
18-500 Final Project Report: KaraoKey, 05/05/2023 
 

1

 
Abstract—Vocal coaches are hard to find and are expensive, so 

there have been many apps created to mimic the feedback one would 
get at a singing lesson. However, we have noticed that current state of 
the art vocal coach apps are overly technical and not easily accessible. 
 

KaraoKey is a casual karaoke-inspired web application targeted 
towards reducing anxiety behind recreational singing. We aim to 
reduce concerns about users’ pitch by providing visual feedback and 
playback informed by the YIN algorithm. 
 

Index Terms—Pitch detection algorithm, real-time 
visualization, YIN algorithm 

I. INTRODUCTION 

Music is an everyday part of life. People bond over the shared 
taste of songs and artists, and casual singing is commonplace at 
many social events. However, for some, singing is an activity 
that is anxiety inducing. Whether it is due to concerns about 
pitch, or confidence issues, some might be embarrassed to 
actually partake in casual singing. 

When it comes to reaffirming or growing one’s skills as a 
casual singer, the options are limited. Vocal coaches are 
expensive and hard to find. They are also often more than what 
the average singer would need, as vocal coaches target upper 
echelon singers. The content that vocal coaches teach can be 
overly technical and focus more on concepts that are irrelevant 
to the casual singer, such as breathing technique, vocal 
enunciation, and correct posture. 

We created an app that is targeted toward the casual singer. 
Our app’s feedback mechanism is the main focus– it is not 
overly technical and only provides baseline, rudimentary 
feedback so as to not overwhelm the user. The feedback is 
encouraging but honest, as reaffirmation and confidence in 
one’s singing abilities is our main goal. With these core goals 
in mind, we believe that this is an effective approach to tackle 
our use case. 

In our app, users sing hardcoded melodies and songs, and the 
app displays their sung pitches on a chart and displays whether 
they are on pitch or not. After they are done singing, a more 
comprehensive analysis is shown and scoring data is provided. 

II. USE-CASE REQUIREMENTS 

We have set quantitative and qualitative benchmarks for our 
app to ensure the accuracy and effectiveness of our app. Most 
of them regard the ability to provide accurate, real-time 
feedback. We also have benchmarks on our user interface. As 
an addendum, we have removed “latency in real-time feedback” 
as a use case requirement. In user testing, we confirmed that this 

did not impact the success of the app with regards to the use 
case requirements. The following are our requirements. 

A. Pitch Detection Accuracy 

The Journal of the Audio Engineering Society suggests that 
a level of accuracy between 90% and 95% is achievable for 
most pitch detection algorithms [1]. 

Having high pitch detection accuracy provides a more useful, 
effective, and engaging experience for the user. However, this 
comes with the risks of requiring more processing and 
complexity, thus potentially increasing the latency of the pitch 
detection algorithm.  

As our visual feedback consists of simply plotting their input 
note on a chart, we aimed for a 87% accuracy rate as a starting 
point. This meant that our pitch detection algorithm correctly 
identifies the input note in most cases, but occasionally 
misidentifies a note. This visual representation of feedback 
gives a little more leeway and is thus more forgiving to minor 
errors of pitch detection.  

B. Range of Notes 

The range of notes that the average human voice can produce 
is 85 to 1100 Hz. For male singers, the range of notes in songs 
usually spans between F2 (87.31 Hz) to G4 (392.00 Hz).  For 
female singers, the range of notes in popular songs typically 
spans between A3 (220.00 Hz) to C6 (1046.50 Hz) range. 

Because our app is designed to provide visual feedback for 
all types of beginner singers, our web application currently 
supports a wide range of notes. We recognize frequencies and 
detect notes from 85 to 1100 Hz. 

C. Latency in post-song analysis 

According an article by the Nielsen Norman Group [2], a 10 
second delay is the upper limit to how long a user will stay 
engaged with an app. We believe that 10 seconds is more than 
enough time to process any post-song statistics, so we have 
lowered the latency requirement to 5 seconds. 

D. User Interface Interaction 

Our user must be able to seamlessly use our app with little to 
no learning curve. Thus, our app should be easily navigable and 
easy to understand. 

In addition to this, the user interface should not be 
overwhelming, in both the language presented and the 
formatting of the data. Note that this specific use case 
requirement has been adjusted from the design proposal version 
to be more relevant to this specific app. 

Anna Gerchanovsky, Anita Ma, and Kelly Woicik  

Department of Electrical and Computer Engineering, Carnegie Mellon University 

KaraoKey Final Project Report 



18-500 Final Project Report: KaraoKey, 05/05/2023 
 

2

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 

A. WebApp Design 

   Upon opening KaraoKey, users are greeted with a home 
screen prompting them with 2 buttons: login and sign up. Based 
on their choice, they are directed to separate pages in order to 
enter the necessary information. Once verified as a user, they 
are directed to a song selection screen with buttons associated 
with different songs. These buttons both bring up different 
recording screens based on the song selected, respectively. The 
recording screens display the target pitch in blue with a red line 
following the timing of the backing track with lyrics being 
displayed at the top. After completion of the song, users are 
prompted to start their visualization in which the target pitch is 
displayed in blue and the users pitch is displayed in red with the 
lyrics up above and the backing track playing. From this screen, 
the user is given statistics on their singing. A detailed diagram 
of this process can be found in Appendix - Diagram 1. 

B. System Diagram 

Fig. 1. A system diagram of KaraoKey. 

C. Django Framework 

KaraoKey runs on the Django framework as it has an 
intuitive MVC layout and also supports dynamically updated 
web pages. Additionally, this framework efficiently stores the 
users along with their song/melody results within a User model. 
Views handles all of the website navigation. 

D. Pitch Detection 

The MediaRecorder module records the user's voice. The 
Aubio module takes in the user's voice recording as a .wav file 
and determines a pitch. The pitch is then processed to ensure 
validity and is scored for accuracy upon comparing the user's 
pitch to the target pitch. 

E. Feedback Generation and Scoring 

We provide feedback to the user via real-time visualization. 
The backing track plays while the user sees a chart displaying 
the target pitch as well as their pitch. The target pitch is 

displayed via a blue line while the user's pitch is displayed in 
red. Shown below is an example image of this process. 

Fig. 2. A screenshot from the KaraoKey app displaying the main feedback 
mechanish. The user’s pitch (in red) is plotted against the target pitch (in 
blue).  

There is also statistic-based feedback given to the user at the 
end of this visualization. These statistics include: score, 
percentage of notes sharp, percentage of notes flat, percentage 
of notes on pitch, best section details, and roughest section 
details. The score is based on singing the correct note as well as 
the deviation from the correct note in cents. Percentage of notes 
sharp or flat tells the user whether they are singing too high or 
too low, respectively. The best section and roughest section 
details provide the user with a graph of the target pitch, users 
pitch, and lyrics for the section they scored highest in and 
lowest in, respectively. A sample of this statistics page can be 
seen below.  

Fig. 3. A screenshot from the KaraoKey app displaying the statistics page.  

IV. DESIGN REQUIREMENTS 

A. AJAX Update Requirements 

Ultimately, our project shifted from real-time feedback, 
which the AJAX latency requirement was originally meant to 
help support. KaraoKey no longer performs pitch detection on 
every AJAX call, which actually allowed us to make these calls 
at a much higher frequency. Our focus is now on providing high 
quality visualization and playback of the user experience, which 
made us prioritize more frequent updates to the UI.  



18-500 Final Project Report: KaraoKey, 05/05/2023 
 

3

The period of AJAX updates that we landed on is 20ms, i.e. 
50 updates a second. With this, we were able to achieve smooth 
and very granular animation of pitch, and more than meet our 
AJAX update requirements. However, because the nature of 
what we use AJAX has changed, so had the expectation of the 
frequency of updates. 

B. Latency Requirements 

We have removed the real-time feedback latency 
requirements and only have latency requirements for the post-
song analysis. As stated in our use case requirements, the post-
song analysis latency requirement is 5 seconds. Justification can 
be found there. 

C. Accuracy Requirements 

 We required that our pitch detection algorithm be at least 
87% accurate for input frequencies within the range of 85-1100 
Hz, to meet our accuracy and range of notes use-case 
requirements. This means that we must be effective at filtering 
out everything above 1100 Hz and below 85 Hz. We used the 
aubio module for filtering. 

V. DESIGN TRADE STUDIES 

A. Pitch Detection Approach 

An existing module is being used for the PDA. We 
researched the risks of developing a homegrown algorithm, but 
it is very complex and difficult to create a fast algorithm to 
detect pitch. Some of the best pitch detection algorithms have a 
latency of 10-60 milliseconds. There are many factors and 
optimizations that the best audio modules use. Especially as a 
group with limited experience with signal processing and 
debugging signal processing algorithms, these features would 
be extremely difficult to implement and optimize if we were to 
implement them by hand. Using a 3rd party module for PDA 
helped us achieve our latency use-case requirement faster.  

B. Pitch Detection Module 

After deciding to use a pitch detection module instead of 
creating it ourselves, we used aubio for pitch detection. While 
there are many other python audio modules that exist, such as 
librosa, crepe, and pyAudioAnalysis, aubio suited our needs of 
processing a .wav file. We have also used this module in the 
past, so we were most comfortable iterating on this project with 
this module. By relying on the standard pitch detection module, 
we were able to more confidently reach our latency use-case 
requirement.  

C. Pitch Detection Algorithm 

In the aubio module, there are 6 pitch methods to choose 
from: schmitt, fcomb, mcomb, specacf, yin, and yinfft [4]. In 
order to decide which algorithm would work best for our use 
case, we tested all the pitch detection algorithms 2 times under 
the same conditions. The testing environment was as follows: a 
quiet apartment with a fan in the background and the Audio 
Technica BHPS1 as well as the Scarlett Solo 3rd Gen interface 
connected to a laptop. The two tests were as follows: Kelly 
singing to “C Major Scale - Slow” and Kelly singing to “C 

Major Scale - Fast”.  
We ended up deciding on the YINFFT algorithm as it did the 

best job of introducing few peaks and also reading stable 
pitches. More details on this choice can be found in the testing 
section of the report.  

D. Backend Language 

We have chosen to use a Python backend instead of C++. 
Despite the fact that python, a high-level interpreted language, 
is about 20 times slower than C++ , a lower-level compiled 
language, there are ways we plan on mitigating this slowness 
factor [5]. Most of the serious computation for the pitch 
detection will be handled by modules such as aubio, which is 
implemented in C++. We are also cognizant of the aspects of 
python that make it slow, and we will note this as we are coding. 
For example, as lists in python can hold objects of different 
types, each element needs to store additional metadata, which 
hinders runtime and memory consumption. We will avoid using 
lists and instead opt to use numpy arrays, which are much faster.   

Another factor that led us to choose python over C++ is 
development cost. This project will require a lot of iteration and 
improvement initially, and it will be much easier to do so using 
python. At least in the early stages of the project, we have 
decided to value Python’s lower development cost over its 
slowness factor. Eventually, if we truly cannot optimize our 
code further to meet our latency requirements and have reached 
a point where iteration has slowed, we will transition to C++.  

E. Hz vs. Note Names 

We have chosen to handle all of the pitch detection in Hz. 
Originally, we had mockups that suggested notes being 
displayed on a staff, which would require the mapping of Hz to 
note names for better placement on this staff. However, after 
pivoting our use-case to be targeted to beginners, we decided 
that this staff approach and subsequent note placement was not 
extremely user friendly or intuitive. 

F. Feedback Delivery 

To not overwhelm the amount of information going through 
the user’s audio channel, as they are already hearing themselves 
and the backing track, we’ve decided to provide feedback in the 
form of visuals. Such visuals will be basic and easy to interpret, 
so that we are not inundating the user with even more 
information they need to process. 

G. Feedback Delivery Timing 

There are advantages and disadvantages to real-time and 
asynchronous feedback in education.  

Initially, we had our main feedback loop be a synchronous 
mechanism. However, due to difficulties with real-time 
feedback integration, we have changed it to be an asynchronous 
mechanism. Asynchronous feedback allows for deeper 
reflection on their performance.  

After testing, our original use-case requirements were still 
met with this asynchronous mechanism. Changing the feedback 
mechanism from synchronous to asynchronous didn't seem to 
affect the efficacy of our app.  



18-500 Final Project Report: KaraoKey, 05/05/2023 
 

4

H. Song Selection 

Initially, our feature that has users sing to songs included a 
sub-feature that would allow users to input a song of choice to 
sing to. However, since then, we have decided to remove that 
sub-feature and only allow users to choose from a list of hard-
coded songs. This decision allows us to meet our latency and 
accuracy use-case requirements, as this would limit the amount 
of preprocessing required by the (sometimes inaccurate) pitch 
detection algorithm to get the song’s pitches.  

I. Frequency Range 

Ideally, our app should accommodate all vocal ranges. The 
lowest note ever sung was 0.189 Hz (G-7), sung by Tim Storms, 
and the highest note was 1134.9 Hz (D#10), sung by 
Tsetsegsuren Munkhbayar. However, accommodating for such 
a wide range would make our pitch detection algorithm less 
accurate.  

To meet our pitch accuracy use-case requirements, we 
limited our range of accepted input frequencies. This is so that 
the pitch detection algorithm can focus on a more specific range 
of fundamental frequencies for detection. This way, we can also 
limit the amount of noise and harmonics that can interfere with 
the pitch detection.  

J. Microphone and Interface 

When picking a microphone, it was important to consider 
options that minimize background noise. Our advisor 
recommended a headset microphone as it ensures the 
microphone is always around 2 inches from the user's mouth, 
picking up the most prominent signal. A lot of the headset 
microphones we found online tended to be incredible 
headphones with an okay microphone attached. However, our 
web app depends on accurate audio in order to provide correct 
feedback to our users’. Thus, we looked into broadcasting 
headsets and settled on the Audio-Technica BHPS1. This 
headset not only cancels out background noise via the 
headphones, but also works as a dynamic microphone to 
decrease peaking in the microphone despite it being very close 
to a users’ mouth. 

Additionally, we purchased an interface in order to translate 
the signal from the high-quality microphone we have into 
something that our computer could process in full. We decided 
on the Scarlett Solo 3rd Gen as it was compatible with our 
Audio-Technica headphones inputs/outputs and also was a 
more budget friendly, yet high quality interface option.  

K. Framework 

When considering how to build our web application, we 
thought about both Django and Flask as a framework. We 
selected Django, for a few reasons. The first consideration was 
familiarity. Both Kelly and Anna are comfortable building 
Django web applications and have little experience working 
with Flask. So, out of time considerations, Django was 
preferred, unless Flask had specific features we needed that 
were not available with Django. Django also provides a 
stronger base and more support for front end features, both of 
which would allow us to develop more in a short time scale. 
Flask is more flexible as a framework and tends to make 

deployment simpler. However, the flexibility didn’t outweigh 
the benefits of Django for us and, because we don’t currently 
plan on deploying our web application, the ease of deployment 
wasn’t a factor for us.  

L. Graphics Display Mechanism 

When considering how to display feedback, we considered 
using an existing graphics package, like Graph.js, or designing 
it on our own with HTML, css, and JS. Using an existing 
package has the benefit of being easier, more sophisticated and 
visually pleasing, and likely having more responsive design in 
order to scale with window size. However, an existing package 
could be limiting and not provide the specific functionality we 
want. It may be difficult to achieve the design we had in mind 
exactly with an existing framework. Currently, we are using 
Graph.js to provide feedback post-song. During the song, we 
are experimenting with using a stepped line chart for target 
pitch, and a moving element to indicate the user pitch in the y 
direction and time in the x direction. This sacrifices our original 
plan of a scrolling target pitch, but looks cleaner, and we are, in 
general, more confident in it working.  

M. Graphics Display 

As mentioned in the previous tradeoff, the original design 
included continuously scrolling target pitch, but we are 
currently considering a static graph with target pitch, which the 
user pitch scrolls through horizontally as time passes. This 
means we do not have to worry about the current target pitch 
remaining aligned on the screen if the window is resized. 
However, we liked the idea of a scrolling target pitch because 
it focused on a smaller portion of the song at a time. As a 
compromise, our current plan is to break the target song or 
melody into chunks, similarly to how karaoke machines show a 
portion of the lyrics at a time. Each target pitch chunk is 
displayed statically, but is switched out after it is done, allowing 
the user to focus on smaller portions of the song at a time.  

N. Overall tone 

Since our initial proposal, our project has shifted from being 
focused on a vocal coach to being more gamified and providing 
an experience more similar to traditional karaoke. This 
approach was heavily inspired by one of the most successful 
language education apps, Duolingo. A reason for this shift was 
to appeal to our target audience. Our target audience is less 
experienced and has a casual interest in singing and does not 
need extremely sophisticated feedback. This allows us to focus 
on the user experience and making the feedback more engaging. 
It also limits our scope to simpler analysis and excluding 
advanced vocal techniques from consideration. 



18-500 Final Project Report: KaraoKey, 05/05/2023 
 

5

VI. SYSTEM IMPLEMENTATION 

A. Recording Implementation 

The recording implementation has the workflow of the 
following diagram: 

 

Fig. 4. Block diagram of the recording subsytem workflow. 

First, the user sings into the Audio Technica BPHS1 headset. 
This headset is connected to the Scarlett Solo 3rd Gen interface 
via a XLRM 3-pin connection and a ¼” headphone jack 
connection. The XLRM 3-pin connection works to upload the 
inputted users’ voice from the headphones to the interface, 
while the headphone jack allows the user to hear themselves. 
As seen in the arrow connection, the users’ voice is processed 
before it gets to the Scarlett Solo due to the Audio Technica’s 
ability to filter out background noise in the inputted signal. 
Once at the Scarlett Solo, the users’ voice will be interpreted 
into a readable signal for the laptop and connected via a USB-
C wire to the laptop. 

Recording of audio is done via the MediaStream Recording 
API. The user gives KaraoKey microphone access, from which 
an audio stream is created. This stream is passed into a 
MediaRecorder object, and incoming audio data is pushed onto 
the chunks of the recorder object. Upon completion of the song, 
the recorder is set to inactive and creates a blob object of MIME 
type ogg. This object is set to be available for download via url 
generated with the URL.createObjectURL JavaScript function. 

B. Pitch Detection Algorithm and Scoring 

Our PDA and scoring algorithm has the workflow of the 
following diagram.  

Fig. 5. Block diagram of the ptich detection and scoring algorithm workflow. 

First, the frontend receives a .ogg file of the users voice 
which will be passed to the python backend via an AJAX 
request. Upon receiving this .ogg file, the python script utilizes 
the module PyDub in order to convert this .ogg file to a .wav 

file. This .wav file is then fed into Aubio to convert this .wav 
file into a pitch in Hz utilizing the YINFFT algorithm. These 
pitches are then checked for validity. If the pitch is < 200 Hz, it 
is replaced with 0 Hz. If the pitch is > 1000 Hz, it is replaced 
with the last valid pitch. This filtering is utilized to get rid of 
noise coming from breathing as well as the pronunciation of 
hard consonants such as ‘p’, ‘t’, etc. Once the pitches are 
received, they are placed into a list and fed into the scoring 
algorithm. The reasoning behind this change since the design 
proposal can be read in the “Risk Management” section. 

Accuracy scoring works in the following way: There is one 
main function that takes in two inputs, the user frequency and 
the target frequency. These frequencies are then fed into a note 
detection algorithm where the note, octave, and deviation in 
cents are outputted. Using the note, octave, and deviation in 
cents, an accuracy score is calculated. 

The accuracy score is based on two factors: the note 
accuracy, and the deviation in cents accuracy. 70% of the score 
was determined through the note accuracy and 30% of the score 
was determined through the deviation in cents. This ratio was 
chosen after multiple rounds of tests where an average singer’s 
frequencies were scored using the scoring algorithm. We found 
that the 70-30 split gave realistic, but not too low scores. It 
correctly penalized those who were singing completely off and 
vice versa. 

In the note accuracy calculation, if the user correctly sang the 
note, they would automatically get a score greater than or equal 
to 70%. If the user was a half note off, they would get a score 
above 50%. If the user was more than a half note off, they would 
score a 0. 

If the user sang the correct note or was only a half note off, 
they would get additional scoring points for their deviation in 
cents. The scoring for this portion was calculated using a linear 
scale. 

The two scoring portions would then be added together. 
Initially, the scoring algorithm contained both a real-time and 
post-song feedback system, but ultimately, as the real-time 
feature was cut, we only included the post-song feedback in this 
app.  

C. Web Application Implementation 

The organization of the web application for this project 
follows the standard design of a Django web application. 
Navigation between pages is handled by the Django urls.py and 
views.py functions, which render generally static HTML 
templates. The gameplay page and results page both use 
javascript to render the pitches via line charts created with the 
Graph.js package. 

When the user begins the game experience, they give 
KaraoKey access to their microphone and start the song. The 
backing track plays and the user sees the lyrics and target pitch, 
one chunk at a time. The target pitch is displayed via the 
aforementioned line chart, and is pink for parts of the chunk that 
have passed and blue for the remaining parts, showing the user 
where they currently are in this segment of the song. The 
portion of the line displayed in each color is updated via AJAX 
with a period of 20 ms. 



18-500 Final Project Report: KaraoKey, 05/05/2023 
 

6

After uploading their track to KaraoKey, users are taken to a 
replay of their singing experience. Again, users see the song 
chunk by chunk, with lyrics and target pitch displayed. This 
time, however, user pitch is displayed over top of the target 
pitch, showing the user how they were performing at this point 
of the song. The user pitch line is again updated via AJAX with 
the same period. 

Afterwards, users are shown a summary of their 
performance, including some statistics and featuring still graphs 
of their best and worst chunks. These are displayed statically 
and not updated. Along with snapshots of these chunks, 
qualitative feedback is provided about where the user fell short 
and how well they did at best.  

Fig. 6. Block diagram of web application workflow. 

VII. TEST, VERIFICATION AND VALIDATION 

A. Results for Pitch Detection Subsystem 

Pitch Algorithm Test Results 
As mentioned above, we determined the pitch detection 

algorithm to use for Aubio through a series of 2 tests: Kelly 
singing to “C Major Scale - Slow” and Kelly singing to “C 
Major Scale - Fast”. The results for these tests across all Aubio 
pitch detection modules can be found in Appendix – Diagram 2 
and 3: Pitch Algorithm Test Results. 

The SPECACF results produced a non-stable signal with 
many peaks through the C Major Scale Slow test and thus was 
ruled out immediately. The SCHMITT algorithm produced a 
non-stable signal as well with a lot of local peaks around the 
stable signal on the C Major Scale Slow test, lending to harder 
filtering of pitches and was ruled out. The MCOMB and 
FCOMB algorithms produced too smooth of a signal on C 
Major Scale Fast and thus were ruled out as they didn’t seem to 
pick up distinct pitches as well at a fast pace. When deciding 
between the YIN and YIN FFT algorithms, it came down to the 
fact that the YIN FFT algorithm produced the most stable 
signals once the pitch was reached within a note on the C Major 
Scale Slow tests as compared to the YIN algorithm. While both 
had high note onset errors, the YIN FFT algorithm produced the 
best results overall and so we proceeded forward with it. 

Wav File Input Test Results 

Upon deciding to pitch track on .wav files instead of real time 
user audio, we tested Aubio’s pitch tracking abilities once 
again. In these tests, we used the previously chosen pitch 
tracking algorithm of YIN FFT and utilized the “C Major Scale 
- Slow” and “C Major Scale - Fast” audio files once again. In 
total, we tested 6 .wav files: the raw piano note audio file of “C 
Major Scale - Slow”, Kelly humming to “C Major Scale - 
Slow”, Kelly singing note names to “C Major Scale - Slow” (i.e. 
Do Re Mi etc.), the raw piano note audio file of “C Major Scale 
- Fast”, Kelly humming to “C Major Scale - Fast”, and Kelly 
singing note names to “C Major Scale - Fast”. The results for 
these tests can be seen below. 

Fig. 7. Test results for Piano vs. Humming vs. Note Nmaes Pitch on a C Major 
Scale – Fast 

Fig. 8. Test results for Piano vs. Humming vs. Note Nmaes Pitch on a C Major 
Scale – Slow 

From these tests, we determined that the .wav file inputting 
would not affect the pitch tracking performance as the lines are 
all quite symmetric. We also became aware of the need for 
filtering on the signal, especially with note names as the 
expending of air used to produce the consonants for these note 
names introduced a lot of peaks in our pitch tracking. 

Accuracy Test Results 

To test the pitch detection algorithm accuracy and note 
detection, we did two tests. First, we fed in 108 known pitches 
into the pitch detection algorithm and then fed the output into 
the note detection algorithm. The output of the note detection 



18-500 Final Project Report: KaraoKey, 05/05/2023 
 

7

algorithm was compared to the expected result. There were no 
differences seen here– 108/108 of our input pitches matched the 
expected result. This was our initial rudimentary test. 

In the second series of tests, we fed in a “Happy Birthday” 
MIDI file into the pitch detection algorithm. The same test 
format was used here. With this test, we had 99.4% accuracy, 
where most of the differences were seen in the note onset.  

Note that octave errors were not included in these tests, as 
these errors are not penalized in our scoring algorithm. 

B. Results for Web Application and UI/UX 

The first set of tests we did for the web application was 
testing the latency of post song feedback. We tested songs of 
length 30 seconds. We recorded the time it took by using built-
in time functions in Python. For song processing, our 
requirements were under 10 seconds, and we were able to 
process these songs in 0.51 seconds. For feedback generation, 
our requirement was under 0.25 seconds, and we were able to 
perform this generation in 0.05 seconds. 

For user feedback, we collected user scores of the various 
screens of the web application on a scale of 1-5. The screens we 
chose consisted of the start, login, registration, home, song 
selection, recording, upload, playback, and feedback pages.  

Our average score overall was a 4/5, with the most common 
score for most screens being a 4/5 as well. We were most 
interested in the scores of navigation pages (the start, home, and 
song selection pages) and visualization pages (the recording, 
playback, and feedback pages). Our navigation pages tended to 
score a bit higher, slightly over an average of 4, and the 
visualization pages performed slightly worse. However, we 
only received one unsatisfactory score - a score below 3 - on 
any of these pages. 

VIII. PROJECT MANAGEMENT 

A. Schedule 

Our schedule consisted of two generally parallel branches - 
development of pitch detection and of the web application - that 
progressed in parallel. Once a base web application and pitch 
detection algorithm were developed, they were integrated and 
were kept continuously integrated as both aspects progressed. 
This point was achieved after spring break and the following 
three weeks consisted of attempts to implement real time 
feedback. Around mid-April, we pivoted to an implementation 
that provided live visualization of the user performance during 
playback, rather than live feedback during the performance 
itself. This was achieved late April, and for the remainder of the 
time, we continued developing the web application and user 
interface, as well as in-depth analysis of user performance and 
formatting of the feedback. The Gantt chart can be found in the 
Appendix - Table 1: Schedule.  

B. Team Member Responsibilities 

Kelly’s focus was the pitch detection algorithm. She focused 
on ramping up the Aubio module, testing the PDA in order to 
ensure it would work for our use case, creating .wav files to be 
used by our web application, and integrating the pitch detection 

algorithm into the web application. Additionally, Kelly took the 
lead on designing and implementing the User Interface as well 
as researching and purchasing materials.  

Anita’s focus was the note detection algorithm, as well as the 
scoring and feedback algorithms. This builds on Kelly’s work 
with the pitch detection algorithm. She focused on designing 
and developing the scoring and feedback algorithm in a way 
such that it met the use case requirements of this project. 
Initially, her responsibilities included real-time feedback and 
post-song feedback, but as the real-time feedback feature was 
ultimately removed due to difficulties with integration, her 
responsibilities shifted to developing the post-song feedback 
and scoring system. 

Anna’s focus was building the web application. She focused 
on navigation, storage, and organization of the Django web 
application, which will include identifying where and how the 
pitch detection algorithm and pitch comparison can be 
integrated. She also worked on passing required information 
between portions of the application to be used by the pitch 
detection.   

C. Bill of Materials and Budget 

Item Cost 
Audio-Technica BPHS1 

Headset 
$234.33 

Focusrite Scarlett Solo 3rd 
Gen 

$128.39 

Total: $362.72 

D. Risk Management 

As expected, the greatest risk we faced as a team was making 
our pitch detection algorithm work in conjunction with the rest 
of our application.  

Potential issues with the accuracy of our pitch detection 
algorithm were managed by considering octave errors. By 
allowing users to perform the song at any octave they want and 
counting the correct note at any octave as correct, we were able 
to drastically reduce the amount of pitch detection errors we 
experienced. Other than that, we did not run into issues with 
accuracy. We also did not run into any issues with latency. 

However, we did run into an issue we did not expect to. 
Integrating pitch detection to the web application proved more 
difficult than expected. We experienced issues with file 
formatting, MIME types, and RIFF headers. As a team, we were 
able to dedicate three weeks to working on this because of the 
slack we had given ourselves ahead of time. We tried a variety 
of methods to get around the issues we faced. For any MIME 
type, files sent to the server via POST request had malformatted 
or missing RIFF headers. We attempted to create our own, 
which resulted in noisy, unreadable files. We attempted to fix 
MediaStream Recorder settings to match our RIFF header, 
which did not fix the issue. After reading through 
documentation and reaching out to others with experience with 
audio processing and web application development, we 
ultimately pivoted. 

This pivot was disappointing, as we had initially been really 
set on real-time feedback. However, it was a change that 



18-500 Final Project Report: KaraoKey, 05/05/2023 
 

8

resulted in a functioning, engaging application and would be 
able to be completed in the schedule provided. We changed it 
to a replay of the user performance for feedback, which was 
created using the full recording that the user uploads to the web 
application themselves. 

IX. ETHICAL ISSUES 

KaraoKey is a casual karaoke-inspired web application 
targeted towards reducing anxiety behind recreational singing. 
We don’t foresee any large issues with our app in the global, 
environmental, and economic context, as our app mainly 
addresses matters in the social context. We are not at risk of 
exacerbating public safety issues either.  

When considering the songs that would be included in 
KaraoKey, we kept cultural and social impact in mind. If we 
were to include songs that are racist, sexist, etc., we have the 
potential to advertise harmful content that could lead to 
negative social consequences. We reviewed our songs for this 
type of harmful content before including it into the app.  

As with most apps, they have the ability to distract users. For 
example, if a user is using the web-app while driving, they 
could easily be distracted when reading the visual feedback. 
This can lead to increased car accidents and injuries, which is a 
horrible social consequence. In the future, we can potentially 
enable location tracking and set time limits to make sure the 
user is limited to using the app under controlled locations and 
durations.  

Thinking more about the specific users of our application, the 
users who would be most adversely affected by this app are 
those who sing outside our app’s accepted voice range. 
KaraoKey has the potential of incorrectly critiquing users who 
aren’t in the “typical” voice range of 85-1100 Hz. These special 
casual singers may become demotivated with this incorrect 
feedback, even though they may be singing on tune. 
Unfortunately, we have to limit our “accepted” frequencies to a 
specified range to increase the accuracy of the feedback given 
to the “typical” population of singers. 

X. RELATED WORK 

When working on this project, we had a few sources of 
inspiration both for our goal, and for our implementation. 

A. At Home Karaoke Machine 

As we focused on the karaoke aspect of our project, just with 
the addition of feedback, this is one of the closest alternatives 
we considered. An at home karaoke machine comes with a 
speaker and microphone. Optionally, it may have the ability to 
duet, the ability to connect to a personal device and display 
lyrics. These often cost >$200, but cheaper versions in the $40-
$50 range are available.  

B. Rock Band 

Rock Band is a video game where users aim to imitate the 
performance of a real band for a song, using specialized 
controllers to simulate instruments like drums and guitar, and a 
microphone to score vocals. The singer is scored like our users 
are, on the accuracy of their pitch. Target notes and lyrics scroll 

in order to guide the user, again, similarly to what we plan to 
implement. However, Rock Band provides real time feedback, 
while we provide feedback afterwards, in the form of a replay 
of user performance. 

XI. SUMMARY 

Our final goal for this project was to create a karaoke web 
application that is able to provide users with feedback on their 
singing by comparing their pitch with that of the target song. 
We provide engaging visual feedback via playback of the user 
performance in comparison to target pitch.  

Our aim was to provide users who are beginners or just not 
quite confident with their karaoke skills with an opportunity to 
practice in a fun but productive way, where they can enjoy the 
karaoke format, while still receiving constructive feedback. We 
did not aim to provide vocal coaching or feedback on advanced 
techniques, and therefore KaraoKey was not designed to 
analyze scatting or ad-libbing. Doing so was outside the scope 
of our project and, additionally, we believe that these users are 
likely already more confident and comfortable with practicing 
in a real karaoke setting.  

Our aim was to keep our system accessible to our goal user. 
Our materials included a headset microphone costing ~$230, 
but we developed a web application that is able to perform with 
cheaper materials as well if it is used in a non-crowded, 
generally quiet environment. 

To future student groups that may want to address this 
application, we recommend performing thorough research on 
“black box” modules before using them. While we thought that 
using the aubio module for pitch detection was going to greatly 
simplify things, working with a black box during integration 
proved extremely difficult. This ultimately led to us axing the 
“real-time” component of our app.  

GLOSSARY OF ACRONYMS 

AJAX – Asynchronous JavaScript And XML 
FFT – Fast Fourier Transform 

REFERENCES 
[1]  S. Siddiq, “Data-Driven Granular Synthesis,” www.aes.org, May 11, 

2017. https://www.aes.org/e-lib/browse.cfm?elib=18619 
[2] J. Nielsen, “Response Time Limits: Article by Jakob Nielsen,” Nielsen 

Norman Group, 2019. https://www.nngroup.com/articles/response-
times-3-important-limits/ 

[3] C. Harte, "Towards automatic extraction of harmony information from 
music signals.", 2006 

[4] “Man page of AUBIOPITCH,” aubio.org. 
https://aubio.org/manpages/latest/aubiopitch.1.html (accessed Mar. 03, 
2023). 

[5] “Intel | Data Center Solutions, IoT, and PC Innovation,” Intel. 
https://www.intel.com/content/www/us/en/homepage.html?ref=https://w
ww.intel.com/content/www/us/en/develop/articles/is-python-slower-
than-c-for-mathematical-computations.html (accessed Mar. 03, 2023). 



18-500 Final Project Report: KaraoKey, 05/05/2023 
 

9

XII. APPENDIX 

 

Diagram 1: Web Application User Interface Design 
  



18-500 Final Project Report: KaraoKey, 05/05/2023 
 

10 

  
Diagram 2: Pitch Algorithm Test Results – C Major Slow 

 
 

Diagram 3: Pitch Algorithm Test Results – C Major Fast 



18-500 Final Project Report: KaraoKey, 05/05/2023 
 

11 

Table 1: Schedule 
 


