
1
18-500 Design Project Report: Keynetic 03/03/2023

Keynetic
Sun A Cho, Katherine Dettmer, Lance Yarlott

Department of Electrical and Computer Engineering,
Carnegie Mellon University

Abstract—A system capable of allowing users to play piano in a
new, fun, and simple way. Using computer vision (CV), it captures
the location of the user’s hand and translates that into notes that will
be played on a keyboard. From there, the system will analyze notes
played by the user and generate a matching chord progression. This
pattern matching can be adapted to long-form playing, or simply to
short periods. Additionally, due to the physical nature of the system
and extensible software framework, it can be extended to work on
any size keyboard given enough time and resources.

Index Terms—Beat, Chord, Diatonic Note, Feature Matching,
Musical Key, Solenoid, Subdivision, Time Signatures

I. INTRODUCTION

This project builds a system that provides a method to play
the piano through movement, without the need to press
physical keys. It is a mechanically actuated keyboard that is
managed by a microcontroller, using computer vision to
produce notes based on user movement.

Musical instruments and music are a large part of human
life, and almost all children, should they not learn to play an
instrument, will interact with music in some shape or form.
Music is a method of emotional expression, creativity, and is
often embedded in culture. In fact, learning to play an
instrument has been shown to improve cognitive development,
memory, and concentration. These benefits extend far later
into life, with pianists being known to have improved memory
function later in life. However, not everyone has an equal
opportunity to play an instrument- and in our system’s case,
the piano.

There are many different reasons why someone may not be
able to play the piano the traditional way, as it requires
dextrous control of one’s fingers to press the keys and play
moving melodies. Our system aims to bridge the gap for those
who wish to play piano but cannot for one reason or another.
The user will utilize color placement to signify notes, which
even allows amputees or those with limb differences to learn
how to read music and play it on the piano. By using color and
computer vision, most people capable of movement will find
themselves able to play the piano. From that moment forward,
it will simply be a mental task to read music.

In the current market, there are no devices like ours. In
society, it is a common notion that only those who “can” play
piano should be able to play it. These are justified largely by
the lack of performable repertoire, as well as the immense
difficulty in creating a system that would allow those who are

unable to even put their hands on the keys to be able to play.
In this sense, our system will excel in allowing players of all
kinds to do just that: play.

We strive to create a system that is both fun and intuitive to
use while allowing those who cannot traditionally play music
to engage with it and learn about it in a hands-on manner.

II. USE-CASE REQUIREMENTS

Our system has several strict but straightforward
requirements:

On the musical end, we require that any generated notes
stay within their home key (in our case, C major) 100% of the
time. Given that we are only playing the white keys, this can
be relatively simple. However, when considering the fact that
we generate chord progressions, there’s a small chance that we
can slip into a different “mode” of another key (for example,
A minor contains all the notes of C major, but starts on A).
Generated chords should also avoid large numbers of
dissonances with user-played notes when at all possible.
Musically speaking, a dissonance is defined as the 2nd, 4th,
and 7th intervals (there are more, but we are unable to play
them given our designed hardware constraints). If given a
sample chord progression, the software should be able to
generate a melody with chord tones that fall on the beat 100%
of the time.

We also require that all inputs received from the camera be
parsed and passed to the controller within 1 second. This
requirement is somewhat lax, and our real goal is to send
signals as fast as possible. As such, our minimum requirement
is 1 second, while our goal requirement is as close to zero as
the hardware and software are capable of.

Additionally, we require that hands (more specifically the
colors on them) should be detected at least 90% of the time.
This is to ensure a smooth user experience. It also includes
any trails the hand makes, and lost data points should be
interpolated without fail.We also require that the user is farther
away than 4 ft and closer than 7ft to use the project.

Our hardware should be able to safely support at least 14
solenoids, with at least 4 activated simultaneously, and support
additional quick actuation of a fourth solenoid. This allows us
to play simple triad chords along with a melody line. On top of
the hardware systems supporting 14 actuators safely and
soundly, it should also be an easy installation for the users
since it is one of our crucial differences from similar products
in the market (self-play piano), which will be identified in
Section 9. Related Work. Making the hardware system easy to
install (with a mounting system) will maximize the
accessibility of Keynetic.

Lastly, our integrated system has to have the least lag
between the feature/ motion detection and the actual playing
of the keyboard. In order to maximize the user experience of
playing an instrument and making music, we believe that the
less latency there is between the motion detection and the
actuators playing the keyboard is the crucial part of making

2
18-500 Design Project Report: Keynetic 03/03/2023

the experience more enjoyable for the users. Currently, we aim
to achieve 500 ms latency but hope to decrease the latency as
close to 0 ms as possible.

We strive to provide an enjoyable experience to our targeted
audience and provide them with the opportunity to create and
play music even if they do not have the traditional physical
ability to do so.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

Our system can be broken down into three major
subsystems. These are vision software, music software, and
hardware as shown in the block diagram in Figure 3 (d).

The software system will use computer vision to process a
live camera feed of someone with certain color markings on
their body. There is a camera feed displayed to the user, with
two different graphical interfaces for the user to interact with.
The first one is a simple note generation mode - the screen has
boxes with displayed notes on each side, with chords on the
top. On the bottom is a box that says ‘Switch View.’ The user
triggers these notes/actions by putting the designated color
into one of the boxes for a short amount of time.

The Switch View button will lead the user to another
interface, this one is just the video feed broken into a 5x5 grid.
The display is what we call the ‘generative’ mode. The
generative mode will allow the user to make movements, and
it records the sequence. The sequence of grid boxes the colors
go through is then matched to predetermined sequences that
we have mapped. If one of them matches, a few musical notes
are played based on our mapping.

(a) note-playing mode

(b) generative mode

In terms of musical software, our main focus is on sending
notes to our keys in a timely manner. This is done using an
Arduino. The general software loop for this is incredibly

straightforward. We simply need to take input passed from our
camera parser and then send that to the Arduino, which will
actuate the keyboard’s keys. There are also two more
components that will be used when writing our music
software.

The first is chord generation. This involves recording the
user’s past note inputs, dividing them by measure, and then
taking a statistical measurement of the average note played for
every measure in a predefined phrase (this is generally 4 or 8
measures, though can vary in length). This measurement can
be done using Bayesian Updating. In C major, there are 7
possible chords, and we can assign each a probability that they
are being played over at any given time. From our Bayesian
updating algorithm, we can choose the chord that has the
highest probability of being correct, and send that to the
Arduino to be played. We can also tweak these probabilities
based on the current chord. For example, in jazz, if one is
playing a D minor chord, they would tend to move to a G
major chord, then finally back down to C major. This is known
as an ii-V-I progression, named for the intervals that the
chords start on (C being the first interval). You can even
“nest” these progressions, so an IV-vii-iii-vi-ii-V-I progression
is just a series of three modified ii-V-I progressions (F-B-E,
E-A-D, D-G-C). These can be readily utilized in our software
and implemented to make the piece move and back up the
player. Not every progression must make sense, but it certainly
helps the player when they do.

There is also the issue of timing. The Arduino will, in most
cases, directly manage all timing-related issues. This involves
separating time into measures, beats, and subdivisions. This
generally relies on the internal clock of the Arduino. We can
precompute note lengths and then directly use these to
determine when and how long to play for. The calculation
itself is simple and just involves a conversion between beats
per minute and seconds per note (an inversion and time
conversion).

The hardware system will consist of the following: a row of
solenoids – responsible for playing the actual keyboard – and
a proto-board that will support the solenoids. As of now, we
are planning to play up to 2 octaves and at most 4 keys
concurrently at each time. Given that the hardware system sits
below everything else – it will receive all of the required data
from the above systems to control the solenoids. For instance,
the vision software system will detect features, which will
then transfer that information to the music software system.
The music software system will generate a pattern of notes
(using MIDI keys) and send it to Arduino, as mentioned
above. Then, using this data, the Arduino can either turn on or
off the corresponding solenoid(s). Each Arduino digital pin
will be assigned to a solenoid and will be contained in an
instance of a Note struct in the Arduino program – making it
more object-oriented as shown in Figure 3 (c). Having an
object-oriented Arduino program will allow us to have a
simpler (fewer lines as well) code to control 14 solenoids.
Furthermore, the music generation data from the music
software system will also dictate the duration of every note,

3
18-500 Design Project Report: Keynetic 03/03/2023

which will then control the solenoids accordingly. However,
before building a full, two-octave system, we have already
built a test system with one solenoid and now will scale up to
building a 7-solenoids-system. Once we succeed in building a
7-solenoids-system, we will, then, build a complete
14-solenoids-system. This scaling schedule is there because
we believe that debugging on a smaller scale is faster than
starting with a full 14-solenoids system. However, while
building the 7-octaves system, we will start integrating all
three systems to at least play 7 notes.

(c)
Fig. 3. Example of such system:. (a) vision software – note-playing
mode. (b) vision software – generative mode (c) hardware – Arduino
system’s struct

Fig. 3. (d) The full block diagram that represents our Keynetic system

IV. DESIGN REQUIREMENTS

As previously discussed, we require that our pipeline takes
less than 1 second to traverse, with a goal of taking the time as
close to 0 seconds as possible (our MVP goal is 500ms). This
means that, from the moment an image frame is pulled, data is
sent from the computer to the Arduino, and a command signal
is sent from the Arduino to the solenoids within 1 second. This
requirement should require no further explanation.

Another requirement for the software is to have the person
standing farther than 4 ft away from the camera, but closer
than 7 ft from the camera. This is so the color can be
accurately detected. The computer will try to determine how
far the user is from the camera and prompt them to move
closer or farther away.

To further explain the requirement regarding chord tones, a
scale consists of 7 distinct notes. For C major, they are [C, D,
E, F, G, A, B]. Our chords will be made up of 3 notes and will
be in a standard triad format. C major is [C, E, G], D minor is
[D, F, A], and so on. Whether a chord is major or minor is not
relevant to the software. At the start of a new phrase, it is
generally best to return to the home chord (for us this is the C
major triad), to not confuse players. This is not a hard rule in
music, but we will make it one for simplicity’s sake. So, we
will require that the start of a phrase returns to C major 100%
of the time. For melodies, we want to make sure that notes fall
on chord tones on the downbeat. With a simple 4/4 time
signature (4 notes of length ¼, or 4 quarter notes per measure),
this means that a chord tone should fall on beats 1, 2, 3, and 4.
The chord tones are simply the notes that make up the current
chord. This requirement is easy to satisfy as it is a generation
constraint. A small bit of pseudocode is written below to
illustrate this:

V. DESIGN TRADE STUDIES

To meet the use case requirements, we had to make some
trade-offs as such:

A. Design Specifications for the Hardware System
The solenoids that we chose for this project are from

Adafruit and the manufacturer recommends that we power it at
12W rating. However, given that one of our use case
requirements is to minimize the power used in our hardware
system, I conducted my research to find out exactly how much
power it would take to play a key on the keyboard, I
concluded that the minimum requirements of voltage and
current are 10V and 0.6A. To come to that conclusion, I
conducted my research by varying voltage from 10V to 12V
and varying current from 0.5A to 1A as shown in Table I.
Pairs of V and I for Solenoids (Hardware System). The lowest

4
18-500 Design Project Report: Keynetic 03/03/2023

pairs that I found were 11V and 0.6A and 10V and 0.6A. Once
I found that 10V and 0.6A were enough to power a solenoid,
that’s when we decided to use 6 Watts to power the solenoid to
play the keyboard – the graphical distribution of power rating
can be found in Figure 5 (a).

B. Design Specifications for Music Generation
In Figures 5 (b) – (g), we can see an example of what one

would expect when playing notes. We generate probability
measures for what chord the user is playing over, and
continuously update that as new data comes in. This data will
collect over time and become more accurate with every new
data point. This specific updating algorithm helps us avoid
dissonances when playing, as per our requirement regarding
them. Using a C major chord, a dissonance is considered as a
D, F, and B. It will be seen that two dissonances are played,
but these are unavoidable and a natural part of music. There is
no reason for dissonances to be avoided completely, it is just
that sticking on them can sound unpleasant to players and
listeners alike.

TABLE I. PAIRS OF V AND I FOR SOLENOIDS (HARDWARE SYSTEM)

V (Voltage) I (Amps) Playing
Power
Rating (V * I)

12 1 1 12

12 0.9 1 10.8

12 0.8 1 9.6

12 0.7 1 8.4

12 0.6 1 7.2

12 0.5 1 6

11 1 1 11

11 0.9 1 9.9

11 0.8 1 8.8

11 0.7 1 7.7

11 0.6 1 6.6

11 0.5 0 0

10 1 1 10

10 0.9 1 9

10 0.8 1 8

10 0.7 1 7

10 0.6 1 6

10 0.5 0 0

Fig. 5. (a) Graphical figure of the different power rating and red dots
represent 0W as in the solenoids do not have enough power to draw
from

FIGURE 5 (B) – (G). BAYESIAN UPDATING EXAMPLE CHARTS (MUSIC SYSTEM)

Fig. 5. (b)

Fig. 5. (c)

5
18-500 Design Project Report: Keynetic 03/03/2023

Fig. 5. (d)

Fig. 5. (e)

Fig. 5. (f)

Fig. 5. (g)

Fig. 5. (b) – (g). Using example values, these charts show the
relationship between notes played and the predicted chord based on
them. These values are handpicked to show that convergence on a single
chord can happen quickly. The first note played might be the root note,
so the probability of the chord being based on that is high. However,
other chords use said note, so their probability will not be 0. This
continues over time and predictions will only grow stronger. If we carry
data between phrases, these predictions will either grow stronger or
weaker, but will always match the player’s actions.

VI. SYSTEM IMPLEMENTATION

A. Software System
The software system consists of a camera that takes in video

input and feeds it back to the computer. OpenCV is then used
to continuously analyze the images received by the video
camera. The user will use colors to play notes (for example, a
red glove on one hand and a blue glove on the other), and the
computer will continuously record the location of the
designated color.

The video is displayed for the user, with an interface
overlaying it. The interface for the note-generation mode has
boxes for each note in the two octaves and for 3 chords and a
‘Switch Mode’ box. If the computer determines that one of the
designated colors has been in the boxes, it will consider that as
‘clicking’ the box.

The software interface will consist of getLocation() for each
color, and getContours() which will isolate the colors from the
image. It also needs translateToNote() to translate between
box positions and piano notes. Finally, matchPattern() will be
needed for the generative mode, in order to match the user’s
movements to specific note sequences.

By ‘clicking’ on the Switch Mode box, the interface
overlaid on the video feed switches to the gridded ‘generative
mode’ interface. We will have several patterns mapped into a
data structure with corresponding note patterns. As the user
moves the colors around the grid, the grid boxes that they pass
through will be recorded in a different data structure, and if
they create any of the mapped patterns, the corresponding note
sequence will be played.

6
18-500 Design Project Report: Keynetic 03/03/2023

B. Music and Note Generation Subsystem
The music system will be split between the computer and

the Arduino.
On the computer side, it will receive a value (or values)

from the image interpreter, and convert that input into a note
pitch and duration. This will then be simplified for transfer
speed and passed to the Arduino.

The Arduino will take simplified data passed from the
computer, and reconvert it to the specified pitch and note
duration. It will then be sent to a simple sequencer algorithm
that will place it in time with the rest of the music. This
algorithm is relatively simple.

Given a starting time, it will calculate the length of
measures, and then base note starting times off of that. If the
program starts at time 0, and a measure is 4 seconds long, then
it will know that if a half note is received and is supposed to
be played on beat 2, it will start at 1 second and continue until
3 seconds. The pitch selection itself is a matter of selecting a
digital out pin to flip the value of on the Arduino. There is also
a chance that notes can cross between measure boundaries, but
as this happens in normal music, it is of no concern as long as
the Arduino can keep time throughout.

The equation to determine if a note should be playing is as
follows:

𝑡(𝑠, 𝑑) = (𝑠 − 𝑇) + 𝑑 > 0 ∧ (𝑠 − 𝑇) + 𝑑 < 𝑑
With s being the start time of the note, d being the duration,

and T being the current global time.
To generate starting times we will use the following

equation:
𝑡 = 𝐵 * 𝐿 + 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝐹𝑙𝑜𝑜𝑟(𝑇)
With B being the representation of the current beat in the

program, and L being the length of said beat’s subdivision.
measureFloor(T) is a function that returns the start time of the
measure. So, if we are at 60 bpm, on beat 2, at time 6, we can
generate a new quarter note on beat three by using this
equation. This algorithm can be generalized to take in b as a
parameter:

𝑡(𝑏) = (𝑏 + 𝐵) * 𝐿 + 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝐹𝑙𝑜𝑜𝑟(𝑇)
Where b represents the beat offset from the current beat. We

shall not generate new notes on a beat that is already passing
us by, so the equation will be constrained to always generate
times at t(B+1).

The Bayesian Updating algorithm will be carried out on the
computer and uses the following equation:

P(H) referencing the probability of a given chord being
correct prior to any new information. P(H|D1) refers to the
likelihood of a chord being correct given the addition of new
data (in our case, notes). The value will be updated on a
per-measure basis, every time a new note is passed from the
camera to the computer.

C. Hardware System
While our goal is to build a 2-octaves system, we are

currently in the process of building a smaller-scale system
including only one solenoid. In Figure 6 (a), you can find the
circuit diagram of the test system that we have built and
successfully tested. In Figure 6 (b), you can find the actual
circuit we built on a breadboard for testing purposes. During
the test, we assessed the power of the solenoid at each power
rating (ranging from 12W to 6W) and determined the ideal
power rating for the solenoid to successfully play a key on the
keyboard. As a result, we have decided to use 10V and 0.6A to
control each solenoid – and since we are only allowing 4
solenoids to turn on at a time, the total power of the hardware
system would be 10V and 2.4A or 24W. Given that this
system is quite “heavy” for a regular breadboard, we also
decided to create our own proto-board to support the system.
Eventually, we will be scaling our current test design to design
a proto-board with 14 solenoids, 14 diodes (model:1N4001),
14 transistors (model: irfb7440pbf), 14 10K resistor, and an
Arduino (Uno). To explain the components, the transistor will
be used as a switch to control the solenoids based on the
voltage output from the Arduino (digital pin assigned to each
solenoid). There will be a resistor between the Arduino’s
output and the gate of the transistor to manage the unnecessary
current flow (which will be varying from 5V to 0V). Similarly,
I decided to add a diode in between the power supply (to
power the solenoids) and the transistor to reduce the risk of
ruining the solenoid from a potential voltage spike. Given that
we are switching from 10V to 0V (and whatever the current
may be needed to control the hardware systems at the time),
there’s a possibility of voltage spikes. Adding a diode also
manages a potential current “mis-flow” in the circuit, since
this is a DC system and diodes restrict the current to flow in
one direction, and that’s a good measure to have when
building a pretty heavy system with more than 20 Watts.

Also, this design will eventually require a mounting system
– which will be built using MDF sheets with the help of a laser
cutter in Tech Spark. We will be lining up the solenoids
horizontally – next to one another – right above the key, in
order to minimize the power needed to push the keys as shown
in Figure 6 (c).

But, for now, in the next two weeks, I will be focusing on
scaling the system to be half of the final design – only 7
solenoids to support an octave.

7
18-500 Design Project Report: Keynetic 03/03/2023

Fig. 6 (a) Test Circuit Diagram

Fig. 6 (b) Test Circuit

Fig. 6 (c) The location of the solenoid in relation to the
keyboard

VII. TEST, VERIFICATION AND VALIDATION

The entire system can be tested both by subsystem and
holistically as an integrated unit. The subsystem tests are a
prerequisite full-system test and should be completed first.
Once they are complete, we will begin integrating systems and
verify that they work together as expected. This will be used
as a jumping-off point to validate our requirements.

A. Tests for Software Requirements
To test the requirement of having less than 1-second latency

between signaling a note and the note playing, we can simply
start a timer when the person gestures and stop it when the
physical note plays.

To test how accurately hands are detected, we can
continuously attempt to signal certain notes and record the
percentage of times the computer is accurate in translating the
user’s desired note.

To test the enforcement of the person standing within 4-7ft
of the camera, we will have someone move around that scale
and see how accurate the computer is in detecting how far they
are.

B. Tests for Music Requirements
A simple but effective test is to run a metronome on the

Arduino alongside a real metronome. If the Arduino strays
from the metronome, something is going wrong regarding
floating point error or rounding issues.

For Bayesian Updating, we can simply pass in an array of
predetermined notes and confirm that the output matches our
expected output.

Note sending will be tested by sending power signals from
the Arduino to the solenoids, and this will be a joint task
between hardware and software.

8
18-500 Design Project Report: Keynetic 03/03/2023

C. Tests for Hardware Requirements
In order to test if the hardware system is working properly

or not, we will be playing a test piece such as “Twinkle,
Twinkle Little Star.” This music will be manually inputted into
the Arduino system for testing purposes. Once the system
successfully plays the music, we will know that the hardware
system, at least individually, works correctly.

VIII. PROJECT MANAGEMENT

A. Schedule
We attached the most-updated Gantt chart in Figure 8.

B. Team Member Responsibilities
Katherine is responsible for the software part of the project.

This includes all of the OpenCV work, detecting movements
and gestures, and designing the user interface for the video
feed overlay.

Lance is responsible for the bulk of any music-related code,
from timing to note generation. He is also partly responsible
for the verification of the system’s hardware.

Sun A is responsible for building the hardware system of
actuators to play the piano. She will also build a mounting
system for the actuators to sit above the keyboard.

C. Bill of Materials and Budget
You can refer to Table II. Bill of Materials at the end of the

report. You will find a list of items purchased and used with
the quantity, price, and manufacturers.

D. Risk Mitigation Plans
One of the risks is being able to connect the entire system

and have the solenoids actually be able to reliably press the
notes hard enough to play them. Our mitigation plan for this is
having a backup music generation plan using just the software.
We can generate the music using the computer, rather than the
solenoids, so the product is still usable.

Another risk is getting OpenCV working in a way that
benefits the project. This is a risk because no one in the team
has worked extensively with OpenCV before, so there is a
significant learning curve. However, there are a lot of different
ways to turn detected image features into notes, so our
mitigation plan for this is to just change how we detect
someone.

This subsection should identify the critical risk factors in
your design and plans for how you will manage that risk. This
is where you will list the known unknowns. For example, no
one in the team has ever previously designed an UART for this
FPGA, so our primary risk is getting sensor data to the FPGA
to take advantage of its rapid computing capability.

No team members have had the opportunity to design
cyclic, or in our case, rhythmic timing algorithms. Music is

based on rhythm, and as such is subject to strict timing
requirements. There is a risk of our rhythm slowly slipping
over time and keeping playing from being consistent.
However, to curb the risk presented by this dilemma, we plan
on ensuring that our algorithms minimize floating point error
where possible.

There is also the possibility that we will have to deal with
the clocks of the Arduino and the computer not being synced.
This could cause issues regarding timing, which have already
been touched upon above. One possible solution is to send
notes with a generic timestamp attached to them. For example,
we could receive a note 2ms after beat 2 in a measure, and
mark that for beat 3 based on our current subdivision.

For the hardware system, we already had to not use the full,
recommended power rating to control the solenoids – we were
supposed to use 12 W but we are now using 6 W. However, if
there’s any issues with the amount of power we are using for
the hardware system, we will have to scale it down to only
play one octave.

IX. RELATED WORK

There are similar products already in the market such as
self-play piano, which has to be installed internally by a
professional. However, our hardware system does not require
an internal setup and only requires that it has to be mounted on
top of the piano. The self-play piano also is not accessible to
people who do not have the traditional means of playing an
instrument – i.e. music enthusiasts with physical disabilities or
impairments. This is where our project is different from the
self-play piano where we use feature detection to create music.
Similarly, there are other groups in 18500 who are creating a
similar hardware system but have drastically different use case
requirements.

X. SUMMARY

Our system will open a new world of piano playing to those
that may have been unable to do so in the past. With the use of
modern technologies, we will be able to allow these users to
play on a keyboard with minimal interference. Although it
won’t perfectly capture the feel of playing piano, it should still
feel like a real instrument, rather than a toy or gimmick.

As for our implementation challenges regarding design
requirements, we do have to be careful regarding the timing of
the notes. Humans are surprisingly adept at detecting small
variations in rhythm (though this only accounts for steady
beats, which happens to be what most beginners play), and we
need to account for that to ensure that the user experience is as
close to perfect as possible.

M
o

ti
o

n
al

 K
ey

b
o

ar
d

Th
e

K
ey

b
o

ar
d

er
s

Le
ge

n
d

:
O

n
 t

ra
ck

Lo
w

 r
is

k
M

ed
 r

is
k

H
ig

h
 r

is
k

U
n

as
si

gn
ed

To
m

 S
u

lli
va

n

Pr
o

je
ct

 S
ta

rt
 D

at
e:

1/
30

/2
02

3
Ja

n
u

ar
y

Fe
b

ru
ar

y
M

ar
ch

Sc
ro

lli
n

g
In

cr
em

en
t:

0
30

31
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26

M
ile

st
o

n
e

d
es

cr
ip

ti
o

n
C

at
eg

o
ry

A
ss

ig
n

ed
 t

o
P

ro
gr

es
s

St
ar

t
D

ay
s

M
T

W
T

F
S

S
M

T
W

T
F

S
S

M
T

W
T

F
S

S
M

T
W

T
F

S
S

M
T

W
T

F
S

S
M

T
W

T
F

S
S

M
T

W
T

F
S

S
M

T
W

T
F

S
S

K
ey

b
o

ar
d

 H
ar

d
w

ar
e

M
ID

I K
ey

b
o

ar
d

 P
ro

cu
re

m
en

t
M

ile
st

o
n

e
Su

n
 A

10
0%

2/
13

/2
02

3
(1

)
1

Fr
am

e
C

re
at

io
n

Lo
w

 R
is

k
Su

n
 A

0%
2/

14
/2

02
3

(7
)

A
ct

u
at

o
r

Se
le

ct
io

n
M

ed
 R

is
k

Su
n

 A
10

0%
2/

6/
20

23
(7

)

Te
st

 S
ys

te
m

Lo
w

 R
is

k
Su

n
 A

10
0%

2/
20

/2
02

3
(7

)

7-
So

le
n

o
id

s
Sy

st
em

M
ed

 R
is

k
Su

n
 A

0%
2/

27
/2

02
3

(2
1)

Sp
ri

n
g

B
re

ak

C
o

m
p

le
te

 S
ys

te
m

M
ed

 R
is

k
Su

n
 A

0%
3/

20
/2

02
3

(7
)

A
ct

u
at

o
r

In
te

gr
at

io
n

H
ig

h
 R

is
k

Su
n

 A
0%

3/
27

/2
02

3
(7

)

So
ft

w
ar

e
In

te
gr

at
io

n
M

ed
 R

is
k

La
n

ce
, K

at
h

er
in

e
0%

4/
3/

20
23

(7
)

C
V

D
et

ec
ti

o
n

 M
et

h
o

d
 S

el
ec

ti
o

n
Lo

w
 R

is
k

Ka
th

er
in

e
10

0%
1/

30
/2

02
3

(7
)

C
o

lo
r

D
et

ec
ti

o
n

H
ig

h
 R

is
k

Ka
th

er
in

e
10

0%
2/

6/
20

23
(8

)

C
re

at
e

V
id

eo
 O

ve
rl

ay
s

M
ed

 R
is

k
Ka

th
er

in
e

10
0%

2/
14

/2
02

3
(7

)

G
en

er
at

e
N

o
te

s
fo

r
N

o
te

G

en
er

at
io

n
 M

o
d

e
M

ed
 R

is
k

Ka
th

er
in

e
10

0%
2/

21
/2

02
3

(7
)

G
en

er
at

iv
e

M
o

d
e

M
ap

p
in

g
to

N

o
te

s
M

ed
 R

is
k

Ka
th

er
in

e
0%

2/
28

/2
02

3
(1

5)
Sp

ri
n

g
B

re
ak

Pr
o

vi
d

e
V

is
u

al
 F

ee
d

b
ac

k
to

 U
se

r
Lo

w
 R

is
k

Ka
th

er
in

e
0%

3/
15

/2
02

3
(7

)

M
u

si
c

So
ft

w
ar

e
In

te
gr

at
io

n
Lo

w
 R

is
k

Ka
th

er
in

e,
 L

an
ce

0%
3/

22
/2

02
3

(1
)

M
u

si
c

Sy
n

th
es

is

N
o

te
 G

en
er

at
io

n
 A

lg
o

ri
th

m
O

n
 T

ra
ck

La
n

ce
30

%
3/

6/
20

23
(7

)

N
o

te
 S

eq
u

en
ci

n
g

(I
n

-t
im

e
Q

u
ar

te
r

N
o

te
s)

H
ig

h
 R

is
k

La
n

ce
10

0%
2/

13
/2

02
3

(6
)

Pi
tc

h
 S

el
ec

ti
o

n
H

ig
h

 R
is

k
La

n
ce

10
0%

2/
19

/2
02

3
(6

)

C
h

o
rd

 S
eq

u
en

ci
n

g
M

ed
 R

is
k

La
n

ce
95

%
2/

25
/2

02
3

(7
)

A
d

va
n

ce
d

 M
u

si
c

Sy
n

th
es

is

Fig. 8. Schedule example with milestones and team responsibilities

Su
b

d
iv

io
n

s
Lo

w
 R

is
k

La
n

ce
10

0%
2/

19
/2

02
3

(7
)

Sy
n

co
p

at
io

n
Lo

w
 R

is
k

La
n

ce
10

0%
2/

26
/2

02
3

(7
)

C
h

o
rd

s
(N

o
n

-T
ri

ad
s)

Lo
w

 R
is

k
La

n
ce

20
%

3/
5/

20
23

(7
)

V
er

if
ic

at
io

n
 a

n
d

 V
al

id
at

io
n

U
n

it
 T

es
ti

n
g

M
ed

 R
is

k
A

ll
40

%
3/

6/
20

23
(5

)

H
ar

d
w

ar
e

Te
st

in
g

Lo
w

 R
is

k
Su

n
 A

45
%

4/
3/

20
23

(5
)

So
ft

w
ar

e
Te

st
in

g
Lo

w
 R

is
k

Ka
th

er
in

e,
 L

an
ce

30
%

4/
10

/2
02

3
(5

)

M
u

si
c

Sy
nt

h
es

is
 T

es
ti

n
g

M
ed

 R
is

k
La

n
ce

50
%

3/
4/

20
23

(7
)

In
te

gr
at

io
n

 T
es

ti
n

g
H

ig
h

 R
is

k
A

ll
0%

3/
11

/2
02

3
(7

)

Sl
ac

k
C

re
at

io
n

G
o

al
A

ll
10

0%
2/

5/
20

23
(1

)
2

To
 a

d
d

 m
o

re
 d

at
a,

 In
se

rt
 n

ew
 r

o
w

s
A

B
O

V
E

th
is

 o
n

e

9
18-500 Design Project Report: Keynetic 03/03/2023

GLOSSARY OF ACRONYMS

MDF – Medium Density Fiberboard
MQTT – Message Queuing Telemetry Transport
OBD – On-Board Diagnostics
RPi – Raspberry Pi

REFERENCES

[1] Industries, Adafruit. n.d. “Large Push-Pull Solenoid.”
Www.adafruit.com. Accessed March 4, 2023.
https://www.adafruit.com/product/413#description.

[2] Howell, Egor, “Bayesian Updating Simply Explained,” Medium.
Accessed March 4, 2023.
https://towardsdatascience.com/bayesian-updating-simply-explained-c2e
d3e563588

[3] GeeksforGeeks. (2023, January 3). Multiple color detection in real-time
using python-opencv. GeeksforGeeks. Retrieved March 3, 2023, from
https://www.geeksforgeeks.org/multiple-color-detection-in-real-time-usi
ng-python-opencv/

[4] Saha, A. (2021, May 5). Read, write and display a video using opencv |.
LearnOpenCV. Retrieved March 3, 2023, from
https://learnopencv.com/read-write-and-display-a-video-using-opencv-c
pp-python/

