The Emperor's New Instrument **18500 ECE Capstone: Final Presentation**

Team D1: Oscar Chen Yuqi Gong Karen Song

9

Use-Case Requirements

- A virtual music instrument controlled solely by hand movement and gestures.
 - CV for pitch control.
 - Wireless gloves for volume control and musical effects.
 - Synthesizer for customizable tone color, selected using gestures.
 - Real-time playing on laptop speaker.
 - Makes playing music more affordable and more convenient.
- Metrics
 - Detection Feedback speed: ≤ 10 ms
 - System weight and portability: \leq 4.8 pounds
 - Battery Life: \geq 5 hours
 - Plug-and-playability: \geq 90% success setup rate
 - Volume production accuracy: ± 0.5dB Error

Solution Approach

- Wearable circuit gloves (rotation detection)
- Gesture detection module
- Hand tracking module -> Color tracking module
 - The original hand tracking module uses mediapipe to track hand location. Since it tracks 21 different points, the delay is relatively high.
 - track 1 colored finger instead of 3 because it is more intuitive for the user, and image quadrant classification is faster
- Built-in camera -> External camera
 - There is a color difference between different computers' built in cameras. The same color detection range for different cameras could cause a potential problem
 - External lighting module is no longer needed

Solution Approach: Block Diagrams

Design Document Version

Final Implementation Changes

Complete Solution: Overview

On the right are images of our music production system

Laptop Screen

Receiving Module

Testing, Verification & Validation

9:

Criteria / Metric	Latency	Portability	High Sound Production Accuracy	Battery Life	Plug-and- Playability
Description	Time delay from movement of hand to sound being produced	Expected weight of our system (without laptop)	Halving volume(pitch angle) should decrease sound by 10 dB	Working time after one full charge	The success rate of setting up on Windows and macOS
Requirement	≤ 10 ms	≤ 4.8 pounds	± 0.5dB Error	≥ 5 hours	≥90%

Tests Conducted

• Battery:

?

- Measure the input voltage \geq 7V(Arduino Nano minimum input);
- Measure the input current and calculating battery Life
- Latency:
 - Radio transmitter + synthesizer's sound production
- Volume:
 - Measure decibel reading of various pitch angles
- Weight:
 - Sum of weights of all hardware components (excluding laptop)

Testing Results

• Latency:

2:

- 8.33 ms (excluding rendering frame)
- Weight:
 - Camera (& cable + cap): 141 g
 - Gyroscope: 2.1 g * 2 pieces
 - Transmitter: 2.2 g * 3 pieces
 - Arduino Nano: 5 g * 2 pieces
 - Arduino Uno: 25 g
 - Gloves (unit: pair): 25 g
 - Sum: 141 + 2.1 * 2 + 2.2 * 3 + 5 * 2 + 25 + 25 ≈ 220 g = 0.485 pounds << 4.8 pounds

Testing Results

• Volume:

9:

- Hand angle 90° (vertical): 77.1 dB
- Hand angle 45° (should be half of max volume): 67.2 dB
- Hand angle 0° (horizontal): environmental noise
- Battery:
 - Input voltage (2 batteries): 7.4V
 - Input current (2 batteries): ≈ 50mA
 - Battery life: 1800mAh / 50mA * (1 40%)
 = 21.6h

Table of Performance							
Criteria / Metric	Latency	Portability	High Sound Production Accuracy	Battery Life	Plug-and- Playability		
Requirement	≤ 10 ms	≤ 4.8 pounds	± 0.5dB Error	≥ 5 hours	≥ 90%		
Test Results	8.33ms	0.485 pounds	0.1dB	≈ 21.6 hours	TBD		
Notes	Excluding render latency	N/A	Relative volume intensity; Max value depends on users	Battery Capacity/ Current * (1 - discharge safety)	N/A 10		

Design Trade-Offs

- Camera module
 - Laptop camera: Variable resolution, no low light color correction
 - External webcam: Fixed resolution, adjustable fill light
- Battery
 - 9V alkaline battery: 7hr battery life, non rechargeable
 - Two 3.7V LiPo battery: >20hr battery life, rechargeable
- Tracking
 - Hand tracking: >8ms to just track a frame (no rendering), noticeable lag
 - Color tracking: <2.5ms to both track and render a frame

Project Management ,

D1 Gantt Chart

▼ Design					
Hand monitoring system design	Karen				
Synthesizer design	Oscar				
Wearble circuits design	Yuqi				
Arduino design	Oscar, Yuqi				
Design review	Everyone				
Slack	Slack				
Design slides					
Design document					
▼ Build & Component Testing					
Hand monitoring system	Karen				
Wearable circuits(RH)	Yuqi				
Arduino	Oscar, Yuqi				
Synthesizer	Oscar				
Interim demo					
Wearable circuits(LH)	Yuqi				

RH + Arduino	Oscar, Yuqi
Arduino + Hand monitoring syst	Karen, Yuqi
Hand monitoring system + Synt	Karen, Oscar
LH+ RH + Arduino	Karen, Oscar
Final Integration Test	Everyone
Slack	Slack
Final Presentation	

