18-500 Final Project Report: Keynetic 05/05/2023

Keynetic

Sun A Cho, Katherine Dettmer, Lance Yarlott

Department of Electrical and Computer Engineering,
Carnegie Mellon University

Abstract—A system capable of allowing users to play piano in a
new, fun, and simple way. Using computer vision (CV), it captures
the location of the user’s body part and translates that into notes that
will be played on a keyboard. From there, the system will analyze
notes played by the user and generate a matching chord progression.
This pattern matching can be adapted to long-form playing, or simply
to short periods. Additionally, due to the physical nature of the
system and extensible software framework, it can be extended to
work on any size keyboard given enough time and resources.

Index Terms—Beat, Chord, Diatonic Note, Feature Matching,
Musical Key, Solenoid, Subdivision, Time Signatures

1. INTRODUCTION

This project builds a system that provides a method to

play the piano through movement, without the need to press
physical keys. It is a mechanically actuated keyboard that is
managed by a microcontroller, using computer vision to
produce notes based on user movement.

Musical instruments and music are a large part of human
life, and almost all children, should they not learn to play an
instrument, will interact with music in some shape or form.
Music is a method of emotional expression, creativity, and is
often embedded in culture. In fact, learning to play an
instrument has been shown to improve cognitive development,
memory, and concentration. These benefits extend far later
into life, with pianists being known to have improved memory
function later in life. However, not everyone has an equal
opportunity to play an instrument- and in our system’s case,
the piano.

There are many different reasons why someone may not be
able to play the piano the traditional way, as it requires
dextrous control of one’s fingers to press the keys and play
moving melodies. Our system aims to bridge the gap for those
who wish to play piano but cannot for one reason or another.
The user will utilize color and printed signals to signify notes,
which even allows amputees or those with limb differences to
learn how to read music and play it on the piano. By using
color and computer vision, most people capable of movement
will find themselves able to play the piano. From that moment
forward, it will simply be a mental task to read music.

In the current market, there are no devices like ours. In
society, it is a common notion that only those who “can” play
piano should be able to play it. These are justified largely by
the lack of performable repertoire, as well as the immense
difficulty in creating a system that would allow those who are

unable to even put their hands on the keys to be able to play.
In this sense, our system will excel in allowing players of all
kinds to do just that: play.

We strive to create a system that is both fun and intuitive to
use while allowing those who cannot traditionally play an
instrument to engage with it and learn about it in a hands-on
manner.

1I. USE-CASE REQUIREMENTS

Our system has several strict but straightforward
requirements:

On the musical end, we require that any generated notes
stay within their home key (in our case, C major) 100% of the
time. Given that we are only playing the white keys, this can
be relatively simple. However, when considering the fact that
we generate chord progressions, there’s a small chance that we
can slip into a different “mode” of another key (for example,
the A minor scale contains all the notes of the C major scale,
but starts on A). Mode changes can happen if we stick too
long on the A minor chord, which is the 6th interval of the C
major scale. Generated chords should also avoid large
numbers of dissonances with user-played notes when at all
possible. Musically speaking, a dissonance is defined as the
2nd, 4th, and 7th intervals (there are more, but we are unable
to play them given our designed hardware constraints). If
given a sample chord progression, the software should be able
to generate a melody with chord tones that fall on the beat
most of the time. Rather than 100% of the time, we still want
some musical freedom and variance, since the rule regarding
chord tones is more of a suggestion than anything.

We also require that all inputs (in this case symbol) detected
by the camera be parsed and passed to the actuators within 500
ms. This requirement is somewhat lax, and our real goal is to
send signals as fast as possible. As such, our minimum
requirement is 500ms second, while our goal requirement is as
close to 100ms as the hardware and software are capable of.
We are not considering the actual detection latency as part of
the critical path of this product because we are currently
working on perfecting the detection functionality — this will be
explained later in the report.

Additionally, the signals should be detected at least 90% of
the time. This is to ensure a smooth user experience.We also
require that the user is farther away than 4 ft and closer than
71t to use the project.

Our hardware should be able to safely support at least 14
solenoids, with at least 4 activated simultaneously, and with no
seeming latency from the detection to actually playing the
keyboard. This allows us to play simple triad chords along
with a melody line. On top of the hardware systems supporting
14 actuators safely and soundly, it should also be an easy
installation for the users since it is one of our crucial
differences from similar products in the market (self-play
piano), which will be identified in Section 9. Related Work.
Making the hardware system easy to install (with a mounting
system) will maximize the accessibility of Keynetic.

Lastly, our integrated system has to provide an intuitive

18-500 Final Project Report: Keynetic 05/05/2023

playing experience with the smallest gap between the user
using the detection functionality to the actuators playing the
piano. In order to maximize the user experience of playing an
instrument and making music, we believe that the less latency
there is between the symbol detection and the actuators
playing the keyboard is the crucial part of making the
experience more enjoyable for the users. Currently, we
achieved 750 ms latency but hope to decrease the latency as
close to 100 ms as possible.

We strive to provide an enjoyable experience to our targeted
audience and provide them with the opportunity to create and
play an instrument/ create music even if they do not have the
traditional physical ability to do so.

(©)

Fig. 1. Overall system. (a) Photo of hardware and mounting system. (b)
CAD Rendering of hardware and mourning system. (c) software
system/user interface.

18-500 Final Project Report: Keynetic 05/05/2023

OpenCV

‘While camera
0 is running

Return to wait loop

Arduino

Power

Find locations of Wait for Supply
possible detected data
symbols and
desired color
Send \ Split "
notes to
\ Arduino
= Data in Play notes
Determine Serial Buffi BassiDatate via pins or Call notes Actuators
q erial Buffer Struets

location of midi

overlap to

determine Complete \
symbol’s most _'
likely location Note marked

- hreshold Check for for death
ime < threshol
Time> threshold updates Return beat
Message and note
Incomplete status

Determine which
keys / chords /
options the

Check that symbol
has been in
certain area for

symbols are
inside

above threshold
time

Fig. 2. The full block diagram

111. DESIGN REQUIREMENTS

As previously discussed, we require that our pipeline takes
less than 500 milliseconds to traverse, with a goal of taking
the time as close to 100 ms as possible. This means that from
the moment an image frame is pulled, data is sent from the
computer to the Arduino, and a command signal is sent from
the Arduino to the solenoids within 500 milliseconds. This
requirement should require no further explanation.

Another requirement for the software is to have the person
standing farther than 4 ft away from the camera, but closer
than 7 ft from the camera. This is so the color can be
accurately detected. The computer will try to determine how
far the user is from the camera and prompt them to move
closer or farther away.

To further explain the requirement regarding chord tones, a
scale consists of 7 distinct notes. For C major, they are [C, D,
E, F, G, A, B]. Our chords will be made up of 3 notes and will
be in a standard triad format. C major is [C, E, G], D minor is
[D, F, A], and so on. Whether a chord is major or minor is
irrelevant to the software. At the start of a new phrase, it is
generally best to return to the home chord (for us this is the C
major triad), to not add unnecessary complexity to the music.
This is not a hard rule in music, but we will make it one for
simplicity’s sake. So, we will require that the start of a phrase
returns to C major 100% of the time. For melodies, we want to
make sure that notes fall on chord tones on the downbeat.
With a simple 4/4 time signature (4 notes of length Y4, or 4
quarter notes per measure), this means that a chord tone
should fall on beats 1, 2, 3, and 4. The chord tones are simply
the notes that make up the current chord. This requirement is
easy to satisfy as it is a generation constraint. Additionally,

Spin

S

this requirement is probabilistically satisfied, as it is more of a
“musical suggestion” than a hard rule, as stated previously.

Update

musical time

IV. DEsSIGN TRADE STUDIES

To meet the use case requirements, we had to make some
trade-offs as such:

A. Design Specifications for the Detection System

At first, we used conventional color detection to detect the
user’s movement and assign a note based on their
movement/placement of a certain color, like a colored glove.
However, we quickly realized that this detection algorithm
became problematic when people were wearing a certain color
or in certain lighting because this changed what the algorithm
would pick up. Therefore, we pivoted to building our own
symbol detection model. To do, this we created a custom Haar
cascade for a symbol as shown in Figure 3. This avoided the
issue where someone may be wearing the color we want to
detect, or it picks up color on their face, like red in the lips.
However, Haar cascades are still not 100% accurate,
especially with limited time to train them, so I decided to
combine symbol detection with color detection by adding a
ring of color around them and then testing whether the
detection overlapped. This prevents the issues that arise when
using only one of the detection methods.

18-500 Final Project Report: Keynetic 05/05/2023

Fig. 3. Symbol that we created for our detection algorithm

B. Design Specifications for Music Generation

Music chord progression choice is now dictated by a normal
distribution sample. All progressions are arbitrarily rated by
their “tone,” and the distribution helps determine what
progression will be chosen. A very similar approach is taken
with melody notes, the main difference being in the fact that
melody note generation takes in additional parameters,
measure position and subdivision. These distributions are
updated on a phrase-by-phrase basis, but could be updated
every measure or every half-phrase.

C. Design Specifications for the Hardware System

The solenoids that we chose for this project are from
Adafruit and the manufacturer recommends that we power it at
12W rating. However, given that one of our use case
requirements is to minimize the power used in our hardware
system, we conducted my research to find out exactly how
much power it would take to play a key on the keyboard, we
concluded that we need 20V and 2A to safely play all of 14
solenoids — maximum of 4 solenoids at a time.

V. SYSTEM IMPLEMENTATION

VI Software System

The software system consists of a camera that takes in video
input and feeds it back to the computer. OpenCV is then used
to continuously analyze the images received by the video
camera. There are two symbols that have been trained by
creating a custom Haar Cascade, which is then imported into
OpenCV and used for object detection. The symbol also has
color surrounding it, so we can make the detection more
accurate by also incorporating color detection. The user will
use these symbols, and the computer will continuously record
the location.

The Haar Cascade was trained using a large negative image
set and several built-in commands in previous OpenCV
versions. It is difficult to get an incredibly accurate Haar
Cascade file with reasonable time limits so

The video is displayed for the user, with an interface
overlaying it. The interface for the note-generation mode has
boxes for each note in the two octaves and for 3 chords and a
‘Switch Mode’ box. If the computer determines that one of the
designated colors has been in the boxes, it will consider that as
‘clicking’ the box.

The software interface will consist of getLocation() for each
color, and getContours() which will isolate the colors from the

image. It also needs translateToNote() to translate between
box positions and piano notes. The getLocation() function
utilizes the custom Haar Cascade and color detection by
determining where which detected object also has the
designated color detected near it. This avoids incorrect
detection that happens in both pure color detection and pure
object detection. Finally, matchPattern() will be needed for the
generative mode, in order to match the user’s movements to
specific note sequences.

By ‘clicking’ on the Switch Mode box, the interface
overlaid on the video feed switches to the gridded ‘generative
mode’ interface. We will have several patterns mapped into a
data structure with corresponding note patterns. As the user
moves the colors around the grid, the grid boxes that they pass
through will be recorded in a different data structure, and if
they create any of the mapped patterns, the corresponding note
sequence will be played.

VII. Music and Note Generation System

The music system will be split between the computer and
the Arduino.

On the computer side, it will receive a value (or values)
from the image interpreter, and convert that input into a note
pitch or chord. Depending on the mode, that will be the extent
of the data, otherwise, it will be encoded with a location to
interpret its place in the Arduino’s phrase struct. This data will
then be simplified for transfer speed and passed to the
Arduino.

The Arduino will take simplified data passed from the
computer, and reconvert it to the specified pitch and note
duration. It will then be sent to a simple sequencer algorithm
that will place it in time with the rest of the music. This
algorithm is relatively simple.

The music sequencer is constantly running, and notes are
placed in the phrase struct. The sequencer marks the current
beat and measure. The phrase struct contains measure structs
and note structs. Based on the sequencer’s output, the phrase
struct will return the value of the note that should be played.
This is then passed to a helper function that either activates the
corresponding pin or sends a MIDI “on” value. In player
mode, a separate timer then begins counting the time elapsed
since a note was marked as active. If the note has been alive
for longer than its designated lifespan, it will be marked for
death and culled the next time the helper function runs. The
same will happen if a new note comes in. In generative mode,
notes will be deactivated once a new note is played. Chord
notes will be deactivated once a new measure is reached. This
algorithm is greatly simplified from its initial implementation.

Chords will be randomly picked from a set of hand-picked
progressions.

VIIIL

As our goal was to build a 2-octaves system, we started by
building a smaller-scale system including only one solenoid —
and gradually added more solenoids. In Figure 4, you can find
the circuit diagram of the test system that we have built and

Hardware System

18-500 Final Project Report: Keynetic 05/05/2023

successfully tested. Figure 1 (a) shows the actual circuit we
built on a breadboard for testing purposes. In the end, we
designed and built a hardware system with 14 solenoids, 14
diodes (model:1N4001), 14 transistors (model: irfb7440pbf),
and an Arduino (Due for MIDI, otherwise Uno). To explain
the components, the transistor will be used as a switch to
control the solenoids based on the voltage output from the
Arduino (digital pin assigned to each solenoid). There will be
a diode in between the power supply (to power the solenoids)
and the transistor to reduce the risk of ruining the solenoid
from a potential voltage spike. Given that we are switching
from 10V to OV (and whatever the current may be needed to
control the hardware systems at the time), there’s a possibility
of voltage spikes. Adding a diode also manages a potential
current “mis-flow” in the circuit, since this is a DC system and
diodes restrict the current to flow in one direction, and that’s a
good measure to have when building a pretty heavy system
with more than 20 Watts.

Also, this design requires a mounting system — which will
be built using 6mm acrylic sheets with the help of a laser
cutter in Tech Spark. We will be lining up the solenoids
horizontally — next to one another — right above the key, in
order to minimize the power needed to push the keys. The 3D
version of the fabricated system can be found in Figure 1(b).

power
surply

{%\tmid
Avdaino

Fig. 4. circuit diagram of an individual actuator

IX. TEST, VERIFICATION AND VALIDATION

Once we have individually tested our subsystems — software
system (CV), music generation, and the hardware system — to
ensure it was functional, we moved on to better understanding
how “well” the systems were working. For instance, we
measured the latency and gap of our sub-systems to verify that
we are meeting our latency requirement of 500 ms. From
there, we worked together to meet the rest of the use case
requirements.

A. Results for Software System (CV)

The software system for the computer vision and user
interface was tested by measuring two different metrics. The
first was the time it took between the user placing the symbol
in the note box to when the note was signaled. This was done

using a timer and repeatedly testing the time taken. This was
measured to be, on average, 0.6 seconds. Our goal was to have
this time measurement be less than 1 second, in order for a
more natural piano-playing experience. Therefore, we did
accomplish the use-case requirement.

Another use case requirement for the software system was
that it could detect the symbol with greater than 90% accuracy.
This ensures that the system can play the notes that the user
wants most of the time. We measured this by repeatedly
placing the symbol in one of the note boxes and measuring
how often it detected it. The result of this test was detection
92% of the time. Neither color detection nor symbol detection
has perfect accuracy, so occasionally it will be incorrect in
poor lighting conditions.

We also tested how fast the object detection was with no
delay for the note. This is a more important metric since it is
playing the note that limits how fast the OpenCV program
detects the symbol. This was measured at 68 ms, so the object
detection is very fast without the note-playing.

Description Goal Measured

Hand Recognition Accuracy (using > 90% 92%

symbol detection)

Latency (from when a hand is placed in < 500 milliseconds 68 milliseconds

the box to when software recognizes)

Transmission Gap (from SW detecting < 500 milliseconds 300 milliseconds

the symbol to when key is played)

Fig. 5. Verification Metrics and Results for the Software System (CV)

B. Results for Music Generation

For testing, a majority of test results were hand-verified.
This is due to the nature of music. As long as a piece of music
was reasonably inoffensive, it was considered as good. This
verification was carried out over numerous musical phrase
generations. They were played on piano and judged to be
either good or bad.

For serial verification, tests were carried out during
implementation. These tests involved sending single bytes to
the Arduino, then having the Arduino send the same data back
over serial. If the data was received in the correct format, then
it could be concluded that it was sent correctly. These tests
then evolved into tests with LEDs directly attached to Arduino
pins. From these, it was concluded that pulldown resistors
needed to be used, as the Arduino sets all pins to INPUT on
startup, leading to floating voltage values. This has randomly
activated solenoids in the past. Tests with MIDI protocols
were also carried out, just by testing that the Arduino can
accurately send notes directly to FL. Studio. The results of all
these tests were not compiled, past the confirmation that
systems “work,” because there were no requirements for them
besides latency. For latency, the LED tests were used as a
reference. On visual inspection, the activation was nearly
instant for communication from the computer to the Arduino,
and the time delay was considered negligible.

18-500 Final Project Report: Keynetic 05/05/2023

C. Results for Hardware System

In order to test and verify that the hardware system was
working properly, we used various testing metrics as shown in
Figure 5. One of the most important verifications that we did
was ensuring that the power rating of the hardware system
does not exceed the conventional power supply’s limit (we
have tested with RIGOL DP832A). After testing with the
fabricated mounting system and the keyboard, we decided that
the power rating that we will use is 20V/2A = 40W. This
makes sure that even at some distance from the keyboard
(from being installed in the mounting system), the actuators
have enough strength to press on the keys.

Furthermore, we tested for latency in the hardware system —
for this particular test, we only considered the critical path
from the Arduino sending digital signals to the hardware
system. We determined that it took less than 100ms. From
there, we also tested the transmission gap between the stage
where the CV detects a symbol and the actuator(s) playing the
corresponding note(s). On average, this process took 300 ms —
which is less than our goal latency of 500 ms. Overall, the
transmission gap and latency ensure that the user experience
of using Keynetic is as close to the reality of playing an
instrument themselves as possible.

Description Goal Measured

Power to run the actuator system Lessthan30V/3 A 20V /2A

Transmission Gap (from SW to when key < 500 milliseconds 300 milliseconds

is played)

Latency between digital signal to the key <500 millseconds <100 millseconds

being played

Fig. 6. Verification Metrics and Results for the Hardware System

X. PRrROJECT MANAGEMENT

A. Schedule
We attached the most-updated Gantt chart in Figure 7.

B. Team Member Responsibilities

Katherine is responsible for the software part of the project.
This includes all of the OpenCV work, detecting movements
and gestures, and designing the user interface for the video
feed overlay. She is also responsible for the design of the
mounting system in CAD.

Lance is responsible for the bulk of any music-related code,
from timing to note generation. He is also responsible for all
serial code that transfers data from the computer to the
Arduino. He is also partly responsible for the verification of
the system’s hardware, in that the Arduino activates pins based
on the output of the serial code functions.

Sun A is responsible for building the hardware system of
actuators to play the piano. She will also build a mounting
system for the actuators to sit above the keyboard.

C. Bill of Materials and Budget

You can refer to Table 1. Bill of Materials at the end of the
report. You will find a list of items purchased and used with
the quantity, price, and manufacturers.

D. Risk Mitigation Plans

One of the risks is being able to connect the entire system
and have the solenoids actually be able to reliably press the
notes hard enough to play them. Our mitigation plan for this is
to have a backup music generation plan using just the
software. We can generate the music using the computer,
rather than the solenoids, so the product is still usable.

Another risk is getting OpenCV working in a way that
benefits the project. This is a risk because no one in the team
has worked extensively with OpenCV before, so there was a
significant learning curve. However, there are a lot of different
ways to turn detected image features into notes, even though
our primary goal is to use the symbol detection mechanism,
we have a working color-detection algorithm that we can
always resort to.

As for music generation, no team members have had the
opportunity to design cyclic, or in our case, rthythmic timing
algorithms. Music is based on rhythm, and as such is subject
to strict timing requirements. There is a risk of our rhythm
slowly slipping over time and keeping playing from being
consistent. However, to curb the risk presented by this
dilemma, we plan on ensuring that our algorithms minimize
floating point error where possible.

There is also the possibility that we will have to deal with
the clocks of the Arduino and the computer not being synced.
This could cause issues regarding timing, which have already
been touched upon above. One possible solution is to send
notes with a generic timestamp attached to them. For example,
we could receive a note 2ms after beat 2 in a measure, and
mark that for beat 3 based on our current subdivision.

For the hardware system, we had concerns about the power
rating of turning on up to 4 actuators concurrently. Thankfully,
we have not had any issues with having 4 actuators at a time,
but if there is a problem during the demo, we plan to switch to
3 solenoids or even less if it came down to it. We also noticed
that solenoids have a very fragile and short lifecycle. We have
been testing with our solenoids to ensure that it’s working as
expected; this led to some solenoids “aging out.” The regular
use of solenoids creates an internal gap between the digital
HIGH signal and the solenoid actually turning on and playing
the designated note on the keyboard. Based on this, we
decided to purchase additional solenoids that we can switch
out during the demo in case the solenoids age out and create a
visible gap between the digital signal and the solenoid turning
on.

E. Potential Ethical Issues

One of the ethical concerns of our product is a potential
public safety concern for electrocuting the user/anyone
installing the product. And, given that 100mA is lethal, this

18-500 Final Project Report: Keynetic 05/05/2023

product uses up to 2A. Furthermore, even though our use case
is to help people with physical disabilities to experience the
joy of playing an instrument, the installation is quite difficult
for people who have physical disabilities. Because we are
assuming that able-bodied people will install the mounting
system of our product, if anyone else were to install it, this
could put them at a higher risk of facing our worst-case
scenario — worst-public health concern. However, in a case
where a differently-abled person is the one attempting to
install, they will be even more vulnerable to the potential
safety concerns of injury. However, if this product were to get
commercialized, we may have the ability and the right
resources to produce this product with enclosed and
already-installed actuators inside the mounting system, so the
users can simply connect this to power to make music.
However, this extra step may lead to an increased cost of
manufacturing — which could also lead to a different ethical
concern of creating a financially-inaccessible product.

II. RELATED WORK

There are similar products already in the market such as
self-play piano, which has to be installed internally by a
professional. However, our hardware system does not require
an internal setup and only requires that it has to be mounted on
top of the piano. The self-play piano also is not accessible to
people who do not have the traditional means of playing an
instrument — i.e. music enthusiasts with physical disabilities or
impairments. This is where our project is different from the
self-play piano where we use feature detection to create music.
Similarly, there are other groups in 18500 who are creating a
similar hardware system but have drastically different use case
requirements.

XI. SUMMARY

One of the biggest lessons that we learned was to make a
thorough plan before going in and start doing it. For instance,
we noticed that a lack of preparation (which includes testing
each part) led the hardware system to burn an unnecessary
number of solenoids. If we had planned to test individual
actuators before combining them to build two octaves, we
could have avoided draining our budget by replacing the
burned solenoids. We also noticed that we encountered more
bugs (and these bugs took us a long time to debug as well)
during the integration process because we were not doing
“unit tests” on our individual parts. This led us to taking
longer time than we initially expected to integrate our system.

Additionally, deciding to do symbol detection ended up
being much more difficult than expected, due to the OpenCV
software not keeping functionalities up to date in recent
versions. This caused a lot of time being put into a detection
that may not have worked. Thankfully it did, but we could
have improved by putting a hard deadline on just stopping the
symbol detection progress. It is hard to leave behind
something that has a lot of work put into it, but sometimes it is
the better decision.

Aside from the technical challenges we encountered
throughout the semester, we experienced the importance of
clear communication. The lack of clear expectations and
communication led us to a longer integration process and
oftentimes frustration for not knowing what stage others were
at. This was a great learning opportunity for everyone and we
hope to carry this lesson with us as we enter the professional
workforce as engineers.

As for the product itself, if we had a longer timeline and
more resources, we would have included octave expansions
and further expression for musical phrases, from dynamics to
phrasing in general, though dynamics would require a
hardware change.

At the end of the day, we believe that our system will open a
new world of piano playing to those that may have been
unable to do so in the past. With the use of modern
technologies, we will be able to allow these users to play on a
keyboard with minimal interference. Although it won’t
perfectly capture the feel of playing piano, it should still feel
like a real instrument, rather than a toy or gimmick.

REFERENCES

[1] Industries, Adafruit. n.d. “Large Push-Pull Solenoid.”
Www.adafruit.com. Accessed March 4, 2023.
https://www.adafruit.com/product/4 1 3#description.

[2] Howell, Egor, “Bayesian Updating Simply Explained,” Medium.
Accessed March 4, 2023.
https://towardsdatascience.com/bayesian-updating-simply-explained-c2e

d3e563588

[3] GeeksforGeeks. (2023, January 3). Multiple color detection in real-time
using python-opencv. GeeksforGeeks. Retrieved March 3, 2023, from
https://www.geeksforgeeks.org/multiple-color-detection-in-real-time-usi
ng-python-opencv/

[4] Saha, A. (2021, May 5). Read, write and display a video using opencv |.
LearnOpenCV. Retrieved March 3, 2023, from
https://learnopencv.com/read-write-and-display-a-video-using-opencv-c
pp-python/

https://towardsdatascience.com/bayesian-updating-simply-explained-c2ed3e563588
https://towardsdatascience.com/bayesian-updating-simply-explained-c2ed3e563588

18-500 Final Project Report: Keynetic 05/05/2023

ltem Name

ProtoBoard

Large Solenoid (Testing Purposes)
1N4001 Diode (10ct)
Transistor (irffb7440pbf)
Keyboard (synthesizer)
MacBook + embedded camera
Arduino Uno

Resistors (10K)

Acrylics (for fabrication)

Glue

Shipping (approx.)
Total Cost

Tame |, Bui oF MaTeRIALS

Quantity
2
30
2
45

== M =2 = = =

—

Price

Manufactuer
4.5 Adafruit
14.95 Adafruit
1.5 Adafruit
1.622 Infineon Technologies
0 M-Audio (ECE Inventory)
0 Apple (already-owned)
0 Arduino (already-owned)
0 N/A (18220 Lab Kit)

11.25 TechSpark
12 Amazon
40
634.63

18-500 Final Project Report: Keynetic 0

Fig. 6. Gantt Chart

Keynetic

o

Prof. Tom Sullivan
Project Start Date: 1/30/23

= x|z
Scrolinglncrement:] ®s|mnw B

Miestone description Frawes]

Keyboard Hardware

MIDI Keyboard Procurement Mikstone 21323
FrameCrastion Low Risk 2/14/23
Actuator Selection Med Risk 2/6/23
Test System Low Risk 2/20/23
7-Solenoids System 3/28/23
CompleteSystem 412723
Actustor integration 4/6/23
Software Integration Lance Katherine. 41323
v

Detection Methaod Selction 173023
Calor Detection [26/23
Crestevigen Overiays Katherine 21423

Generate Notes for Note
Generetion Made Katherine 272123

Generative Mode Mapping to

O Katherine 228123

Provide Visual Feedback to User Katherine 3515023
DistanceFeedback Kath 412123
Overall Integration Katherine 41923
Symbol Detection Kath #/26/23
Muskc Softwareintegration Kathering Lance. 329123

Music Synthesis
NoteGeneration Algorithm 3/6/23
::;ﬁqumdngﬂn—lw\emaﬂx S
Pitch Selertio 219123
Chord Sequencing 2/25/23

Advanced Musk Synthesis
Subdhions 2119423
Smcopation 2/28/23
Chords (Non-Trisds) 34523

CodeCianup and Optimization 3112123

Finl Debuggingand Seria
o af2f23

Verification and Validation
Unit Testing a3
HardwareTesting SunA a/3/23
Softwara Testing Kathering, Lance 448123
E”n”i'?iﬂ.fg“m"“ partof e il

Integration Testing aj8f23

SiackCreation 24523

18-500 Final Project Report: Keynetic 0

Keynetic

Keynetic
Prof. Tom Sullivan
Project Start Date: VELTFE!
ScrollingIncrement: 56
Miestone deseription Progress
Keyboard Hardware
MIDI Keyboard Procurement Milestane /1323
FrameCrestion 2/14/23
Actuztor Selection 2/6/23
Test System 2/20/23
7-Solenoids System af29p3
Completesystem 4/12/23
Actuztor integration 4/6/23
Softwareintegration Lance, Katherine af1afa
o
Detection Method Selection Katherine 1/30/23
Color Detection Katherine 2/6/23

Create Video Overlays Katherine 2/14/23

GenerateNotes for Note

Katherine 221123
Generation Mode

Generative Mode Mapping to Notes Katherine 212823

ProvideVisual Feedback to User Katherine 3/15/23

Distance Feedback Katherine 4/12/23

Oversl Integration Katherine 4/19/23

Symb ol Detection Katherine 4/26/23

Music Softwareintegration Kathering Lance a/28/23
Music Synthesis

NoteGeneration Algorithm 3/6/23

Notesequencing (In-time Quarter

241323
Notes) /13,

Pitch Selection 2/19/23

Chord Sequencing 22523
Advanced Music Synthesis

Subdivions 2719023

Syncopation 2/26/23

Chords {Non-Triads) 3/5/23

CodeCleanup and Optimization afapa

Final Debuggngand Serial

4f2/23
Integration

Verification and Validation
Unit Testing a/1f23
HardwareTesting SunA 4/8/23

SoftwareTesting Kathering Lance a/8/23

Music Synthesis Testing (Part of

a1/
Unit Testing) fels

Integration Testing. 4/8/23

Slack Creation 2/5/13

