
Meal By Words
D3: Nina Duan, Lisa Xiong, Shiyi Zhang

18-500 Capstone Design, Spring 2023
Electrical and Computer Engineering Department

Carnegie Mellon University

System Architecture

Product Pitch
Meal By Words is a system that allows customers to verbally place an order at a restaurant. 
Inaccurate orders and long wait times are critical problems that discourage customers from 
ordering at quick-service restaurants. With the traditional ordering method, customers 
frequently have to raise their voices or even shout to ensure that the person taking their order 
can hear and understand it accurately. Some restaurants provide touch screens as an 
alternative which has the potential of spreading harmful bacteria and diseases. To tackle these 
problems, we propose the development of a food ordering system that employs speech 
processing technology to facilitate the process of placing orders at restaurants.
We successfully implemented full functionality for ordering, allowing customers to add 
and delete any item entry. The speech recognition and parsing subsystems are able to 
recognize all menu items and quantities in the user’s speech input, regardless of 
sentence structure. For customer-side and staff-side interaction, we barely missed our 
latency requirement of 1s but were able to guarantee that 100% of the orders are 
successfully delivered.

System Diagrams

System Evaluation

Conclusions & Additional Information

In absence of a customer, the system will be in SLEEP mode. An ultrasonic distance sensor, 
driven by an Arduino Uno, wakes up our system when a customer sits down on the chair 
placed in front of the kiosk. At the same time, the monitor screen will display the 
customer-side UI. A directional microphone will receive speech inputs from the customer. Our 
natural language processing algorithm parses the text string and extracts necessary order 
information.To check out, our system will instruct the customer to review their order. The 
customer can confirm the order by saying “yes”, “correct”, or “confirmed”.
After the customer checks out, the entire order, previously stored as a local object, will be 
uploaded to the Redis cloud database. Information in this database is accessible to the 
staff-side UI. The database notifies the staff-side UI of the new order by publishing a 
notification message. After 10 seconds, the customer-side UI will go into SLEEP mode, 
waiting for the next customer.
The staff-side UI, used by the restaurant’s kitchen staff, queries the database for new order 
information. Staff can remove items from an order after they’re done with preparation. When 
an item entry has been removed, it disappears from the screen and gets deleted from the 
database.

With our speech-ordering kiosk, the fast food restaurant staff can now shift their primary focus 
to food preparation, without worrying about serving the customers coming in to order at any 
moment. The customers will no longer be concerned about touching a kiosk with potentially 
harmful bacteria attached to it. One improvement we could make is, instead of relying on the 
speech recognition libraries to determine the end of a speech, writing our own script for that 
purpose using a language that runs faster than Python, such as C. Another potential 
improvement of our system is allowing menu customization. When the staff updates the menu, 
the system should automatically accommodate for the changes without requiring software 
engineers to manually modify the code for speech processing, the database, and the UIs.

http://course.ece.cmu.edu/~e
ce500/projects/s23-teamd3/

Design Trade-offs

Say all items in one go Say items one by one

Feels natural to 
customers

Hard to determine end of 
speech

Increases speech 
detection accuracy

Longer service time per 
customer

Upload entire order at checkout Upload item to database when detected

Less database 
accesses

Risk of losing an entire 
order

All order data saved 
ASAP

Repeated DB accesses 
increases latency

Busy waiting loop React to trigger events

Intuitive Waste of resources
Fixed sleep time interval

Saves CPU power
Dynamic wake-ups

Hard to terminate 
background events

System Tests

Test Name Test Description Ideal Actual

Audio-to-Text Accuracy Tests the speech recognitions subsystem’s ability 
to correctly recognize common phrases.

85% 87.9%

Text-to-Command 
Accuracy

Tests the natural language processing subsystem’s 
ability to parse a string into actionable commands.

95% 96%

Order Upload Latency The time between checkout and when the order 
appears on staff UI

1s 1.021s

Order Upload Accuracy Tests that the connection between customer-side 
and staff-side is sound.

100% 100%

Kiosk Activation Latency Kiosk wake-up time (SLEEP → ACTIVE) 2s 1.42s

Customer Detection 
Accuracy

Tests the ability to recognize the presence/absence 
of a customer

100% 100%

Checked out 
orders are 
uploaded to 
cloud 
database.

Staff-side UI queries 
the database for order 
information.


