided by the total number of entries the customer says. We
were able to reach 100% order accuracy but running slightly
overtime.

J. Results for UI Readability
We asked for feedback from the 5 volunteers on both our

customer-side and staff-side UI. The design and layout were
modified based on the comments to make sure the UIs were
self-explanatory and aesthetically pleasing.

VIII. PROJECT MANAGEMENT

A. Schedule
Most of our individual work had been done by the first

week of May. There were several tasks added such as Arduino
Uno setup to account for design changes, and we extended the
timeline for some tasks based on the progress. We worked on
end-to-end testing until the week of the final report deadline.
For a more detailed schedule, please refer to the Gantt Chart
(Fig. 7, page 12).

B. Team Member Responsibilities
Tasks for team members were distributed based on each

member’s specialties. Nina was responsible for the database,
speech recognition, and their integration with the system. Lisa
built the NLP system and created the staff-side UI. Shiyi
programmed the distance sensors and the Arduino, and created
the customer-side UI. All members completed the unit tests for
the subsystems we were in charge of; the team worked on
overall integration and end-to-end testing together.
The distribution of work remained the same as the design

report documented. However, instead of infrared sensors and
RPi4, Shiyi used distance sensors and Arduino Uno as the
main components.

C. Bill of Materials and Budget
For cost breakdown, see Table VI, page 12.

D. Risk Management
Customer Detection: We replaced the infrared sensors with

ultrasonic distance sensors halfway through the semester to
improve the accuracy of detecting the presence of a customer
and reduce detection errors. Previously, the infrared sensors

would sometimes detect people passing by the kiosk, which
could trigger false activations of the kiosk, and would
sometimes detect a customer when there was actually no one,
which had resulted in orders being unable to terminate. After
switching to using the ultrasonic distance sensors, which
produce more accurate readings, we can limit the detection
range and activate the kiosk only when a person is likely
sitting down on the chair, which reduces power waste and
improves efficiency.
Noise reduction: No one on the team has previous

experience with sophisticated signal processing, and the noise
tolerance requirement for the project is considerably strict. To
mitigate this, we switched to the current sitting setup, which
places the microphone closer to the customer’s mouth
compared to the previous standing design.
NLP: The majority of the risks associated with the NLP

system comes from complicated sentence structures involving
multiple operations. When we made the decision to shift from
non-stopping customer input reception to listening
command-by-command, the risks no longer applied since the
sentences became shorter and simpler. The risk of customers
saying unexpected commands was also reduced by limiting
the possible commands by providing instructions.
Cloud storage: Using an open-source cloud database runs

the risk of experiencing extremely high access latency and/or
issues with internet connection. An unresponsive system
results in poor customer experience, which violates our
use-case requirements. If we experience poor WiFi
connectivity when demoing, we plan on switching to using
personal hotspots of our phones to keep the connection up.

IX. ETHICAL ISSUES
Our system runs the risk of compromising user information.

While our expectation is that Redis is secured and that our
database is only accessible to the staff, the database could still
be vulnerable to attackers. If an attacker hacks into the
database, they will have access to all order information and be
able to change any data. This could expose the customers’
personal preferences, money-spending habits, and allergy
concerns. The order information could also be maliciously
changed after checkout. In addition, if we were to add a
payment component to the system, the customers’ credit card
information could also be compromised.
Another potential risk is that there might be customers who

check out and leave without paying, causing the restaurant to
prepare dishes that are not paid for and not consumed. This
not only harms the restaurant, but also causes other customers
who genuinely want to eat to wait longer. To mitigate this, the
kiosk should be installed in an area with surveillance cameras,
and a system to monitor whether orders have been paid for
should be added.

X. RELATED WORK

There has been an abundance of speech recognition and
natural language processing developments in other markets,
and some researches and products are focusing on integrating

11
18-500 Final Project Report: D3 - Meal by Words, 05/05/2023

these technologies into the food service industry.
A research conducted in Dr. Mahalingam College of

Engineering and Technology in India[6] proposed a speech
ordering system that allows the customers to place orders
through phone communications. The research and our project
have the common goal of establishing a speech-controlled
food ordering system, sending orders to the staff’s end after
orders are completed. The research uses Naïve Bayes
classification to convert text input to different entry intents of
menu item names and quantities, and proceed with the intent
that has the highest probability.
Speechly[7] also has an API for taking customer orders by

speech. The system can transcribe both real-time speech input
or uploaded audio files, and recurrent neural networks are
utilized to process the text.

XI. SUMMARY

Our system works as expected under ideal conditions,
where the customer is speaking loudly and clearly, the
environment is generally noise-free, and the internet is stable
and fast. However, we understand that this may not be the case
in most restaurants. We noticed that our system became
extremely slow when the internet was spotty, as both our
speech recognition and our data storage systems depend on the
internet. Moreover, the accuracy of our speech recognition
system degrades significantly under noisy environments.
While it won’t record incorrect items, it requires the customer
to repeat themselves multiple times in order for the system to
correctly detect the item ordered.

A. Future work
Although we are not planning on working on this project

beyond this semester, we do have some ideas about how the
system can be improved.
One possible improvement is, instead of relying on the

speech recognition libraries to determine the end of a speech,
writing our own script for that purpose using a language that
runs faster than Python, such as C.
Another potential improvement of our system is allowing

menu customization. When the staff updates the menu, the
system should automatically accommodate for the changes
without requiring software engineers to manually modify the
code for speech processing, the database, or the UIs.

B. Lessons Learned
One lesson we learned was that it is perfectly fine to make

significant design changes when the current technology does
not suffice for desired outcomes. Halfway through the project
when subsystem integrations started, we discovered that the
Raspberry Pi’s operating system was incompatible with a
number of Python libraries required for other subsystems.
Changing to using an Arduino was a tough decision to make,
since it required us to transfer all our files to a new device and
make substantial alterations to our code. This ended up saving
us a lot of trouble, because later we used even more Python
libraries that would not be compatible with either the 32-bit or
the 64-bit Raspberry Pi OS.

GLOSSARY OF ACRONYMS

API - Application Programming Interface
NLP - Natural Language Processing
RPi - Raspberry Pi
UI - User Interface

REFERENCES

[1] T. Sun, “McDonald's touchscreens test positive for traces of feces,
deadly bacteria,” Fox News, 28-Nov-2018. [Online]. Available:
https://www.foxnews.com/food-drink/mcdonalds-touchscreens-test-posit
ive-for-traces-of-feces-deadly-bacteria.

[2] “Speed of service,” QSR magazine, 2016. [Online]. Available:
https://www.qsrmagazine.com/content/speed-service.

[3] Figure A3. dimensions of adult-sized wheelchairs. [Online]. Available:
https://archive.ada.gov/1991standards/descript/reg3a/figA3ds.htm#:~:tex
t=Lap%20height%20is%20shown%20as,8%20inches%20(205%20mm).

[4] W. M. To and A. Chung, “Noise in restaurants: Levels and Mathematical
Model,” Noise & health, 2014. [Online]. Available:
https://pubmed.ncbi.nlm.nih.gov/25387532/.

[5] A. M. Raghavan, N. Lipschitz, J. T. Breen, R. N. Sami, and G. D.
Kohlberg, “Visual speech recognition: Improving speech perception in
noise through artificial intelligence2020,” Otolaryngology--head and
neck surgery : official journal of American Academy of
Otolaryngology-Head and Neck Surgery, 2020. [Online]. Available:
https://pubmed.ncbi.nlm.nih.gov/32453650/.

[6] Sabarinathan, Swathi, V., & Pandi, D.M. “Smart Ordering System using
Speech Recognition,” International Journal of Creative Research
Thoughts, 2-Feb-2020. [Online]. Available:
https://www.semanticscholar.org/paper/Smart-Ordering-System-using-S
peech-Recognition-Sabarinathan-Swathi/115e45fe61345a91d71ac4f7e8
baa42e211f69f5#references.

[7] Speechly. 2023. [Online]. Available:
https://www.speechly.com/solutions/quick-service-restaurants

12
18-500 Final Project Report: D3 - Meal by Words, 05/05/2023

Fig. 7. Gantt Chart.

