Team D3 - Meal By Words

Nina Duan, Lisa Xiong, Shiyi Zhang

Add your 12 slides after this slide... [remember, 12 min talk + 3 min Q/A]

For more information about formatting or importing slides see:

https://gsuite.google.com/learning-center/products/slides/get-started/

Make sure to cover (refer to the Design Review Guidance):

- · Use Case / Application
- Use-Case Requirements, especially quantitative
- Solution Approach (include Design Requirements here)
- System Specification / Block Diagram
- Implementation Plan (include Design Trade Study(ies) here; i.e why choose that implementation)
- Test, Verification and Validation Plans (including quantitative metrics with target values)
- Project Management

Consider that this slide already works as a introduction slide so use your first slide wisely

Use Case

- Speech-operated ordering kiosk
- Areas: hardware, signal processing, software
- Allow customer to verbally:
 - Order items from menu
 - Remove/change existing item(s)
 - Proceed to checkout
- Allow staff to:
 - See existing orders
 - Delete completed orders

Design Requirements

• Avg. service time should be <= 200 seconds

Human Detection	Speech Recognition	User Interfaces
Detect 100% of approaching customer(s)	Reach 85% speech-to-text accuracy at noise level < 70dBA Able to recognize an item by both name (e.g., "burger") and menu ID (e.g., "A1") Reach 100% item accuracy at checkout	 Customer sees Ordered items Total cost Informative instructions Staff sees a list of orders, sorted by time

Solution Approach - Overview

- Infrared sensor detects
 approaching customer and wakes
 up system
- 2. Customer **UI** displays menu and order instructions
- Backend system parses customer speech and fill in order
- 4. After checkout, order uploaded to **cloud** (accessible to kitchen staff)

- Public health: physical contact ↓
 → risk of transmitting diseases ↓
- Welfare: workload & stress level of restaurant workers
- Economic: labor costs ↓
 throughput of customers ↑ →
 revenue ↑
- Social: customer satisfaction ↑
 → time to enjoy their meals ↑

Solution Approach - Input Processing

- Hardware
 - USB directional microphone: Neat Bumblebee II
 - Professional sound shield: Moukey Microphone Isolation Shield
- Speech Recognition: Python SpeechRecognition library (voice input -> text)
- Speech Parsing: spaCy (text -> menu items & quantities)

Tokenizer POS Tagger Parser NER Attribute Ruler Lemmatizer

Identify edge cases and modify the pipeline accordingly

Solution Approach - Termination

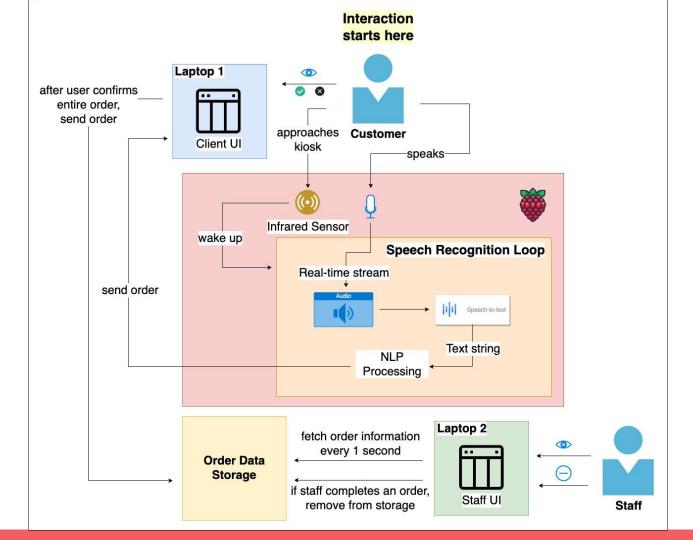
Timeout

- 1-minute mark: display warning "System will timeout in <countdown>"
- 2-minute mark: remove current (incomplete) order
- Any recognized speech can interrupt countdown and resume process

Checkout

- Look for commonly used termination cues
 - E.g. "That's it", "I'm done", "All set", etc.
- Ask customer to confirm order before uploading information to cloud

Solution Approach - Storage



- noSQL key-value cloud database
 - AWS DynamoDB
 - No need for relational database: storing simple, independent objects only
 - Key-value database supports faster inserts and deletes
 - Data persistent even if Raspberry Pi or UIs fail

Risk mitigation

 Send raw order information to staff end (represented by a laptop) and store as local data

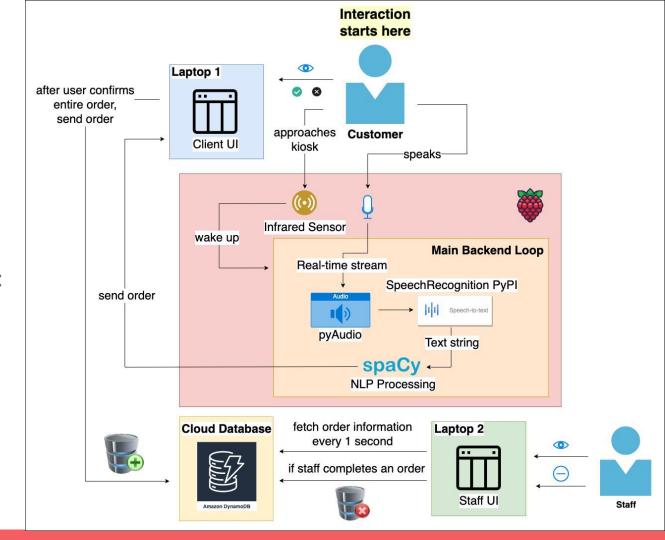
Customer UI

Welcome to XXX! To order, say "start"

Thank you!
Your order number is #

MENU	Your Orders				
A. Sandwiches 1. Hamburger 2. Cheeseburger 3. Veggie Burger 4. Chicken Sandwich B. Combos (Sandwich + D 1. Hamburger 2. Cheeseburger 3. Veggie Burger 4. Chicken Sandwich	\$xx.xx \$xx.xx \$xx.xx \$xx.xx *fink + Side) \$xx.xx \$xx.xx \$xx.xx \$xx.xx	A1 B4 - Guac	\$xx.xx \$xx.xx		
C. Sides Fries Guacamole D. Fountain Drinks	\$xx.xx \$xx.xx	Your tota To checkout	nl: \$xx.xx		

Implementation Plan


Libraries: pyAudio, SpeechRecognition PyPI, spaCy

Hardware components:

Raspberry Pi, microphone, infrared sensor

Cloud Database

Custom Uls

Unit Testing

*** 10 volunteers/test, conversational volume (~60dB), distance 0.3-1m***

Audio to text

of words in audio correctly transcribed to texts / # of words spoken

Text to command

- \circ "Two tacos, one milkshake please" \rightarrow [add] [taco] [2], [add] [milkshake] [1]
- \circ "Delete tacos" \rightarrow [del] [taco][*]

Noise tolerance

Quiet (<40dBA), normal (50~60dBA), noisy (>70dBA) environments

Response time

- Staff UI, customer UI ≥ cloud/database (1s)
- \circ Presence of a customer \rightarrow kiosk activated (2s)

End-to-End Testing

- *** 10 volunteers/test, conversational volume (~60dB), distance 0.3-1m***
 - **Time** to complete a 1-person order (<= 200 seconds)
 - Accuracy = # of correct item entries staff sees / total # of entries the customer says
 - Expect 100% order accuracy at the checkout in various environments
 - Risk Mitigations
 - Before checkout, system double checks order with customer
 - Customer can verbally remove/change order anytime

Project Management

	Feb 20		Feb 27		Spring Break	Mar 13		Mar 20		Mar 27		Apr 3		Apr 10		Apr 17		
												Interim Apı					Final Presentation Apr 23	
Nina	Database setup Database 8		Database & N	NLP integration		Microphone setup				ntroller & programming								
Lisa	NLP system programming			Speech recognition programming		Speech recognition & NLP integration	Staff U	JI design	yn UI & backend integrat									
			Database & N	NLP integration														
Shiyi	Customer	-side UI	Infrared sensor setup			Microcontroller sensor progra		Microcontroll sensor in										
									UI & backer	nd integration								
Everyone						Sound shield installation					Microcontroller & speech recognition integration		Final integration End-to-end		d-to-end te	sting		