
1
18-500 Design Project Report: D3 - Meal By Words, 3/3/2023

Meal by Words
Nina Duan, Shiyi Zhang, Lisa Xiong

Department of Electrical and Computer Engineering,
Carnegie Mellon University

Abstract—A system capable of taking restaurant orders
verbally. Inaccurate orders and long wait times are critical
problems that discourage customers from ordering at
quick-service restaurants. With the traditional ordering method,
customers often need to increase their volume or even yell just so
that the server hears their order correctly. Some restaurants
provide touch screens as an alternative which has the potential of
spreading harmful bacteria and diseases. To tackle these
problems, we propose to create an ordering system that uses the
speech recognition technology to place orders for our customers.

Index Terms—Design, verification, sensor, embedded system,
signal processing, speech recognition, tokenization, natural
language processing, cloud database, user interface

I. INTRODUCTION

THE understaffing issue of some fast food restaurants results
in either exhaustive customer wait times, or burnt out
employees shuffling between the kitchen and the counter. The
current approach of having cashiers take orders also heavily
relies on employee training, which consumes both time and
money.

Some fast food restaurants installed touch screen ordering
kiosks to solve these problems; however, after the pandemic,
the public raised health concerns about unsanitized shared
utilities to a new level. Fox News reported that a swab test on
eight random McDonald’s restaurants in the United Kingdom
resulted in the discovery of infection-causing bacteria in every
test. The existing ordering kiosks, with thousands of people
making orders on them by touching, will carry lots of bacteria
if not sanitized properly on a regular basis.

Kiosks that can take verbal orders will reduce the burden on
fast food restaurant staff and the customers’ health concerns.
The goal of our project is to build a voice-operated ordering
kiosk that processes orders efficiently. The entire process, not
including paying, will be completed verbally. The confirmed
order will be sent to the kitchen automatically, allowing the
staff to start preparing as soon as an order has been placed.
The ultimate goal is to create an ordering experience that
mirrors the one a human employee offers, but with greater
efficiency and accuracy.

II. USE-CASE REQUIREMENTS

Available operations: A regular fast-food order interaction
includes requesting for desired items and proceeding to
checkout. The system should support not only these two

operations, but also two additional features – removing item(s)
and changing quantities – to ensure that erroneously
recognized and/or incomplete orders will not be sent to later
stages of our system.

Service time: According to SeeLevel HX’s 2016 research,
the average service time in the U.S.-based fast-food restaurant
is around 200 seconds. Our system should offer a similar if not
better experience. Hence, we expect the entire ordering
process for one customer to be completed in less than 200
seconds.

Latency: The kitchen staff should be able to see a newly
placed order within 1 second after the customer checks out.
This will ensure customers’ food is prepared in a timely
manner.

Voice reception: To accommodate fidgeting customers, the
microphone should be able to receive inputs from a horizontal
span of 120°, from a distance between 0m to 1m. The
microphone and speech processing algorithms should
accommodate all human voice frequencies (80Hz ~ 260Hz), at
normal conversational volume (60dB ~ 80dB).

Noise tolerance: Since most fast-food restaurants have
noisy environments, our system should be able to operate in a
considerable level of background noise. To ensure a
satisfactory experience, the system should reach 100% order
accuracy by the time a customer checks out.

Power conservation: Our system aims to consume an
appropriate amount of power to promote an
environmentally-friendly ordering experience. Therefore, it
should only process audio inputs when a customer is present.
Otherwise, it should remain in a low-power mode that only
monitors whether a person has approached.

Accessibility: Our system should accommodate children and
those with disabilities. Factors to consider include the
customer’s height, how an approaching person is detected, and
through what ways a customer can interact with our system.
Specifically, the system should accommodate all customers
with heights >= 0.7m and customers in wheelchairs.

Process termination: If the customer leaves the kiosk, the
system should be able to initiate a timeout. After the timeout,
it should delete the current, incomplete order and enter the
low-power mode. The system should not initiate a timeout
unless it detects inactivity of more than 2 minutes, as deleting
a customer’s order by mistake would result in a frustrating
user experience.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

On a high level, our project can be divided into a hardware
component and a software component. The hardware
component manages the system’s interaction with the physical
world, receiving physical data such as infrared and sound
waves. It provides the information our software component
requires to satisfy our customers’ needs. The software
component receives the mentioned information, converts them
into meaningful tokens, and stores them in a non-local
location for safekeeping. The software component is also
responsible for fetching and removing stored data in the

2
18-500 Design Project Report: D3 - Meal By Words, 3/3/2023

future.
A customer’s interaction with our system (Fig. 1) starts

when they approach our kiosk. The footstep-shaped stickers
on the ground guide them to stand approximately 0.7m away
from the kiosk. This makes sure that they will be able to see
the text on our customer-side UI while keeping a proper
distance from the kiosk.

The infrared sensor, driven by a RPi 4 attached to the
bottom of the kiosk table, is installed at an angle designed to
pick up heat-bodies at a height of approximately 0.5m and a
distance of approximately 0.7m. After the infrared sensor
detects human presence, the system wakes up our backend
speech recognition loop, which also runs on the same RPi.

(a)

(b)
Fig. 1. Kiosk drawing. (a) Overall kiosk setup. (b) Infrared sensor location

and angle.

At the same time, the laptop screen will display our
customer-side UI. Information this UI displays include the
restaurant menu, a list of the customer’s current order items
and their respective prices, the order’s total price, and helpful
instructions to get the customer started. For a better user
experience, the instructions will also be complemented with
pre-prepared, synthesized voice lines.

A directional microphone, protected by a professional sound
shield, is responsible for receiving the customer’s voice input.
This input stream is fed through a signal processing algorithm
for noise reduction. The speech recognition module takes the
sanitized signal and, using a trained machine learning model,
converts it to a text string.

Our natural language processing algorithm parses the text
string and extracts necessary order information, including the
food item’s name, the quantity of the item, and the customer’s
desired action (e.g. add, remove, change, etc.). Once the order
information is processed, the customer-side UI will update to
display the newly received item. If the customer voices a
change and/or a removal, they will also be reflected on the UI
in a timely manner. If the NLP module fails to recognize the
item name, it will notify the UI of this failure. The
customer-side UI will then display an error message and
kindly ask the customer to repeat their request.

After the customer checks out, the entire order, currently
stored as a local object, will be uploaded to the Redis cloud
database. Information in this database is accessible to the
staff-side UI. The database notifies the staff-side UI of the new
order by publishing a notification message. The customer-side
UI will also display the customer’s unique order number,
which they will use to pay for and pick up their order.

When notified, the staff-side UI, used by the restaurant’s
kitchen staff, queries the database for new order information.
For ease of use, the UI sorts, in ascending order, existing
orders based on the time they were placed (i.e. the oldest will
rank first and the newest last).

The lifetime of an order ends when the kitchen staff
removes it from the database. The staff-side UI provides a
one-click functionality that allows the staff to do so after
preparing the order.

3
18-500 Design Project Report: D3 - Meal By Words, 3/3/2023

Fig. 2. System block diagram.

IV. DESIGN REQUIREMENTS

Customer detection: Rather than having a frustrated
customer yelling at a screen that refuses to respond, we prefer
that the system wake up more often than necessary. Therefore,
we expect our system to detect every approaching person.
When no one is around, a 70% detection accuracy (i.e. system
stays asleep 70% of the time) is satisfactory.

Noise tolerance: In the article “Noise in Restaurants: Levels
and Mathematical Model,” Dr. To states that a typical

fast-food restaurant’s noise level falls in the range of 69.1dBA
to 79.1dBA. Humans’ hearing accuracy drops significantly
when the noise level is greater than 70dBA, measuring a mere
50% average in Raghavan’s paper. Therefore, we expect an
85% speech-to-text accuracy at a noise level < 70dBA and a
50% speed-to-text accuracy at a noise level >= 70dBA. This
will ensure a relatively high success rate for matching
customer speech and order items.

Data storage: As a general design rule, the representational
gap between a physical order and its stored counterpart should
be low. The stored information should be tolerant against

4
18-500 Design Project Report: D3 - Meal By Words, 3/3/2023

unexpected events such as hardware failures, power outages,
and network disruptions. The data should be accessible from
multiple sources at the same time, as there may be multiple
kitchen staff preparing orders at the same time. Following our
latency requirement, the data storage model should also
guarantee a <= 1s latency between order placement from
customer-side UI and appearance in staff-side UI.

Customer-to-staff latency: To ensure that the kitchen staff
sees a newly placed order within 1 second of the customer
checking out, the staff-side UI should refresh as soon as the
order appears in the data storage location. This means the
staff-side UI either pulls for new data every second, or the data
storage establishes a messaging system that notifies the
staff-side UI of the change in real-time.

Backend-to-Customer Responsiveness: The backend must
be able to recognize the end of the speech and deliver the
speech to the speech recognition processor. After the speech is
processed by the backend, it must immediately update the
customer-side UI (within 1 second) so that the UI can confirm
the receipt of the speech with the customer by displaying an
icon, letting the user know that the speech has been received
and please wait for further instructions. In addition, we will
increase the customer-side UI rendering speed using Ajax to
improve performance. This reduces traffic from and to the UI.

UI Readability: The customer-side UI should accurately
display the customer’s order items, their respective prices, and
the order’s total price. The texts should be clearly visible to
people with 20/20 vision from at least 0.7m away. The
staff-side UI should display orders in easily readable format.
The staff should be able to read from the UI an item’s name
and quantity within 3 seconds. The UI should group items
based on order rather than item type. The orders should be
ranked based on order time (from oldest to newest). Orders
that have been present for more than ten minutes will be
emphasized by color-coding and enlarging fonts.

V. DESIGN TRADE STUDIES

Based on our use-case and design requirements, we made
five key decisions.

A. Customer Detection Trade-Offs
By having an infrared sensor, the speech recognition system

can go to sleep when there are no customers present. This not
only conserves energy but also ensures that our system will
not accidentally interpret background noises as meaningful
information and act on them.

Passive infrared sensors (PIR) vs. active infrared sensors
(AIR): While AIR sensors are more versatile than PIR sensors,
as AIR sensors emit their own infrared radiation and therefore
can detect objects and motion even in complete darkness,
food-ordering systems operated on kiosks do not require such
capabilities. In fact, fast food restaurants are usually brightly
lit environments, so there is no need for that level of
sensitivity. Therefore, we will be using PIR sensors, which
detects the presence of a customer by measuring the changes
in infrared radiation in the environment. The change in

infrared radiation will trigger the PIR sensor and cause the RPi
to output a signal.

Horizontal vs. tilted at an angle: Another factor to consider
is how the sensors are positioned, whether horizontally or at
an angle. We need to ensure that our system accommodates
customers of different heights, as well as those with
disabilities such as those in wheelchairs. If the sensors were
positioned horizontally, there is a higher chance that people
with heights below average might not be detected. Installing
the sensors beneath the table and tilting them at an angle
would increase the likelihood of detection, as the lower half of
the customer’s body is most likely to be in the detection zone.

B. Speech Recognition & Parsing Trade-Offs
To optimize the customer’s experience, our system

processes voice inputs as they are received. Ideally, the speech
recognition system will be able to take in the customer’s
speech as audio and convert the information to a dictionary of
menu items and quantities, which is then sent to the database.
This feature will rely heavily on the efficiency and accuracy of
our signal processing, speech recognition, and natural
language processing (NLP) modules.

The Python programming language is compatible with a lot
of external libraries containing speech-processing features
which will come useful in our project. Our preferred tool for
speech recognition is the SpeechRecognition library. It is a
free, open-source library with ample documentation. Since
the source code is available to the public, we can also add
custom features on top of those the library provides. In
addition, SpeechRecognition supports a wide selection of
speech recognition engines such as CMU Sphinx, Google
Speech Recognition, Microsoft Azure Speech, and Houndify
API. This creates a safety net for when a particular engine
fails.

After SpeechRecognition converts the audio input to text,
our NLP system, implemented with spaCy, parses it into menu
items and quantities. SpaCy, compared to Stanza and other
NLP libraries compatible with Python, is better documented
while maintaining a similar accuracy in token recognition and
matching.

C. Frontend Support Trade-Offs
An open-source frontend library or framework will make

our UI visually consistent and appealing. We debated between
the React library and the Bootstrap framework but, ultimately,
chose the latter. Bootstrap not only provides a library of
off-the-shelf components and styles, but also various other
supports that help boot up a standard project quickly. It allows
rapid prototyping of a web application without the design
work React requires. Our UIs don’t have complicated
functionalities that need heavy customization, so Bootstrap is
an effective and efficient solution.

D. UI Design Trade-Offs
Digital menu vs. printed menu: We can either display the

menu on a user interface or print and hang it on the wall above
the kiosk. Printed menus can span a space larger than our UI

5
18-500 Design Project Report: D3 - Meal By Words, 3/3/2023

screen (i.e. laptop screen), which is easier to read for
customers. However, the advantages of digital menus
outweigh this shortcoming. When the restaurant wants to add
a new item or change item prices, digital menus only need
minimal changes, while paper menus require reprinting.
Digital menus are also more environmentally friendly, since
they reduce paper waste and promote sustainability.

Visual vs. verbal instructions: To improve our system’s
accessibility, we will both display the order instructions on
screen and use a voice synthesizer to play it verbally. Verbal
instructions are more natural to our customers because they
are what a human employee would give in at a regular kiosk.
However, without a text display, people with hearing
impairment may struggle to understand the instructions or
navigate the UI, which leads to difficulty in making selection
and extended service time.

On a side note, the staff-side UI is not among our top
priorities in this project. Therefore, we will delay the exact
design until we have made sufficient progress on other
subsystems. For our MVP, the staff-side UI will remain a
command line program that displays a list of orders, ranked
based on placement time. Eventually, it will evolve into a
Django web application retrieving information from our
database.

E. Data Storage Trade-Offs
We mainly studied two options for customer data storage:

local and cloud storage.

TABLE I. DATA STORAGE TRADE-OFFS

Criteria
Storage Options

Local Storage Cloud Storage

Storage
Formats

JSON file
CSV file
In-program global structures
(e.g. map, set, dictionary,
etc.)

NoSQL key-value pairs
SQL tables (relational)
Documents (JSON-like)

Difficulty

Low.
Uses information team
members have already learnt
in other courses.

High.
Requires extra ramp-up
time.

Network

Doesn’t require network
access for storage.
Requires network access for
querying from a different
machine.

Requires network access
for storage and querying.

Storage
Speed

Fast.
Minimal latency.

Slow, but within
sub-microsecond range.

Query
Speed
From Other
Machines

Slow.
Requires machines to send
local data over the network.

Slow, but within
sub-microsecond range.

Durability

Low.
System failure results in
data being inaccessible or
permanently lost.

High.
Cloud services provide
fail-safe measures.

To reiterate, our main design requirements for data storage
are 1) low representational gap between order and stored
information, 2) high tolerance against hardware failures, 3)
ability to access stored data from multiple machines, and 4) <=
1s latency between order placement from customer-side UI

and appearance in staff-side UI.
Object-oriented programming is a good way to maintain a

low representational gap between physical orders and the
stored order information. Locally, JSON files, CSV files, and
data structures such as dictionaries and sets can all store
custom objects. On the cloud, this requirement disqualifies
key-value storage, as the keys and values are generally both
string or integer values. While the SQL table format supports
mapping between tables (e.g. an entry in the Order table can
contain a field that maps to an entry in the Item table), it
establishes undesirably high coupling between them.
Relational databases also maintain complicated internal data
about the stored objects, which inherently makes insertions
and deletions slower. In the end, the document format emerges
as the most ideal cloud storage solution.

A major shortcoming of local storage is the vulnerability to
hardware failures. If the hardware (e.g. RPi, laptop, etc.) that
stores our order information drops offline, the data will be
inaccessible until the system goes back on line. If a file
becomes corrupted during reboot, we run the risk of losing the
data entirely. By using cloud storage, we mitigate this risk by
creating a backup copy in a remote location.

Cloud storage also inherently provides the ability to access
data from other locations. It decouples our two UIs, the
customer-side and the staff-side UIs. Both UIs will send and
request information from the database. Local storage, on the
other hand, requires our system to send new order information
from the customer-side UI to the staff-side as we receive them.

Given the benefits of cloud storage, we believe that it is
reasonable to pay the price of slightly higher access latency.
The cloud database we have chosen to work with, Redis,
generally guarantees a sub-microsecond range latency, which
is significantly lower than the one second latency we are
aiming for.

Redis is an open-source cloud database that 1) supports both
the key-value and the document storage models, 2) allows
customizations on data structures, and 3) provides a
notification system useful for communication between our
customer-side and staff-side UIs. The third functionality is
particularly useful, since this eliminates the need of
busy-polling the database for new order information.

VI. SYSTEM IMPLEMENTATION

The main processor behind our system is a RPi 4. It is
responsible for driving the infrared sensor and the
microphone, running the human detection algorithm, and
parsing the voice inputs.

Each of the following subsystems will be tested individually
before the final integration. Therefore, we will not discuss unit
tests in the following Testing, Verification and Validation
section.

A. Customer Detection
To detect the presence of a customer, two key hardware

components are needed: a RPi 4 and a PIR sensor. The setup
process involves connecting the VCC pin of the PIR sensor to

6
18-500 Design Project Report: D3 - Meal By Words, 3/3/2023

a 5V pin (red wire), connecting the OUTPUT pin of the PIR
sensor to pin 23 (yellow wire), and finally connecting the
GND of the PIR sensor to a GPIO GND pin (black cable).
When the sensor detects movement, the RPi 4 will receive a
signal on GPIO and GPIO.input(PIR_PIN) == True. In the
python script for the sensor, an endpoint should be set up
through the HTTP library to communicate with the endpoint
set up in the python script for the Django backend. The signal
will then be transmitted from the sensor endpoint to the
backend endpoint through an HTTP POST request. The
timeout logic replies on whether a signal was recently
received. Therefore, the backend will have a loop that
constantly validates the timestamp of the most recently
received sensor signal.

Fig. 3. PIR sensor, and how it connects to the RPi.

B. Speech Recognition & Parsing
Our system uses a USB directional microphone, Neat

Bumblebee II, to capture voice inputs. To produce the best
result, a professional sound shield, Moukey Microphone
Isolation Shield, surrounds the microphone and limits its
reception range to <= 90° vertically and <= 120° horizontally.

Input from the microphone is fed into a signal processing
module, implemented with the open-source library PyAudio.
The listen() function will capture signals from the microphone.
This module uses Active Noise Reduction (ANR) to reduce
background noise in real-time and relays the resulting stream
to the speech recognition module.

The speech recognition system is implemented with the
SpeechRecognition Python library. It calls upon an existing,
trained speech recognition engine and converts the input to
text. A while loop makes sure that our system continues to
take user input when the sound level is above a certain
decibel.

The NLP system is implemented with the spaCy library.
The NLP pipeline first numerizes the input text string (from
the speech recognition module), converting any numeral
words to numbers. Then, it will tokenize, add tags to, and
identify named identities in the text. Lastly, we will establish
grammar rules for the matchers to identify the menu items and
their quantities.

C. UI & Frontend Framework
The UI regularly retrieves necessary variables from the

backend and populates the reserved fields in the HTML file.
To illustrate, when the speech recognition program finishes
processing the ordered items, it should encode them into
JSON format and send the data to the Javascript body in the
order summary HTML file to be decoded. Javascript will fill
the HTML fields with the decoded variables. Furthermore,
transitioning from one page to another typically necessitates
approval from the backend. The UI has no authority over it.

Customer-side UI: As the mockup (Fig. 4) shows, a
microphone icon indicates that the customer should speak into
the microphone. It will be replaced with a speaker icon when
the UI is providing feedback (e.g., indicating an error has
occurred when interpreting the customer’s request). In the
meantime, a pre-synthesized voice recording of the instruction
will be played. A textbox will display the same message to
accommodate those with hearing disabilities.

(a)

(b)

7
18-500 Design Project Report: D3 - Meal By Words, 3/3/2023

(c)

(d)
Fig. 4. Customer-side UI mockup. (a) Welcome screen. (b) Display order

instructions. (c) Ask the customer to repeat. (d) After checkout.

D. Data Storage - Cloud Database
Our system communicates with the open-source database

Redis to store and retrieve customer order information. The
Redis Object-Mapping (redis-om) module, an open-source
library, maps object-oriented data models in Python to those
on the Redis Stack. Redis also provides a publish-subscribe
(Pub/Sub) functionality that allows the publisher to send
messages to one or more subscribers.

The menu is declared as an immutable dictionary
(MappingProxyType) and stored locally. A menu item’s
unique name acts as the key, and the corresponding value is
the item’s price. To ensure only menu items are used in
order-related operations, an Enum type named MenuItem
enumerates all the available item names.

Although Redis offers fast and reliable accesses, frequently
retrieving data from the cloud will still stall the pipeline. In
order to minimize communication with the database, order
information will be kept in local storage before the customer
checks out. The OrderLocal class (Fig. 4) is responsible for
storing and managing information about an on-going order.
Each order is uniquely identified by an orderNum. The time
the order is created (system time, in seconds) will be
documented as the orderTime, which will allow the staff-side

UI to sort orders based on processed time. Menu items’ names
act as the keys to the OrderLocal class’s items dictionary.
Their corresponding values are the ordered quantity. The total
price of the order will be updated as customers add or remove
items. The price of an item can be found in the OrderLocal
class’s static variable, menu. Other than getters, the
OrderLocal class provides three interfaces: addItem,
removeItem, and checkout.

In the cloud, orders are stored in JSON format with models
that are declared through redis-om. There are two models in
total: Order and Item (Fig. 4). Item is an embedded model
representing a menu item belonging to an Order. Order keeps
track of its Items using a list attribute. In addition, Order also
consists of attributes orderNum, orderTime, and totalPrice,
which correspond to attributes with the same names in the
OrderLocal class.

To upload a local order to the cloud, the downstream
dependency only needs to call OrderLocal.checkout(). This
method automatically parses the local order’s contents and
creates its cloud counterpart, Order.

Fig. 5. The data model for representing a customer order.

Once the order has been stored to the database, the
customer-side UI needs a way to notify the staff-side UI so
that the staff-side UI can fetch the new order.

Redis’s Pub/Sub functionality provides exactly this. The
customer-side UI is set up as the publisher for the channel.
When an order has been successfully added to the database,

8
18-500 Design Project Report: D3 - Meal By Words, 3/3/2023

the customer-side UI will publish a message including the
order’s unique order number. The staff-side UI, subscribed to
the same channel, can immediately query the database with
the received order number and retrieve the new order
information.

The staff-side UI’s only other interaction with the database
is order removal. A successful removal request completely
erases the order information from the database.

VII. TEST, VERIFICATION AND VALIDATION

Since our project is heavily customer-focused, we will
invite 10 volunteers with varied gender, heights, accents to
experience the ordering process. During testing, we will be
keeping track of the following criteria:

A. Tests for Customer Detection
We will ask volunteers to approach the kiosk in various

directions and linger for different amounts of time. The
accuracy when a customer is present can be measured by the
number of times the system wakes up over by the number of
customer approaches we have tested. We expect the system to
wake up 100% of the time.

Our volunteers will also try walking past the kiosk, standing
far from it or tossing plushies at it to imitate the situation
where no customer is approaching the kiosk but there are
movements of humans and/or objects around it. The accuracy
when a customer is not present can be calculated by the
number of times the system wakes up divided by the number
of actions the volunteers make.

B. Test for Service Time
The service time is measured from when the customer starts

speaking to the time when they finish checking out. We will
test how long the service time is for different volunteers with a
varied number of order items (3, 5, 7, etc.). We hope to
achieve an average service time of less than 200 seconds for a
satisfactory user experience.

C. Tests for Noise Tolerance
To test the system’s noise tolerance, we will generate

background noise by two approaches. First, play recordings of
white noises at the desired decibel level on loop while the
volunteers are ordering. Second, take our system to a real
restaurant setting, measure the noise level, and ask our
volunteers to make orders there. Noise tolerance is essential
for our system since the use setting is fast food restaurant, a
relatively noisy environment.

D. Test for Latency
The latency is measured from the time when order is sent to

the staff-side to when staff sees the actual order. We will
record the system time, in milliseconds, that the order is sent
and compare it with the system time, in milliseconds, that the
order is received.

E. Tests for Process Termination
For checkout, we will require volunteers to use some

common termination cues such as “that's it,” “I’m done,” and

“finished.” We will also ask the volunteers to check out with
an empty or a filled order. The system should terminate the
process but ignore the empty order (i.e. doesn’t upload to the
database). The system should successfully push a filled order
to the database.

For timeouts, we will ask the volunteers to imitate different
unexpected order terminations, such as approaching the kiosk
but walking away after the system wakes up, walking away
halfway through an order, and stopping to speak while still
standing in front of the kiosk. In all cases, we expect the
system to timeout after two minutes.

F. Test for Order Accuracy
We use recall as the measurement for order accuracy, that is,

the number of correct item entries seen on the staff-side UI
divided by the total number of entries the customer says. Our
goal is to reach 100% order accuracy.

G. Test for Order Accuracy
Aside from the 10 volunteers testing the order processing,

we will ask 10 more volunteers to observe and give feedback
on both our customer-side and staff-side UI. They will rate, on
a scale from 0 to 5, the customer-side and staff-side UIs for
appeal and ease of reading.

VIII. PROJECT MANAGEMENT

A. Schedule
We plan to complete our individual parts before the

beginning of April. This will leave ample time for final
integration and end-to-end testing. For a more detailed
version, please refer to the Gantt Chart (Fig. 4, page 10).

B. Team Member Responsibilities
Tasks for team members are distributed based on each

member’s main focus. Nina is responsible for the database,
microphone, and their integration with the RPi
microcontroller. Lisa manages the speech recognition and
NLP modules and creates the staff-side UI. Shiyi programs the
infrared sensor against the microcontroller and creates the
customer-side UI. Unfamiliar tasks or those that need more
hands on (e.g. sound shield installation and end-to-end testing)
will be group efforts.

C. Bill of Materials and Budget
For cost breakdown, see Table II, page 10.

D. Risk Mitigation Plans
Noise reduction: No one on the team has previous

experience with sophisticated signal processing, and the noise
tolerance requirement for the project is considerably strict. As
a fallback plan, we will purchase a stretchable microphone
holder that places the microphone closer to the customer’s
mouth.

NLP: The NLP system may fall short in parsing the input
text to return the correct menu items or quantities. There are
two tricky edge cases. First, the item name and quantity do not
appear in the same sentence (e.g. “I want some fries, um, let

9
18-500 Design Project Report: D3 - Meal By Words, 3/3/2023

me think. A large one is fine.”) This is difficult for the NLP
system since the Dependency Matcher relies on the
dependency parser, which can only detect relationships
between words in the same sentence. Second, the user does
not specify quantity for menu items clearly (e.g. “I would like
two hamburgers and fountain drinks.”) It will be unclear for
the NLP system whether the quantity “two” is referring to the
hamburgers, fountain drinks, or both. The first possible
mitigation is to set the default quantity to one and ask the
customer to confirm their order item by item before check out.
The second is, when the quantity is absent in the current
sentence, to look for the first numeral word in the next
sentence and make it the default for that item quantity.

Cloud storage: Using an open-source cloud database runs
the risk of experiencing extremely high access latency and/or
issues with server connection. An unresponsive system results
in poor customer experience, which violates our use-case
requirements. If the performance of our cloud storage
component falls below the required 1 second, we will fall back
to using local storage and sending raw order data between the
UIs.

IX. RELATED WORK

There has been an abundance of speech recognition and
natural language processing developments in other markets,
and some researches and products are focusing on integrating
these technologies into the food service industry.

A research conducted in Dr. Mahalingam College of
Engineering and Technology in India proposed a speech
ordering system that allows the customers to place orders
through phone communications. The research and our project
have the common goal of establishing a speech-controlled
food ordering system, sending orders to the staff’s end after
orders are completed. The research uses Naïve Bayes
classification to convert text input to different entry intents of
menu item names and quantities, and proceed with the intent
that has the highest probability.

Speechly also has an API for taking customer orders by
speech. The system can transcribe both real-time speech input
or uploaded audio files, and recurrent neural networks are
utilized to process the text.

X. SUMMARY

With our speech-ordering kiosk, the fast food restaurant
staff can now shift their primary focus to food preparation, and
not worry about serving the customers coming in to order at
any moment. The customers will no longer be concerned
about touching a kiosk with potentially harmful bacteria
attached to it. Our greatest challenge is meeting the 100%
order accuracy at checkout to make sure that the customers’
orders are all correct before sending them to the kitchen. We
plan to ask for confirmation from customers before
completing the order or even in multiple stages of the order,
yet we are also aware that too many confirmation requests will
potentially decrease ordering speed and customer satisfaction.
Our team will do our best to find a balance between order

accuracy and confirmation frequency.

GLOSSARY OF ACRONYMS

AIR - Active Infrared Sensor
MVP - Minimum Viable Product
NLP - Natural Language Processing
PIR - Passive infrared sensors
RPi - Raspberry Pi
UI - User Interface

REFERENCES

[1] A. M. Raghavan, N. Lipschitz, J. T. Breen, R. N. Sami, and G. D.
Kohlberg, “Visual speech recognition: Improving speech perception in
noise through artificial intelligence2020,” Otolaryngology--head and
neck surgery : official journal of American Academy of
Otolaryngology-Head and Neck Surgery, 2020. [Online]. Available:
https://pubmed.ncbi.nlm.nih.gov/32453650/.

[2] G. Myrianthous, “How to perform real-time speech recognition with
python,” Medium, 23-Nov-2021. [Online]. Available:
https://towardsdatascience.com/real-time-speech-recognition-python-ass
emblyai-13d35eeed226.

[3] P. Djuric, “How to use Redis Pub/Sub in Your Python application,”
Medium, 29-Dec-2021. [Online]. Available:
https://blog.devgenius.io/how-to-use-redis-pub-sub-in-your-python-appli
cation-b6d5e11fc8de.

[4] “Speed of service,” QSR magazine, 2016. [Online]. Available:
https://www.qsrmagazine.com/content/speed-service.

[5] Sabarinathan, Swathi, V., & Pandi, D.M. “Smart Ordering System using
Speech Recognition,” International Journal of Creative Research
Thoughts, 2-Feb-2020. [Online]. Available:
https://www.semanticscholar.org/paper/Smart-Ordering-System-using-S
peech-Recognition-Sabarinathan-Swathi/115e45fe61345a91d71ac4f7e8
baa42e211f69f5#references.

[6] Speechly. 2023. [Online]. Available:
https://www.speechly.com/solutions/quick-service-restaurants

[7] T. Sun, “McDonald's touchscreens test positive for traces of feces,
deadly bacteria,” Fox News, 28-Nov-2018. [Online]. Available:
https://www.foxnews.com/food-drink/mcdonalds-touchscreens-test-posit
ive-for-traces-of-feces-deadly-bacteria.

[8] W. M. To and A. Chung, “Noise in restaurants: Levels and Mathematical
Model,” Noise & health, 2014. [Online]. Available:
https://pubmed.ncbi.nlm.nih.gov/25387532/.

10
18-500 Design Project Report: D3 - Meal By Words, 3/3/2023

Fig. 6. Schedule with milestones and team responsibilities.

